Skip to main content

Nanofibrous Scaffolds for the Management of Periodontal Diseases

  • Chapter
  • First Online:
Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

  • 283 Accesses

Abstract

Periodontium is an intricate complex system that consists of different types of tissues. There are several diseases that affect periodontium causing destruction and loss of its tissues. The goal for periodontal treatment is the reconstruction of the lost periodontal tissues. Periodontal regeneration is considered one of oral health care challenges, and it can depend on using nanostructured biomaterials. These nanostructured biomaterials simulate the microenvironment of the extracellular matrix (ECM) and act as a biomimetic platform to attract stem cells and stimulate their differentiation to specific lineages. There are different forms for nanostructured biomaterials such as nanofibers and nanoparticles. Nanofibers have a similar structure and size to those of the natural collagen seen in the ECM of periodontal tissues. This chapter gives a brief overview of periodontium and periodontal diseases. Moreover, it discusses the different strategies for periodontal therapy including periodontal tissue regeneration and the recent nanofibrous biomaterials that can be used for periodontal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atala A, Lanza R, Lanza RP (2002) Methods of tissue engineering. Gulf Professional Publishing

    Google Scholar 

  2. Olson JL, Atala A, Yoo JJ (2011) Tissue engineering: current strategies and future directions. Chonnam Med J 47(1):1–13

    CAS  Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CAS  Google Scholar 

  4. Herring S, Ochareon P (2005) Bone–special problems of the craniofacial region. Orthod Craniofac Res 8(3):174–182

    CAS  Google Scholar 

  5. Duailibi M, Duailibi S, Young C, Bartlett J, Vacanti J, Yelick P (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83(7):523–528

    CAS  Google Scholar 

  6. Abou Neel EA, Chrzanowski W, Salih VM, Kim H-W, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42(8):915–928

    CAS  Google Scholar 

  7. Rios HF, Lin Z, Oh B, Park CH, Giannobile WV (2011) Cell-and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 82(9):1223–1237

    CAS  Google Scholar 

  8. Woo HN, Cho YJ, Tarafder S, Lee CH (2021) The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater 6(10):3328–3342

    CAS  Google Scholar 

  9. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ et al (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration – a materials perspective. Dent Mater 28(7):703–721

    CAS  Google Scholar 

  10. Huang X, Xie M, Xie Y, Mei F, Lu X, Li X et al (2020) The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 18(1):1–15

    Google Scholar 

  11. Sokos D, Everts V, De Vries T (2015) Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res 50(2):152–159

    CAS  Google Scholar 

  12. McCauley LK, Somerman MJ (2012) Mineralized tissues in oral and craniofacial science: biological principles and clinical correlates. Wiley

    Google Scholar 

  13. Foster BL, Popowics TE, Fong HK, Somerman MJ (2007) Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78:47–126

    CAS  Google Scholar 

  14. Diekwisch T (2004) The developmental biology of cementum. Int J Dev Biol 45(5–6):695–706

    Google Scholar 

  15. Bosshardt D (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84(5):390–406

    CAS  Google Scholar 

  16. Dale BA (2002) Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000 30(1):70–78

    Google Scholar 

  17. Gargiulo AW, Wentz FM, Orban B (1961) Dimensions and relations of the dentogingival junction in humans. J Periodontol 32(3):261–267

    Google Scholar 

  18. Andrei M, Dinischiotu A, Didilescu AC, Ionita D, Demetrescu I (2018) Periodontal materials and cell biology for guided tissue and bone regeneration. Ann Anat 216:164–169

    Google Scholar 

  19. Freeman E (1981) Development of the dento-gingival junction of the free gingival graft. A histological study. J Periodontal Res 16(2):140–146

    CAS  Google Scholar 

  20. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 3(1):1–14

    Google Scholar 

  21. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS et al (2015) Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol 86(5):611–622

    Google Scholar 

  22. El-Awady AR, Lapp CA, Gamal AY, Sharawy MM, Wenger KH, Cutler CW et al (2013) Human periodontal ligament fibroblast responses to compression in chronic periodontitis. J Clin Periodontol 40(7):661–671

    CAS  Google Scholar 

  23. Sokos D, Scheres N, Schoenmaker T, Everts V, de Vries TJ (2014) A challenge with Porphyromonas gingivalis differentially affects the osteoclastogenesis potential of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors. J Clin Periodontol 41(2):95–103

    CAS  Google Scholar 

  24. Haffajee AD (1994) Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5:78–111

    CAS  Google Scholar 

  25. Teles RP, Gursky LC, Faveri M, Rosa EA, Teles FR, Feres M et al (2010) Relationships between subgingival microbiota and GCF biomarkers in generalized aggressive periodontitis. J Clin Periodontol 37(4):313–323

    CAS  Google Scholar 

  26. Hasan SA, Ganapathy D, Jain AR (2018) Management strategies of necrotizing ulcerative periodontitis therapy. Drug Invention Today 7:11

    Google Scholar 

  27. Sheiham A, Steele JG, Marcenes W, Tsakos G, Finch S, Walls AW (2001) Prevalence of impacts of dental and oral disorders and their effects on eating among older people; a national survey in Great Britain. Community Dent Oral Epidemiol 29(3):195–203

    CAS  Google Scholar 

  28. Sanz M, Ceriello A, Buysschaert M, Chapple I, Demmer RT, Graziani F et al (2018) Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Diabetes Res Clin Pract 137:231–241

    Google Scholar 

  29. Sanz M, Marco del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D’Aiuto F, Bouchard P et al (2020) Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol 47(3):268–288

    Google Scholar 

  30. Romandini M, Baima G, Antonoglou G, Bueno J, Figuero E, Sanz M (2021) Periodontitis, edentulism, and risk of mortality: a systematic review with meta-analyses. J Dent Res 100(1):37–49

    CAS  Google Scholar 

  31. Genco RJ, Sanz M (2020) Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol 2000 83(1):7–13

    Google Scholar 

  32. Kinane DF, Peterson M, Stathopoulou PG (2000) Environmental and other modifying factors of the periodontal diseases. Periodontology 40(1):107–119

    Google Scholar 

  33. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):1–5

    Google Scholar 

  34. Mwafey I, Ibrahim I, Gaber AH (2021) COVID-19 pandemic and perspective convergence with periodontal diseases. Glob J Public Health Med 3(1):341–353

    Google Scholar 

  35. Badran Z, Gaudin A, Struillou X, Amador G, Soueidan A (2020) Periodontal pockets: a potential reservoir for SARS-CoV-2? Med Hypotheses 143:109907

    CAS  Google Scholar 

  36. Marouf N, Cai W, Said KN, Daas H, Diab H, Chinta VR et al (2021) Association between periodontitis and severity of COVID-19 infection: a case–control study. J Clin Periodontol 48(4):483–491

    CAS  Google Scholar 

  37. Shamsoddin E (2021) Is periodontitis associated with the severity of COVID-19? Evid Based Dent 22(2):66–68

    Google Scholar 

  38. Cortellini P, Tonetti MS (2015) Clinical concepts for regenerative therapy in intrabony defects. Periodontol 2000 68(1):282–307

    Google Scholar 

  39. Liang Y, Luan X, Liu X (2020) Recent advances in periodontal regeneration: a biomaterial perspective. Bioact Mater 5(2):297–308

    Google Scholar 

  40. Goudouri O-M, Kontonasaki E, Boccaccini AR (2017) Layered scaffolds for periodontal regeneration. Elsevier, Biomaterials for Oral and Dental Tissue Engineering, pp 279–295

    Google Scholar 

  41. Zheng W, Wang S, Wang J, Jin F (2015) Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int J Mol Med 36(4):915–922

    CAS  Google Scholar 

  42. Jung O, Smeets R, Hartjen P, Schnettler R, Feyerabend F, Klein M et al (2019) Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/−12. Int J Mol Sci 20(2)

    Google Scholar 

  43. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S et al (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24(5):801–808

    CAS  Google Scholar 

  44. Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10(1):1–24

    Google Scholar 

  45. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    CAS  Google Scholar 

  46. Mandal B, Kundu S (2008) Non-bioengineered high strength three-dimensional gland fibroin scaffolds from tropical non-mulberry silkworm for potential tissue engineering applications. Macromol Biosci 8:807–818

    CAS  Google Scholar 

  47. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825

    CAS  Google Scholar 

  48. Choi HS, Choi HG, Kim SH, Park HJ, Shin DH, Jo DI et al (2012) Influence of the alveolar cleft type on preoperative estimation using 3D CT assessment for alveolar cleft. Arch Plast Surg 39(5):477

    Google Scholar 

  49. Goudouri O-M, Vogel C, Grünewald A, Detsch R, Kontonasaki E, Boccaccini AR (2016) Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J Biomater Appl 30(6):740–749

    CAS  Google Scholar 

  50. Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW (2014) Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 41(3):283–294

    CAS  Google Scholar 

  51. Wang J, Ma H, Jin X, Hu J, Liu X, Ni L et al (2011) The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31):7822–7830

    CAS  Google Scholar 

  52. Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R et al (2020) Fabrication and plasma modification of nanofibrous tissue engineering scaffolds. Nanomaterials (Basel) 10(1):119

    CAS  Google Scholar 

  53. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D et al (2020) Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel) 13(1):201

    CAS  Google Scholar 

  54. Gupte MJ, Ma PX (2012) Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res 91(3):227–234

    CAS  Google Scholar 

  55. Madurantakam PA, Cost CP, Simpson DG, Bowlin GL (2009) Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine (Lond) 4(2):193–206

    CAS  Google Scholar 

  56. Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46(1):60–72

    CAS  Google Scholar 

  57. Wade RJ, Burdick JA (2014) Advances in nanofibrous scaffolds for biomedical applications: from electrospinning to self-assembly. Nano Today 9(6):722–742

    CAS  Google Scholar 

  58. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 99(8):4769–4774

    CAS  Google Scholar 

  59. El-Fiqi A, Seo S-J, Kim H-W (2016) Mineralization of fibers for bone regeneration. Biomineralization and biomaterials. Elsevier, pp 443–476

    Google Scholar 

  60. Aggarwal A, Sah MK (2021) Electrospun materials as scaffolds in tissue engineering and regenerative medicine. Biomedical applications of electrospinning and electrospraying. Elsevier, pp 83–121

    Google Scholar 

  61. Zhou T, Chen S, Ding X, Hu Z, Cen L, Zhang X (2021) Fabrication and characterization of collagen/PVA dual-layer membranes for periodontal bone regeneration. Front Bioeng Biotechnol 9:630977

    Google Scholar 

  62. Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A, El-Sherbiny IM (2021) New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res 28:51–62

    CAS  Google Scholar 

  63. Batool F, Morand DN, Thomas L, Bugueno IM, Aragon J, Irusta S et al (2018) Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study. Materials (Basel) 11(4)

    Google Scholar 

  64. He M, Xue J, Geng H, Gu H, Chen D, Shi R et al (2015) Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Appl Surf Sci 335:121–129

    CAS  Google Scholar 

  65. El-Fiqi A, Kim H-W (2021) Nano/micro-structured poly (ϵ-caprolactone)/gelatin nanofibers with biomimetically-grown hydroxyapatite spherules: high protein adsorption, controlled protein delivery and sustained bioactive ions release designed as a multifunctional bone regenerative membrane. Ceram Int 47(14):19873–19885

    CAS  Google Scholar 

  66. Hasani-Sadrabadi MM, Sarrion P, Nakatsuka N, Young TD, Taghdiri N, Ansari S et al (2019) Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering. ACS Nano 13(4):3830–3838

    CAS  Google Scholar 

  67. Lian M, Sun B, Qiao Z, Zhao K, Zhou X, Zhang Q et al (2019) Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Colloids Surf B Biointerfaces 176:219–229

    CAS  Google Scholar 

  68. Liu X, He X, Jin D, Wu S, Wang H, Yin M et al (2020) A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater 108:207–222

    CAS  Google Scholar 

  69. Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, Prabhakaran MP, Foroughi MR, Kharaziha M et al (2017) Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Mater Sci Eng C 80:75–87

    CAS  Google Scholar 

  70. Niu X, Wang L, Xu M, Qin M, Zhao L, Wei Y et al (2021) Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered membranes for guided bone regeneration. Carbohydr Polym 260:117769

    CAS  Google Scholar 

  71. Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X et al (2021) Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater 7:242–253

    Google Scholar 

  72. Su H, Fujiwara T, Anderson KM, Karydis A, Ghadri MN, Bumgardner JD (2021) A comparison of two types of electrospun chitosan membranes and a collagen membrane in vivo. Dent Mater 37(1):60–70

    CAS  Google Scholar 

  73. Tamburaci S, Tihminlioglu F (2021) Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Mater Sci Eng C:112298

    Google Scholar 

  74. Federico S, Pitarresi G, Palumbo FS, Fiorica C, Yang F, Giammona G (2021) Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: fabrication, characterization and in vitro osteoinductive properties. Colloids Surf B Biointerfaces 197:111438

    CAS  Google Scholar 

  75. Zhang L, Dong Y, Zhang N, Shi J, Zhang X, Qi C et al (2020) Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane. Mater Sci Eng C 109:110618

    CAS  Google Scholar 

  76. Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J (2019) Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interfaces 11(41):37381–37396

    CAS  Google Scholar 

  77. Ye Z, Xu W, Shen R, Yan Y (2020) Emulsion electrospun PLA/calcium alginate nanofibers for periodontal tissue engineering. J Biomater Appl 34(6):763–777

    CAS  Google Scholar 

  78. Wang Y, Li H, Feng Y, Jiang P, Su J, Huang C (2019) Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int J Nanomedicine 14:963–976

