Skip to main content

Catalytic Systems for the Production of Poly(lactic acid)

  • Chapter
  • First Online:
Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

Different ways of synthesizing poly(lactic acid) are reviewed. Emphasis is placed on the development of various catalysts for the ring-opening polymerization of lactide, which has become the most common way to access high molecular weight poly(lactic acid). To complement a survey of the best catalysts for this reaction, we discuss the different mechanisms by which these complexes catalyze the ring-opening polymerization of lactide. The chapter concludes with a description of the methods used for stereoselective polymerization of lactide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2006) Synthesis of high-molecular-weight poly(l-lactic acid) through the direct condensation polymerization of l-lactic acid in bulk state. Eur Polym J 42:468–472. doi:10.1016/j.eurpolymj.2005.07.022

    Article  CAS  Google Scholar 

  2. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(l-lactic acid). J Polym Sci A Polym Chem 38(9):1673–1679. doi:10.1002/(SICI)1099-0518(20000501)38:9

    Article  CAS  Google Scholar 

  3. Moon SI, Lee CW, Tanaguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weight. Polymer 42:5059–5062. doi:10.1016/S0032-3861(00)00889-2

    Article  CAS  Google Scholar 

  4. Moon SI, Taniguchi I, Miyamoto M, Kimura Y, Lee CW (2001) Synthesis and properties of high-molecular-weight poly(l-lactic acid) by melt/solid polydcondensation under different reaction conditions. High Perform Polym 13:S189–S196. doi:10.1088/0954-0083/13/2/317

    Article  CAS  Google Scholar 

  5. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131. doi:10.1246/bcsj.68.2125

    Article  CAS  Google Scholar 

  6. Dove AP (2008) Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem Commun2008 (48):6446–6470. doi:10.1039/b813059k

  7. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176. doi:10.1021/cr040002s

    Article  CAS  Google Scholar 

  8. Kricheldorf HR, Berl M, Scharnagl N (1988) Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules 21(2):286–293. doi:10.1021/ma00180a002

    Article  CAS  Google Scholar 

  9. Dubois P, Jacobs C, Jerome R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24(9):2266–2270. doi:10.1021/ma00009a022

    Article  CAS  Google Scholar 

  10. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers – Polylactide: a critique. Eur Polym J 43(10):4053–4074. doi:10.1016/j.eurpolymj.2007.06.045

    Article  CAS  Google Scholar 

  11. Masutani K, Kimura Y (2015) PLA synthesis. From the monomer to the polymer. Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, Cambridge, pp 1–36. doi:10.1039/9781782624806-00001

    Google Scholar 

  12. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84. doi:10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  13. Nuyken O, Pask SD (2013) Ring-opening polymerization – an introductory review. Polymer (Basel) 5(2):361–403. doi:10.3390/polym5020361

    Article  CAS  Google Scholar 

  14. Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Controlled cationic polymerization of lactide. Macromolecules 38(24):9993–9998. doi:10.1021/ma051646k

    Article  CAS  Google Scholar 

  15. Baśko M, Kubisa P (2010) Cationic polymerization of L,l-lactide. J Polym Sci A Polym Chem 48(12):2650–2658

    Article  CAS  Google Scholar 

  16. Baśko M, