Skip to main content

Paleoproteomics: An Introduction to the Analysis of Ancient Proteins by Soft Ionisation Mass Spectrometry

  • Chapter
  • First Online:
Paleogenomics

Part of the book series: Population Genomics ((POGE))

Abstract

The field of proteomic research, analogous to genomic research, has only recently witnessed a rapid increase in its application to the study of ancient materials. Bone has been the most commonly used archaeological and paleontological resource for recovering biological information. This has most frequently been for ancient genomic analysis, but some of the potential advantages of proteomics lie in its ability to discriminate between sources of the molecules, rather than the particular species or individual. However, proteomes could be considered more dynamic, offering different types of information than otherwise available through DNA analyses. Proteins are also considered to survive for much longer periods of time than substantial lengths of DNA and therefore the development of proteomics allows for the possibility of being able to recover information much further back in time than previously thought possible. In this chapter, the progress of this area called ‘paleoproteomics’ is reviewed, highlighting some of its greatest achievements but also some of the current limitations in the field across proteins from a range of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH. Paleobiochemistry. Sci Am. 1956;195(1):83–92.

    Article  Google Scholar 

  • Abelson PH. Geochemistry of organic substances. In: Abelson PH, editor. Researches in geochemistry, vol. 1. Chichester: Wiley; 1959. p. 79–103.

    Google Scholar 

  • Agnolin FL, Chimento NR. Afrotherian affinities for endemic South American “ungulates”. Mamm Biol. 2011;76(2):101–8.

    Article  Google Scholar 

  • Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–61.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong WG, Halstead LB, Reed FB, Wood L. Fossil proteins in vertebrate calcified tissues. Philos Trans R Soc Lond B Biol Sci. 1983;B301(1106):301–43.

    Google Scholar 

  • Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science. 2007;316(5822):280–5.

    Article  CAS  PubMed  Google Scholar 

  • Bada J, Wang X, Hamilton H. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philos Trans R Soc Lond B Biol Sci. 1999;354(1379):77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122(7):735–55.

    Article  CAS  PubMed  Google Scholar 

  • Boskey AL, Posner AS. Bone structure, composition, and mineralization. Orthop Clin North Am. 1984;15(4):597–612.

    Article  CAS  PubMed  Google Scholar 

  • Brandt LØ, Schmidt AL, Mannering U, Sarret M, Kelstrup CD, Olsen JV, et al. Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods. PLoS One. 2014;9(9):e106875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol. 2014;15(7):453–64.

    Article  CAS  PubMed  Google Scholar 

  • Brown TA. How ancient DNA may help in understanding the origin and spread of agriculture. Philos Trans R Soc Lond B Biol Sci. 1999;354(1379):89–98.

    Article  CAS  PubMed Central  Google Scholar 

  • Buckley M. A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order ‘Bibymalagasia’. PLoS One. 2013;8(3):e59614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley M. Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’. Proc Biol Sci. 2015;282(1806):20142671.

    PubMed  PubMed Central  Google Scholar 

  • Buckley M, Wadsworth C. Proteome degradation in ancient bone: diagenesis and phylogenetic potential. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;416:69–79.

    Article  Google Scholar 

  • Buckley M, Anderung C, Penkman K, Raney BJ, Gotherstrom A, Thomas-Oates J, et al. Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites. J Archaeol Sci. 2008a;35(6):1756–64.

    Article  Google Scholar 

  • Buckley M, Walker A, Ho SY, Yang Y, Smith C, Ashton P, et al. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science. 2008b;4(319):33c.

    Article  CAS  Google Scholar 

  • Buckley M, Collins M, Thomas-Oates J, Wilson JC. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(23):3843–54.

    Article  CAS  PubMed  Google Scholar 

  • Buckley M, Larkin N, Collins M. Mammoth and Mastodon collagen sequences; survival and utility. Geochim Cosmochim Acta. 2011;75(7):2007–16.

    Article  CAS  Google Scholar 

  • Buckley M, Melton ND, Montgomery J. Proteomics analysis of ancient food vessel stitching reveals >4000-year-old milk protein. Rapid Commun Mass Spectrom. 2013;27(4):531–8.

    Article  CAS  PubMed  Google Scholar 

  • Buckley M, Fraser S, Herman J, Melton N, Mulville J, Pálsdóttir A. Species identification of archaeological marine mammals using collagen fingerprinting. J Archaeol Sci. 2014;41:631–41.

    Article  CAS  Google Scholar 

  • Buckley M, Gu M, Shameer S, Patel S, Chamberlain A. High-throughput collagen fingerprinting of intact microfaunal remains; a low-cost method for distinguishing between murine rodent bones. Rapid Commun Mass Spectrom. 2016;30:1–8.