    CAS  Google Scholar 

  79. Liu X, Zhang W, Wang Y, Chen Y, Xie J, Su J et al (2020) One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. J Control Release 320:201–213

    CAS  Google Scholar 

  80. Carter P, Rahman SM, Bhattarai N (2016) Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. J Biomater Sci Polym Ed 27(7):692–708

    CAS  Google Scholar 

  81. Zhou T, Liu X, Sui B, Liu C, Mo X, Sun J (2017) Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomed Mater 12(5):055004

    Google Scholar 

  82. Chen M, Li L, Wang Z, Li P, Feng F, Zheng X (2019) High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway. Arch Oral Biol 98:75–80

    CAS  Google Scholar 

  83. Sun H, Feng K, Hu J, Soker S, Atala A, Ma PX (2010) Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 31(6):1133–1139

    CAS  Google Scholar 

  84. Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A et al (2016) Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater Sci Eng C 64:148–156

    CAS  Google Scholar 

  85. Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M et al (2019) An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 86:235–246

    CAS  Google Scholar 

  86. Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, Bahrami SH, Ramakrishna S (2016) Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater Sci Eng C 58:521–531

    CAS  Google Scholar 

  87. Marcaccini AM, Meschiari CA, Zuardi LR, De Sousa TS, Taba Jr M, Teofilo JM et al (2010) Gingival crevicular fluid levels of MMP-8, MMP-9, TIMP-2, and MPO decrease after periodontal therapy. J Clin Periodontol 37(2):180–190

    CAS  Google Scholar 

  88. Jang Y-J, Kim M-E, Ko S-Y (2011) n-Butanol extracts of panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells. Arch Oral Biol 56(11):1319–1327

    CAS  Google Scholar 

  89. Caton J, Ryan ME (2011) Clinical studies on the management of periodontal diseases utilizing subantimicrobial dose doxycycline (SDD). Pharmacol Res 63(2):114–120

    CAS  Google Scholar 

  90. Mo G, Hu X, Liu S, Yue J, Wang R, Huang Y et al (2012) Influence of coupling bonds on the anti-tumor activity of polymer–pirarubicin conjugates. Eur J Pharm Sci 46(5):329–335

    CAS  Google Scholar 

  91. Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Target 15(4):241–252

    CAS  Google Scholar 

  92. Zhang Y, Kong N, Zhang Y, Yang W, Yan F (2017) Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells. Theranostics 7(5):1214

    CAS  Google Scholar 

  93. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Google Scholar 

  94. Seal S, Jeyaranjan A, Neal CJ, Kumar U, Sakthivel TS, Sayle DC (2020) Engineered defects in cerium oxides: tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale 12(13):6879–6899

    CAS  Google Scholar 

  95. Zheng K, Sui B, Ilyas K, Boccaccini AR (2021) Porous bioactive glass micro-and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. Mater Horiz 8(2):300–335

    CAS  Google Scholar 

  96. Zhou C, Liu S, Li J, Guo K, Yuan Q, Zhong A et al (2018) Collagen functionalized with graphene oxide enhanced biomimetic mineralization and in situ bone defect repair. ACS Appl Mater Interfaces 10(50):44080–44091

    CAS  Google Scholar 

  97. Lowe B, Hardy JG, Walsh LJ (2019) Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega 5(1):1–9

    Google Scholar 

  98. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81(1):239–297

    CAS  Google Scholar 

  99. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20(14):2562–2564

    CAS  Google Scholar 

  100. Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin 54(1):73–92

    Google Scholar 

  101. Kao RT, Nares S, Reynolds MA (2015) Periodontal regeneration–intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol 86:S77–S104

    Google Scholar 

  102. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213(1):66–72

    CAS  Google Scholar 

  103. Alipour M, Aghazadeh M, Akbarzadeh A, Vafajoo Z, Aghazadeh Z, Raeisdasteh HV (2019) Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Artif Cells Nanomed Biotechnol 47(1):3431–3437

    CAS  Google Scholar 

  104. Budai-Szűcs M, Léber A, Cui L, Józó M, Vályi P, Burián K et al (2020) Electrospun PLA fibers containing metronidazole for periodontal disease. Drug Des Devel Ther 14:233

    Google Scholar 

  105. Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G et al (2021) Electrospun scaffolds in periodontal wound healing. Polymers (Basel) 13(2)

    Google Scholar 

  106. Hao Y, Tian R, Lv K, Liu Z, Ni J, Yuan P et al (2020) Stimuli responsive co-delivery of celecoxib and BMP2 from micro-scaffold for periodontal disease treatment. J Mater Sci Technol 75:216–224

