Skip to main content

Basic Mechanisms and Predictive Testing of Tire-Road Abrasion

  • Chapter
  • First Online:
Degradation of Elastomers in Practice, Experiments and Modeling

Part of the book series: Advances in Polymer Science ((POLYMER,volume 289))

Abstract

The chapter provides a brief overview of the abrasion mechanisms occurring on automotive tires. Particular attention is paid to fatigue abrasion, which is especially the cause of mass loss in passenger car tires in public road traffic. The framework of the paper is a very simple physical model (Resnikowskij, Kautschuk Gummi Kunststoffe 9:33–37, 1960) of the relationship between abrasion and friction work during Hertzian contact and sliding friction of rubber over the periodical roughness of a road. Essential physical quantities of the rubbers determined in the laboratory, such as modulus, tensile elongation, coefficient of friction, and a Woehler-like fatigue parameter, give an expression for laboratory fatigue wear that correlates very well with tire wear under an outdoor test program commonly used by tire companies on public highways. This result also makes it clear why tire wear under moderate severity conditions cannot be described by abrasive wear tests in the laboratory, e.g. with DIN-Abrader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Veith AG (1992) Rubber Chem Technol 65:601

    Article  CAS  Google Scholar 

  2. Veith AG (1987) Polymer Testing 7:177

    Article  CAS  Google Scholar 

  3. Veith AG (1995) Tire Sci Technol 23:212

    Article  Google Scholar 

  4. Veith AG (1973) Rubber Chem Technol 46(801):821

    Article  CAS  Google Scholar 

  5. Gieré R et al. Tire abrasion as a major source of microplastics in the environment, present book volume

    Google Scholar 

  6. Penkala M, Ogrodnik P, Rogula-Kozlowska W (2018) Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments 5:9. https://doi.org/10.3390/environments5010009

    Article  Google Scholar 

  7. Cadle SH, Williams RL (1978) Rubber Chem Technol 51:7

    Article  Google Scholar 

  8. Cadle SH, Williams RL (1979) Rubber Chem Technol 52:147

    Article  Google Scholar 

  9. Schallamach A (1952) J Polym Sci 9:385

    Article  CAS  Google Scholar 

  10. Schallamach A (1968) Rubber Chem Technol 41:209

    Article  CAS  Google Scholar 

  11. Grosch KA, Schallamach A (1961) Wear 4:356

    Article  Google Scholar 

  12. Schallamach A, Turner DM (1960) Wear 3:1

    Article  Google Scholar 

  13. Kragelsky IV, Nepomnyashchi EF (1965) Wear 8:303

    Article  Google Scholar 

  14. Grosch KA (1992) Rubber Chem Technol 65:1

    Article  Google Scholar 

  15. Grosch KA, Schallamach A (1969) Kautschuk Gummi Kunstst 22:288

    Google Scholar 

  16. Grosch KA, Schallamach A (1970) Rubber Chem Technol 43:701

    Article  Google Scholar 

  17. Grosch KA, Schallamach A (1965) Trans Inst Rubber Ind 41:80

    Google Scholar 

  18. Grosch KA, Schallamach A (1966) Rubber Chem Technol 39:287

    Article  Google Scholar 

  19. Muhr AH, Roberts AD (1992) Wear 158:213

    Article  CAS  Google Scholar 

  20. Gent AN, Nah C (1996) Rubber Chem Technol 69:819

    Article  CAS  Google Scholar 

  21. Southern E, Thomas AG (1978) Plast Rubber Matter Appl 3:133

    CAS  Google Scholar 

  22. Thomas AG (1974) J Polym Sci Polym Symp 48:145

    Article  CAS  Google Scholar 

  23. Pulford CTR (1983) J Appl Polym Sci 28:709

    Article  CAS  Google Scholar 

  24. Gent AN, Pulford CTR (1983) J Appl Polym Sci 28:943

    Article  CAS  Google Scholar 

  25. Sakai H (1996) Tire Sci Technol 24:252

    Article  Google Scholar 

  26. Kienle RN, Dizon ES, Brett TJ, Eckert CF (1971) Rubber Chem Technol 44:996

    Article  CAS  Google Scholar 

  27. Heinrich G, Rennar N, Dumler H (1996) Kautschuk Gummi Kunststoffe 49:32

    CAS  Google Scholar 

  28. Stalnaker D, Turner J, Parekh D, Whittle B, Norton R (1996) Tire Sci Technol 24:94

    Article  Google Scholar 

  29. Wu G (2016) The mechanisms of rubber abrasion, Ph.D. thesis, Queen Mary Univ. of London

    Google Scholar 

  30. Wunde M, Klüppel M, Vatterott C, Tschimmel J, Lacayo-Pineda J, Schulze A, Heinrich G (2019) Verbesserung der Laborvorhersagen zum Risswachstum und Verschleiß von LKW-Reifenlaufflächen. Kautschuk Gummi Kunststoffe 72:72–78

    CAS  Google Scholar 

  31. Stoček R, Heinrich G, Schulze A, Wunde M, Klüppel M, Vatterott C, Tschimmel J, Lacayo-Pineda J, Kipscholl R (2020) Chip & cut wear of truck tire treads: comparison between laboratory and real tire testing. Kautschuk Gummi Kunststoffe 73(6):51–55

    Google Scholar 

  32. Stoček R, Mars WV, Robertson CG, Kipscholl R (2018) Characterizing rubber’s resistance against chip and cut behaviour. Rubber World 257:38–40

    Google Scholar 

  33. Stoček R, Mars WV, Kipscholl R, Robertson CG (2019) Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device. Plast Rubber Compos 48:14–23

    Article  Google Scholar 

  34. Resnikowskij M (1960) Kautschuk Gummi Kunststoffe 9:33–37

    Google Scholar 

  35. Landau LD, Lifschitz EM (1970) Lehrbuch der theoretischen Physik. Band 7. Elastizitätstheorie, Akademie-Verlag, Berlin

    Google Scholar 

  36. Abraham F, Alshuth T (2015) Marvalová, Petriková (eds) A new fatigue wear simulation method for road tyre wear, proceedings of constitutive models for rubber IX Taylor & Francis Group, London, pp 123–126, 978-1-138-02873-9

    Google Scholar 

Download references

Acknowledgement

We thank our former project partners Continental AG and Bayer AG for the support of this work within the past joint project “Predictive Laboratory Testing of Tire Performance.” We thank Continental Reifen Deutschland GmbH for their agreement to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinrich, G., Klüppel, M. (2022). Basic Mechanisms and Predictive Testing of Tire-Road Abrasion. In: Heinrich, G., Kipscholl, R., Stoček, R. (eds) Degradation of Elastomers in Practice, Experiments and Modeling. Advances in Polymer Science, vol 289. Springer, Cham. https://doi.org/10.1007/12_2022_113

Download citation

Publish with us

Policies and ethics