    Article  CAS  Google Scholar 

  • Buckley M, Harvey V, Chamberlain A. Species identification and decay assessment of Late Pleistocene fragmentary vertebrate remains from Pin Hole Cave (Creswell Crags, UK) using collagen fingerprinting. Boreas. 2017; https://doi.org/10.1111/bor.12225.

    Article  Google Scholar 

  • Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW Jr, et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res. 2011;11(2):917–26.

    Article  PubMed  CAS  Google Scholar 

  • Colombo G, Fanti P, Yao CH, Malluche HH. Isolation and complete amino acid sequence of osteocalcin from canine bone. J Bone Miner Res. 1993;8(6):733–43.

    Article  CAS  PubMed  Google Scholar 

  • Curry GB. Amino acids and proteins from fossils. In: Eglinton G, Curry GB, editors. Molecular evolution and the fossil record. Knoxville, TN: Paleontological Society; 1988. p. 20–33.

    Google Scholar 

  • Delmas PD, Tracy RP, Riggs BL, Mann K. Identification of the non collagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif Tissue Int. 1984;36:308–16.

    Article  CAS  PubMed  Google Scholar 

  • Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK, et al. Protein sequences bound to mineral surfaces persist into deep time. Elife. 2016;5:e17092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Donato A, Filippone E, Ercolano MR, Frusciante L. Genome sequencing of ancient plant remains: findings, uses and potential applications for the study and improvement of modern crops. Front Plant Sci. 2018;9:441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doorn NL, Wilson J, Hollund H, Soressi M, Collins MJ. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun Mass Spectrom. 2012;26(19):2319–27.

    Article  PubMed  CAS  Google Scholar 

  • Edman P. Mechanism of the phenyl isothiocyanate degradation of peptides. Nature. 1956;177(4510):667–8.

    Article  CAS  Google Scholar 

  • Frazao C, Simes DC, Coelho R, Alves D, Williamson MK, Price PA, et al. Structural evidence of a fourth Gla residue in fish osteocalcin: biological implications. Biochemistry. 2005;44(4):1234–42.

    Article  CAS  PubMed  Google Scholar 

  • Fulton TL, Strobeck C. Multiple markers and multiple individuals refine true seal phylogeny and bring molecules and morphology back in line. Proc R Soc Lond B Biol Sci. 2010;277(1684):1065–70.

    CAS  Google Scholar 

  • Gendreau MA, Krishnaswamy S, Mann KG. The interaction of bone Gla protein (osteocalcin) with phospholipid vesicles. J Biol Chem. 1989;264(12):6972–8.

    Article  CAS  PubMed  Google Scholar 

  • Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J. A role for osteocalcin in osteoclast differentiation. J Cell Biochem. 1991;45(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol. 2012;335(1):32–50.

    Article  PubMed  Google Scholar 

  • Hauschka PV. Osteocalcin: the vitamin-K dependent Ca-binding protein of bone matrix. Haemostasis. 1986;16:258–72.

    CAS  PubMed  Google Scholar 

  • Hauschka PV, Carr SA. Calcium-dependant a-helical structure in osteocalcin. Biochemistry. 1982;21:2538–47.

    Article  CAS  PubMed  Google Scholar 

  • Hauschka PV, Wians FH. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec. 1989;224:180–8.

    Article  CAS  PubMed  Google Scholar 

  • Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047.

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB, Schweitzer MH. Detecting dinosaur DNA. Science. 1995;268(5214):1191–2.

    Article  CAS  PubMed  Google Scholar 

  • Hollemeyer K, Altmeyer W, Heinzle E, Pitra C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of Neolithic keratin sequences from furs of the Tyrolean Iceman Oetzi. Rapid Commun Mass Spectrom. 2012;26(16):1735–45.

    Article  CAS  PubMed  Google Scholar 

  • Hulmes GM. The collagen superfamily – diverse structures and assemblies. Essays Biochem. 1992;27:49–67.

    CAS  PubMed  Google Scholar 

  • Huq N, Tseng A, Chapman G. Partial amino acid sequence of osteocalcin from an extinct species of ratite bird. Biochem Int. 1989;21(3):491–6.

    Google Scholar 

  • Huq NL, Tseng A, Chapman GE. Partial amino acid sequence of osteocalcin from an extinct species of ratite bird. Biochem Int. 1990;21:491–6.

    CAS  PubMed  Google Scholar 

  • James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys. 1997;30(04):279–331.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Ye M, Jiang X, Liu G, Feng S, Cui L, et al. Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res. 2007;6(6):2287–94.

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Vallentyne JR. Biogeochemistry of organic matter. Geochim Cosmochim Acta. 1960;21:1–34.

    Article  CAS  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman J. Collagen fibril formation. Biochem J. 1996;316:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.

    Article  CAS  PubMed  Google Scholar 

  • Kaye TG, Gaugler G, Sawlowicz Z. Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS One. 2008;3(7):e2808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536.