    Google Scholar 

  107. Hwang TI, Maharjan B, Tiwari AP, Lee S, Joshi MK, Park CH et al (2018) Facile fabrication of spongy nanofibrous scaffold for tissue engineering applications. Mater Lett

    Google Scholar 

  108. Jiang W, Li L, Zhang D, Huang S, Jing Z, Wu Y et al (2015) Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 25:240–252

    CAS  Google Scholar 

  109. Khan A, Hussain A, Sidra L, Sarfraz Z, Khalid H, Khan M et al (2017) Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Eng C 80:387–396

    CAS  Google Scholar 

  110. Liu Z, Chen X, Zhang Z, Zhang X, Saunders L, Zhou Y et al (2018) Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss. ACS Nano 12(10):9785–9799

    CAS  Google Scholar 

  111. Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW (2016) Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering. PLoS One 11(3):e0149967

    Google Scholar 

  112. Lv Y, Lin C (2016) High mobility group box 1-immobilized nanofibrous scaffold enhances vascularization, osteogenesis and stem cell recruitment. J Mater Chem B 4(29):5002–5014

    CAS  Google Scholar 

  113. Malek-Khatabi A, Javar HA, Dashtimoghadam E, Ansari S, Hasani-Sadrabadi MM, Moshaverinia A (2020) In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 108:326–336

    CAS  Google Scholar 

  114. Mansour AM, Yahia S, Elsayed HRH, El-Attar SAE, Grawish ME, El-Hawary YM et al (2021) Efficacy of biocompatible trilayers nanofibrous scaffold with/without allogeneic adipose-derived stem cells on class II furcation defects of dogs’ model. Clin Oral Investig 26(3):2537–2553

    Google Scholar 

  115. Mi X, Gupte MJ, Zhang Z, Swanson WB, McCauley LK, Ma PX (2020) Three-dimensional electrodeposition of calcium phosphates on porous nanofibrous scaffolds and their controlled release of calcium for bone regeneration. ACS Appl Mater Interfaces 12(29):32503–32513

    CAS  Google Scholar 

  116. Ou Q, Miao Y, Yang F, Lin X, Zhang LM, Wang Y (2019) Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater Sci 7(5):1973–1983

    CAS  Google Scholar 

  117. Safi IN, Al-Shammari AM, Ul-Jabbar MA, Hussein BMA (2020) Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue. J Taibah Univ Med Sci 15(5):363–373

    Google Scholar 

  118. Samiei M, Aghazadeh M, Alizadeh E, Aslaminabadi N, Davaran S, Shirazi S et al (2016) Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Adv Pharm Bull 6(3):353–365

    CAS  Google Scholar 

  119. Shen R, Xu W, Xue Y, Chen L, Ye H, Zhong E et al (2018) The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif Cells Nanomed Biotechnol 46(Suppl 2):419–430

    CAS  Google Scholar 

  120. Shoba E, Lakra R, Kiran MS, Korrapati PS (2020) 3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. J Mech Behav Biomed Mater 109:103822

    CAS  Google Scholar 

  121. Takeuchi T, Bizenjima T, Ishii Y, Imamura K, Suzuki E, Seshima F et al (2016) Enhanced healing of surgical periodontal defects in rats following application of a self-assembling peptide nanofibre hydrogel. J Clin Periodontol 43(3):279–288

    CAS  Google Scholar 

  122. Yahia S, Khalil IA, El-Sherbiny IM (2019) Sandwich-like nanofibrous scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces 11(32):28610–28620

    CAS  Google Scholar 

  123. Yang L, Liu S, Fang W, Chen J, Chen Y (2019) Poly(lactic-co-glycolic acid)-bioactive glass composites as nanoporous scaffolds for bone tissue engineering: in vitro and in vivo studies. Exp Ther Med 18(6):4874–4880

    CAS  Google Scholar 

  124. Yao Q, Sandhurst E, Liu Y, Sun H (2017) BBP-functionalized biomimetic nanofibrous scaffold can capture BMP2 and promote osteogenic differentiation. J Mater Chem B 5(26):5196–5205

    CAS  Google Scholar 

  125. Xie Q, Jia L-N, Xu H-Y, Hu X-G, Wang W, Jia J (2016) Fabrication of Core-Shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells. Stem Cells Int:5385137

    Google Scholar 

  126. Sowmya S, Mony U, Jayachandran P, Reshma S, Kumar RA, Arzate H et al (2017) Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater 6(7):1601251

