Skip to main content

Detailed Analysis of Diurnal Tides and Associated Space Nutation in the Search of the Free Inner Core Nutation Resonance

  • Conference paper
International Symposium on Earth and Environmental Sciences for Future Generations

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

We propose a comparison of the tidal analysis results obtained from the continuous records of time-varying surface gravity collected by a worldwide network of Superconducting Gravimeters with the analysis results of space nutation observed by the international Very Long Baseline Interferometry (VLBI) network. The length of the surface gravity time series (20 years for the longest) enables now to look for additional diurnal tides that were previously not analyzed. In parallel, we now possess 35 years of VLBI data permitting to look for additional nutation terms. We focus our analysis on the diurnal prograde frequency band in the search for a possible resonance effect linked to the Free Inner Core Nutation. This Earth’s normal mode has never been clearly observed. Its direct deformation effect at the Earth’s surface is theoretically predicted to be too small to be detected. However, the tidal forcing at a frequency close to its eigenfrequency could enhance some tidal or nutation amplitude resulting in the characterization of this mode through its resonance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amoruso A, Botta V, Crescentini L (2012) Free core resonance parameters from strain data: sensitivity analysis and results from the Gran Sasso (Italy) extensometers. Geophys J Int 189:923–936

    Article  Google Scholar 

  • Blum PA, Hatzfeld D, Wittlinger G (1973) Résultats expérimentaux sur la fréquence de résonance due à l’effet dynamique du noyau liquide. C R Acad Sci Paris, 277, Ser B:241–244

    Google Scholar 

  • Crossley D, Hinderer J, Casula G, Francis O, Hsu H-T, Imanishi Y, Meurers B, Neumeyer J, Richter B, Shibuya K, Sato T, van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. Eos Trans AGU 80(11):121–126

    Article  Google Scholar 

  • de Vries D, Wahr JM (1991) The effects of the solid inner core and nonhydrostatic structure on the Earth’s forced nutations and Earth tides. J Geophys Res B96:8275–8293

    Article  Google Scholar 

  • Defraigne P, Dehant V, Hinderer J (1994) Stacking gravity tide measurements and nutation observations in order to determine the complex eigenfrequency of the nearly diurnal free wobble. J Geophys Res 99(B5):9203–9213

    Article  Google Scholar 

  • Defraigne P, Dehant V, Hinderer J (1995) Correction to ‘stacking gravity tide measurements and nutation observations in order to determine the complex eigenfrequency of the nearly diurnal free wobble’. J Geophys Res 100(B2):2041–2042

    Article  Google Scholar 

  • Dehant V, Hinderer J, Legros H, Lefftz M (1993) Analytical approach to the computation of the earth, the outer core and the inner core rotational motions. Phys Earth Planet Inter 76:259–282

    Article  Google Scholar 

  • Dehant V, Feissel M, Defraigne P, Roosbeek F, Souchay J (1997) Could the energy near the FCN and the FICN be explained by luni-solar or atmospheric forcing? Geophys J Int 130:535–546

    Article  Google Scholar 

  • Ducarme B, Sun H-P, Xu J-Q (2007) Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J Geod 81:179–187

    Article  Google Scholar 

  • Dumberry M (2009) Influence of elastic deformations on the inner core wobble. Geophys J Int 178:57–64

    Article  Google Scholar 

  • Gattano C, Lambert S, Bizouard C (2015) Comparison of VLBI nutation series, to be published in Proceedings of 22th European VLBI Group for Geodesy and Astrometry (EVGA) Working Meeting

    Google Scholar 

  • Greff-Lefftz M, Legros H, Dehant V (2000) Influence of the inner core viscosity on the rotational eigenmodes of the Earth. Phys Earth Planet Inter 122:187–204

    Article  Google Scholar 

  • Greff-Lefftz M, Dehant V, Legros H (2002) Effects of inner core viscosity on gravity changes and spatial nutations induced by luni-solar tides. Phys Earth Planet Inter 129:31–41

    Article  Google Scholar 

  • Hartmann T, Wenzel H-G (1995) The HW95 tidal potential catalogue. Geophys Res Lett 22(24):3553–3556

    Article  Google Scholar 

  • Herring TA, Buffett BA, Mathews PM, Shapiro II (1991) Forced nutations of the Earth: influence of inner core dynamics, 3. Very long interferometry analysis. J Geophys Res 91:4755–4765

    Google Scholar 

  • Herring TA, Mathews PM, Buffett BA (2002) Modeling of nutation-precession: very long baseline interferometry results. J Geophys Res 107.doi:10.1029/2001JB000165

    Google Scholar 

  • IERS Conventions (2010) In: Petit G, Luzum B (eds) (IERS Technical Note 36). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 179. ISBN 3-89888-989-6

    Google Scholar 

  • Koot L, Rivoldini A, de Viron O, Dehant V (2008) Estimation of Earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. J Geophys Res 113, B08414. doi:10.1029/2007JB005409