    Article  CAS  PubMed  Google Scholar 

  • Lendaro E, Ippoliti R, Bellelli A, Brunori M, Zito R, Citro G, et al. On the problem of immunological detection of antigens in skeletal remains. Am J Phys Anthropol. 1991;86(3):429–32.

    Article  CAS  PubMed  Google Scholar 

  • Liggett WH Jr, Lian JB, Greenberger JS, Glowacki J. Osteocalcin promotes differentiation of osteoclast progenitors from murine long-term bone marrow cultures. J Cell Biochem. 1994;55(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  • Lockwood WW, Chari R, Chi B, Lam WL. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet. 2006;14(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  • Logan G, Collins M, Eglinton G. Preservation of organic biomolecules. In: Allison PA, Briggs DEG, editors. Taphonomy releasing the data locked in the fossil record, vol. 9. New York: Plenum; 1991. p. 1–24.

    Chapter  Google Scholar 

  • Lowenstein JM, Ryder OA. Immunological systematics of the extinct quagga (Equidae). Experientia. 1985;41(9):1192–3.

    Article  CAS  PubMed  Google Scholar 

  • MacPhee RD. Morphology, adaptations, and relationships of Plesiorycteropus: and a diagnosis of a new order of eutherian mammals. Bulletin of the AMNH; no. 220. 1994.

    Google Scholar 

  • Malone JD. Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol. 1982;92(1):227–30.

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.

    Article  CAS  PubMed  Google Scholar 

  • Matrix Science. 2016. http://www.matrixscience.com/. Accessed 28 Apr 2018.

  • Millard A. Deterioration of bone. In: Pollard AM, Brothwell D, editors. Handbook of archaeological sciences. New York: Wiley; 2001.

    Google Scholar 

  • Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K identification of caboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974;249(19):6347–50.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen-Marsh C. Biomolecules in fossil remains-multidisciplinary approach to endurance. Biochemist. 2002;24(3):12–4.

    Article  Google Scholar 

  • Nielsen-Marsh CM, Ostrom PH, Gandhi H, Shapiro B, Cooper A, Hauschka PV, et al. Exceptional preservation of bison bones >55 ka as demonstrated by protein and DNA sequences. Geology. 2002;30(12):1099–102.

    Article  CAS  Google Scholar 

  • Nogami HMD, Oohira A, Ogasawara NMD. Levels of creatine kinase activity in cartilage of tubular and nontubular bone in relation to pathogenesis of achondroplasia. Clin Orthop Relat Res. 1987;(219):308–12.

    Google Scholar 

  • Nomura K, Yonezawa T, Mano S, Kawakami S, Shedlock AM, Hasegawa M, et al. Domestication process of the goat revealed by an analysis of the nearly complete mitochondrial protein-encoding genes. PLoS One. 2013;8(8):e67775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrom PH, Schall M, Gandhi H, Shen TL, Hauschka PV, Strahler JR, et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry. Geochim Cosmochim Acta. 2000;64(6):1043–50.

    Article  CAS  Google Scholar 

  • Ostrom PH, Gandhi H, Strahler JR, Walker AK, Andrews PC, Leykam J, et al. Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse. Geochim Cosmochim Acta. 2006;70(8):2034–44.

    Article  CAS  Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. Genetic analyses from ancient DNA. Annu Rev Genet. 2004;38:645–79.

    Article  CAS  PubMed  Google Scholar 

  • Prager EM, Wilson AC, Lowenstein JM, Sarich VM. Mammoth albumin. Science. 1980;209:287–9.

    Article  CAS  PubMed  Google Scholar 

  • Price PA, Williamson MK. Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J Biol Chem. 1985;260(28):14971–5.

    Article  CAS  PubMed  Google Scholar 

  • Procopio N, Chamberlain AT, Buckley M. Intra- and interskeletal proteome variations in fresh and buried bones. J Proteome Res. 2017;16(5):2016–29.

    Article  CAS  PubMed  Google Scholar 

  • Robbins LL, Muyzer G, Brew K. Macromolecules form living and fossil biominerals; Implications for the establishment of molecular phyolgenies. In: Engle MH, Macko SA, editors. Organic geochemistry. New York: Plenum; 1993. p. 799–816.

    Chapter  Google Scholar 

  • Roepstorff P, Fohlman J. Letter to the editors. Biol Mass Spectrom. 1984;11(11):601.

    Article  CAS  Google Scholar 

  • Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat Commun. 2013;4:1550.

    Article  PubMed  CAS  Google Scholar 

  • Sawafuji R, Cappellini E, Nagaoka T, Fotakis AK, Jersie-Christensen RR, Olsen JV, et al. Proteomic profiling of archaeological human bone. R Soc Open Sci. 2017;4(6):161004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, et al. A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem. 2007;101:466–76.