    Google Scholar 

  127. Lin J, Ding J, Dai Y, Wang X, Wei J, Chen Y (2017) Antibacterial zinc oxide hybrid with gelatin coating. Mater Sci Eng C 81:321–326

    CAS  Google Scholar 

  128. Babitha S, Annamalai M, Dykas MM, Saha S, Poddar K, Venugopal JR et al (2018) Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. J Tissue Eng Regen Med 12(4):991–1001

    CAS  Google Scholar 

  129. Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, Navia R (2019) Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 124:102–110

    CAS  Google Scholar 

  130. Yang F, Miao Y, Wang Y, Zhang L-M, Lin X (2017) Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells. Materials 10(10):1168

    Google Scholar 

  131. Hamad K, Kaseem M, Yang H, Deri F, Ko Y (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9(5)

    Google Scholar 

  132. Cai S, Xu H, Jiang Q, Yang Y (2013) Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir 29(7):2311–2318

    CAS  Google Scholar 

  133. Ba Linh NT, Lee KH, Lee BT (2013) Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. J Biomed Mater Res A 101(8):2412–2423

    Google Scholar 

  134. Naebe M, Lin T, Wang X (2010) Carbon nanotubes reinforced electrospun polymer nanofibres. Croatia 11:8160

    Google Scholar 

  135. Naebe M, Lin T, Staiger MP, Dai L, Wang X (2008) Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships. Nanotechnology 19(30):305702

    Google Scholar 

  136. Khalid P, Hussain M, Rekha P, Arun A (2013) Synthesis and characterization of carbon nanotubes reinforced hydroxyapatite composite. Indian J Sci Technol 6(12):5546–5541

    CAS  Google Scholar 

  137. Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS et al (2015) Nanotechnology in bone tissue engineering. Nanomedicine 11(5):1253–1263

    CAS  Google Scholar 

  138. Carbone EJ, Jiang T, Nelson C, Henry N, Lo KW-H (2014) Small molecule delivery through nanofibrous scaffolds for musculoskeletal regenerative engineering. Nanomedicine 10(8):1691–1699

    CAS  Google Scholar 

  139. Wang H, Leeuwenburgh SC, Li Y, Jansen JA (2012) The use of micro-and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B Rev 18(1):24–39

    Google Scholar 

  140. Jin G, Prabhakaran MP, Kai D, Ramakrishna S (2013) Controlled release of multiple epidermal induction factors through core–shell nanofibers for skin regeneration. Eur J Pharm Biopharm 85(3, Part A):689–698

    CAS  Google Scholar 

  141. Qian W, Yu D-G, Li Y, Liao Y-Z, Wang X, Wang L (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786

    Google Scholar 

  142. Qi H, Hu P, Xu J, Wang A (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 7(8):2327–2330

    CAS  Google Scholar 

  143. Akgül T, Alemdaroğlu B (2008) Phosphodiesterase 5 inhibitors may facilitate bone fracture recovery. Med Hypotheses 70(2):461–462

    Google Scholar 

  144. Kilinc CY, Ozcan S, Acar E, Tiftikci U, Aykut S, Kilinc B (2015) Effects of sildenafil on the inflammatory and repair phase of bone healing speed in a rat model. Acta Med Mediterr 31:1203–1208

    Google Scholar 

  145. Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M et al (2011) Sildenafil accelerates fracture healing in mice. J Orthop Res 29(6):867–873

    CAS  Google Scholar 

  146. Elangovan S, Karimbux N (2010) DNA delivery strategies to promote periodontal regeneration. J Biomater Appl 25(1):3–18

    CAS  Google Scholar 

  147. Ramseier CA, Abramson ZR, Jin Q, Giannobile WV (2006) Gene therapeutics for periodontal regenerative medicine. Dent Clin 50(2):245–263

    Google Scholar 

  148. Takahashi Y, Nishikawa M, Takakura Y (2009) Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 61(9):760–766

    CAS  Google Scholar 

  149. Rios HF, Lin Z, Oh B, Park CH, Giannobile WV (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 82(9):1223–1237

    CAS  Google Scholar 

  150. Olden BR, Cheng Y, Yu JL, Pun SH (2018) Cationic polymers for non-viral gene delivery to human T cells. J Control Release 282:140–147

    CAS  Google Scholar 

  151. Rui Y, Wilson DR, Green JJ (2019) Non-viral delivery to enable genome editing. Trends Biotechnol 37(3):281–293

    CAS  Google Scholar 

  152. Hasani-Sadrabadi MM, Hajrezaei SP, Emami SH, Bahlakeh G, Daneshmandi L, Dashtimoghadam E et al (2015) Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine 11(7):1809–1819