    Article  Google Scholar 

  • Koot L, Dumberry M, Rivoldini A, de Viron O, Dehant V (2010) Constraints on the coupling at the core-mantle and inner core boundaries inferred from nutation observations. Geophys J Int 182:1279–1294

    Article  Google Scholar 

  • Krásná H, Böhm J, Schuh H (2013) Free core nutation observed by VLBI. Astron Astrophys 555:29

    Article  Google Scholar 

  • Lambert S (2006) Atmospheric excitation of the Earth’s free core nutation (research note). Astron Astrophys 457:717–720

    Article  Google Scholar 

  • Lambert S (2014) Comparison of VLBI radio source catalogs. Astron Astrophys 570:108

    Article  Google Scholar 

  • Lambert SB, Dehant V (2007) The Earth’s core parameters as seen by the VLBI. Astron Astrophys 469:777–781

    Article  Google Scholar 

  • Lambert S, Rosat S, Cui X, Rogister Y, Bizouard C (2012) A search for the free inner core nutation in VLBI data. In: IVS 2012 General Meeting Proceedings, pp 370–374

    Google Scholar 

  • Legros H, Hinderer J, Lefftz M, Dehant V (1993) The influence of the solid inner core on gravity changes and spatial nutations induced by luni-solar tides and surface loading. Phys Earth Planet Inter 76:283–315

    Article  Google Scholar 

  • Malkin Z (2014) On the accuracy of the theory of precession and nutation, Astron. Reports, 58, No. 6, pp 415–425

    Google Scholar 

  • Mathews PM (2001) Love numbers and gravimetric factor for diurnal tides. Proceedings of 14th international symposium Earth tides. J Geod Soc Jpn 47(1):231–236

    Google Scholar 

  • Mathews PM, Buffett BA, Herring TA, Shapiro II (1991a) Forced nutations on the Earth: influence of inner core dynamics, 1. Theory. J Geophys Res 96:8219–8242

    Article  Google Scholar 

  • Mathews PM, Buffett BA, Herring TA, Shapiro II (1991b) Forced nutations of the Earth: influence of inner core dynamics: 2. Numerical results and comparisons. J Geophys Res 96:8243–8257

    Article  Google Scholar 

  • Mathews PM, Buffet BA, Shapiro II (1995) Love numbers for diurnal tides: relation to wobble admittances and resonance expansions. J Geophys Res 100(B7):9935–9948

    Article  Google Scholar 

  • Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation-precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys. Res 107 (B4):ETG3-1-3-30

    Google Scholar 

  • Neuberg J, Zürn W (1986) Investigation of the nearly diurnal resonance using gravity, tilt and strain data simultaneously. In: Vieira R (ed) Proceedings of 10th international symposium earth tides. Cons. Sup. Inv. Cient., Madrid, pp 305–311

    Google Scholar 

  • Rogister Y (2001) On the diurnal and nearly diurnal free modes of the Earth. Geophys J Int 144:459–470

    Article  Google Scholar 

  • Rogister Y, Valette B (2009) Influence of liquid core dynamics on rotational modes. Geophys J Int 176(2):368–388

    Article  Google Scholar 

  • Rosat S, Lambert SB (2009) Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron Astrophys 503:287–291

    Article  Google Scholar 

  • Rosat S, Florsch N, Hinderer J, Llubes M (2009) Estimation of the free core nutation parameters from SG data: sensitivity study and comparative analysis using linearized Least-Squares and Bayesian methods. J Geodyn 48:331–339

    Article  Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:10.1016/j.jog.2012.07.007

    Article  Google Scholar 

  • Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid earth nutation theory: III. Final tables “REN-2000” including crossed-nutation and spin-orbit coupling effects. Astron Astrophys Suppl Ser 135:111–131

    Article  Google Scholar 

  • Tamura Y (1987) A harmonic development of the tide generating potential. Bull Inf Mar Terr 99:6813–6855

    Google Scholar 

  • Vondrák J, Weber R, Ron C (2005) Free core nutation: direct observations and resonance effects. Astron Astrophys 444:297–303

    Article  Google Scholar 

  • Wenzel H-G (1996) The nanogal software: Earth tide data processing package ETERNA 3.30. Bull Inf Mar Terr 124:9425–9439

    Google Scholar 

  • Zaske J, Zürn W, Wilhelm H (2000) NDFW analysis of borehole water level data from the hot-dry-rock test site Soultz-Sous-Forêts. Bull Inf Mar Terr 132:10,241–10,270

    Google Scholar 

  • Zotov L, Bizouard C (2015) Regional atmospheric influence on the Chandler wobble. Adv Sp Res 55(5):1300–1306

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the CNRS-INSU Programme National de Planétologie and the Groupe de Recherche de Géodésie Spatiale (GRGS). We thank also the managers of SG instruments for sharing their data within the GGP. This paper made use of the VLBI data provided by the International VLBI Service for geodesy and astrometry (IVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Rosat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosat, S., Calvo, M., Lambert, S. (2016). Detailed Analysis of Diurnal Tides and Associated Space Nutation in the Search of the Free Inner Core Nutation Resonance. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_224

Download citation

Publish with us

Policies and ethics