    Article  CAS  PubMed  Google Scholar 

  • Schroeter ER, DeHart CJ, Cleland TP, Zheng W, Thomas PM, Kelleher NL, Bern M, Schweitzer MH. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of cretaceous protein. J Proteome Res. 2017;16(2):920–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwalbe RA, Ryan J, Stern DM, Kisiel W, Dahlback B, Nelsestuen GL. Protein structural requirements and properties of membrane binding by gamma-carboxyglutamic acid-containing plasma proteins and peptides. J Biol Chem. 1989;264(34):20288–96.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science. 2009;324(5927):626–31.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Zheng W, Cleland TP, Bern M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone. 2013;52(1):414–23.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Moyer AE, Zheng W. Testing the hypothesis of biofilm as a source for soft tissue and cell-like structures preserved in dinosaur bone. PLoS One. 2016;11(2):e0150238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solazzo C, Fitzhugh WW, Rolando C, Tokarski C. Identification of protein remains in archaeological potsherds by proteomics. Anal Chem. 2008;80(12):4590–7.

    Article  CAS  PubMed  Google Scholar 

  • Solazzo C, Courel B, Connan J, Van Dongen BE, Barden H, Penkman K, Taylor S, Demarchi B, Adam P, Schaeffer P, Nissenbaum A. Identification of the earliest collagen-and plant-based coatings from Neolithic artefacts (Nahal Hemar cave, Israel). Sci Rep. 2016;6:31053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart NA, Gerlach RF, Gowland RL, Gron KJ, Montgomery J. Sex determination of human remains from peptides in tooth enamel. Proc Natl Acad Sci. 2017;114(52):13649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–3.

    Article  CAS  Google Scholar 

  • Tokarski C, Martin E, Rolando C, Cren-Olivé C. Identification of proteins in renaissance paintings by proteomics. Anal Chem. 2006;78(5):1494–502.

    Article  CAS  PubMed  Google Scholar 

  • Triffitt JT, Gebauer U, Ashton BA, Owen ME, Reynolds JJ. Origin of plasma alpha2-HS-glycoprotein and its accumulation in bone. Nature. 1976;262(5565):226–7.

    Article  CAS  PubMed  Google Scholar 

  • Vuorio E, de Crombrugghe B. The family of collagen genes. Annu Rev Biochem. 1998;59:837–72.

    Article  Google Scholar 

  • Wadsworth C, Buckley M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun Mass Spectrom. 2014;28(6):605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadsworth C, Procopio N, Anderung C, Carretero JM, Iriarte E, Valdiosera C, Elburg R, Penkman K, Buckley M. Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteome. 2017;158:1–8.

    Article  CAS  Google Scholar 

  • Wallace JM, Rajachar RM, Chen XD, Shi S, Allen MR, Bloomfield SA, et al. The mechanical phenotype of biglycan-deficient mice is bone-and gender-specific. Bone. 2006;39(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  • Weiner S, Lowenstam HA, Hood L. Characterisation of 80-million-year-old mollusk shell proteins. Proc Natl Acad Sci U S A. 1976;73:2541–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522(7554):81–4.

    Article  CAS  PubMed  Google Scholar 

  • Wellner D, Panneerselvam C, Horecker B. Sequencing of peptides and proteins with blocked N-terminal amino acids: N-acetylserine or N-acetylthreonine. Proc Natl Acad Sci. 1990;87(5):1947–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JL, Kramarz A, et al. A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica. Nat Commun. 2017;8:15951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RAD, Elliot JC. Basic and applied dental biochemistry. Edinburgh: Churchill Livingstone; 1989.

    Google Scholar 

  • Wilson J, van Doorn NL, Collins MJ. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal Chem. 2012;84(21):9041–8.

    Article  CAS  PubMed  Google Scholar 

  • Woodward SR, Weyand NJ, Bunnell M. DNA sequence from Cretaceous period bone fragments. Science. 1994;266(5188):1229–32.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 1984;88(20):4451–9.

    Article  CAS  Google Scholar 

  • Zang X, van Heemst JDH, Dria KJ, Hatcher PG. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org Geochem. 2000;31(7–8):679–95.

    Article  CAS  Google Scholar 

  • Zhu W, Robey PG, Boskey AL. The regulatory role of matrix proteins in mineralisation of bone. In: Feldman D, Nelson D, Rosen CJ, editors. Osteoporosis. New York: Elsevier; 2007. p. 191–240.

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Royal Society in the form of a University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Buckley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buckley, M. (2018). Paleoproteomics: An Introduction to the Analysis of Ancient Proteins by Soft Ionisation Mass Spectrometry. In: Lindqvist, C., Rajora, O. (eds) Paleogenomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_50

Download citation

Publish with us

Policies and ethics