    CAS  Google Scholar 

  153. Habraken W, Wolke J, Mikos A, Jansen J (2008) PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. J Biomater Sci Polym Ed 19(9):1171–1188

    CAS  Google Scholar 

  154. Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H et al (2019) Electrospun polymer biomaterials. Prog Polym Sci 90:1–34

    CAS  Google Scholar 

  155. Granito RN, Renno AC, Ravagnani C, Bossini PS, Mochiuti D, Jorgetti V et al (2011) In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): a biomechanical and histomorphometric study in rat tibial defects. J Biomed Mater Res B Appl Biomater 97(1):139–147

    Google Scholar 

  156. Tannoury CA, An HS (2014) Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J 14(3):552–559

    Google Scholar 

  157. Boda SK, Almoshari Y, Wang H, Wang X, Reinhardt RA, Duan B et al (2019) Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomater 85:282–293

    CAS  Google Scholar 

  158. Chakraborty AJ, Mitra S, Tallei TE, Tareq AM, Nainu F, Cicia D et al (2021) Bromelain a potential bioactive compound: a comprehensive overview from a pharmacological perspective. Life 11(4):317

    Google Scholar 

  159. Harmely F, Lucida H, Mukhtar MH (2015) Efektifitas Bromelain Kasar dari Batang Nenas (Ananas comosus L. Merr) sebagai Antiplak dalam Pasta Gigi. Scientia: Jurnal Farmasi dan Kesehatan 1(1):14–20

    Google Scholar 

  160. Bhui K, Prasad S, George J, Shukla Y (2009) Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett 282(2):167–176

    CAS  Google Scholar 

  161. Tochi BN, Wang Z, Xu S-Y, Zhang W (2008) Therapeutic application of pineapple protease (bromelain): a review. Pak J Nutr 7(4):513–520

    CAS  Google Scholar 

  162. Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P (2009) Requirement of HMGB1 for stromal cell–derived factor–1/CXCL12–dependent migration of macrophages and dendritic cells. J Leukoc Biol 86(3):609–615

    CAS  Google Scholar 

  163. Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H et al (2008) High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev 17(4):805–814

    CAS  Google Scholar 

  164. Chen VJ, Ma PX (2004) Nano-fibrous poly (L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25(11):2065–2073

    CAS  Google Scholar 

  165. Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78(2):306–315

    Google Scholar 

  166. Azevedo S, Costa AM, Andersen A, Choi IS, Birkedal H, Mano JF (2017) Bioinspired ultratough hydrogel with fast recovery, self-healing, injectability and cytocompatibility. Adv Mater 29(28):1700759

    Google Scholar 

  167. Pan Y, Zhao Y, Kuang R, Liu H, Sun D, Mao T et al (2020) Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. Mater Sci Eng C 116:111158

    CAS  Google Scholar 

  168. Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42(17):7446–7467

    CAS  Google Scholar 

  169. Cui Z-K, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M (2019) Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun 10(1):1–10

    Google Scholar 

  170. Dasaratha Dhanaraju M, Vema K, Jayakumar R, Vamsadhara C (2003) Preparation and characterization of injectable microspheres of contraceptive hormones. Int J Pharm 268(1–2):23–29

    Google Scholar 

  171. Zhang Z, Marson RL, Ge Z, Glotzer SC, Ma PX (2015) Simultaneous nano- and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater 27(26):3947–3952

    CAS  Google Scholar 

  172. Kuang R, Zhang Z, Jin X, Hu J, Gupte MJ, Ni L et al (2015) Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater 4(13):1993–2000

    CAS  Google Scholar 

  173. Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    CAS  Google Scholar 

  174. McCormack PL (2011) Celecoxib: a review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs 71(18):2457–2489

    CAS  Google Scholar 

  175. FitzGerald GA (2003) COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2(11):879–890

    CAS  Google Scholar 

  176. Ivanovski S, Vaquette C, Gronthos S, Hutmacher D, Bartold P (2014) Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 93(12):1212–1221

    CAS  Google Scholar 

  177. Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck RL (2013) Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater 9(1):4496–4504

    CAS  Google Scholar 

  178. Chiapasco M, Zaniboni M (2009) Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res 20:113–123

    Google Scholar 

  179. Jung RE, Fenner N, Hämmerle CH, Zitzmann NU (2013) Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14 years. Clin Oral Implants Res 24(10):1065–1073

    Google Scholar 

  180. Cha H-S, Kim J-W, Hwang J-H, Ahn K-M (2016) Frequency of bone graft in implant surgery. Maxillofac Plast Reconstr Surg 38(1):1–4

    Google Scholar 

  181. Mavrogenis A, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):61–71

    CAS  Google Scholar 

  182. Cai B, Tan P, Jiang N, Guo Z, Ay B, Li S et al (2020) Bioinspired fabrication of calcium-doped TiP coating with nanofibrous microstructure to accelerate osseointegration. Bioconjug Chem 31(6):1641–1650

    CAS  Google Scholar 

  183. Das S, Gurav S, Soni V, Ingle A, Mohanty BS, Chaudhari P et al (2018) Osteogenic nanofibrous coated titanium implant results in enhanced osseointegration: in vivo preliminary study in a rabbit model. Tissue Eng Regen Med 15(2):231–247

    CAS  Google Scholar 

  184. Liu B, Guo Y-y, Xiao G-Y, Lu Y-P (2017) Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications. Appl Surf Sci 399:367–374

    CAS  Google Scholar 

  185. Marvi MS, Nourmohammadi J, Ataie M, Negahdari B, Naderi M (2021) Surface modification of titanium implants via electrospinning of sericin and equisetum arvense enhances the osteogenic differentiation of stem cells. Int J Polym Mater Polym Biomater:1–12

    Google Scholar 

  186. Murugan N, Murugan C, Sundramoorthy AK (2018) In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. Arab J Chem 11(6):959–969

    CAS  Google Scholar 

  187. Raita Y, Komatsu K, Hayakawa T (2015) Pilot study of gingival connective tissue responses to 3-dimensional collagen nanofiber-coated dental implants. Dent Mater J 34(6):847–854

    CAS  Google Scholar 

  188. Aghazadeh A, Rutger Persson G, Renvert S (2012) A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months. J Clin Periodontol 39(7):666–673

    Google Scholar 

  189. Al Aboody MS (2021) Electrospun fabrication and direct coating of bio-degradable fibrous composite on orthopedic titanium implant. Synth Charact Mater Res Express 8(1):015307

    Google Scholar 

  190. Prodana M, Nistor C-E, Stoian AB, Ionita D, Burnei C (2020) Dual nanofibrous bioactive coatings on TiZr implants. Coatings 10(6):526

    CAS  Google Scholar 

  191. Song Q, Prabakaran S, Duan J, Jeyaraj M, Mickymaray S, Paramasivam A et al (2021) Enhanced bone tissue regeneration via bioactive electrospun fibrous composite coated titanium orthopedic implant. Int J Pharm 607:120961

    CAS  Google Scholar 

  192. Jahanmard F, Croes M, Castilho M, Majed A, Steenbergen MJ, Lietaert K et al (2020) Bactericidal coating to prevent early and delayed implant-related infections. J Control Release 326:38–52

    CAS  Google Scholar 

  193. Kranthi Kiran AS, Kizhakeyil A, Ramalingam R, Verma NK, Lakshminarayanan R, Kumar TSS et al (2019) Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections. Ceram Int 45(15):18710–18720

    CAS  Google Scholar 

  194. Liu S, Zheng Y, Wu Z, Hu J, Liu R (2020) Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds. Polymer 211:123093

    CAS  Google Scholar 

  195. Wei Y, Liu Z, Zhu X, Jiang L, Shi W, Wang Y et al (2020) Dual directions to address the problem of aseptic loosening via electrospun PLGA @ aspirin nanofiber coatings on titanium. Biomaterials 257:120237

    CAS  Google Scholar 

  196. Schwarz F, Sculean A, Bieling K, Ferrari D, Rothamel D, Becker J (2008) Two-year clinical results following treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane. J Clin Periodontol 35(1):80–87

    Google Scholar 

  197. Salaria SK, Sharma I, Brar NK, Kaur S (2018) Diode laser and periodontal regeneration-assisted management of implant complications in anterior maxilla. Contemp Clin Dent 9(1):114–119

    Google Scholar 

  198. Karimi MR, Hasani A, Khosroshahian S (2016) Efficacy of antimicrobial photodynamic therapy as an adjunctive to mechanical debridement in the treatment of peri-implant diseases: a randomized controlled clinical trial. J Lasers Med Sci 7(3):139–145

    Google Scholar 

  199. Schwarz F, John G, Schmucker A, Sahm N, Becker J (2017) Combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination: a 7-year follow-up observation. J Clin Periodontol 44(3):337–342

    CAS  Google Scholar 

  200. Ronay V, Merlini A, Attin T, Schmidlin PR, Sahrmann P (2017) In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin Oral Implants Res 28(2):151–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansour, A.M., El-Sherbiny, I.M. (2022). Nanofibrous Scaffolds for the Management of Periodontal Diseases. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_126

Download citation

Publish with us

Policies and ethics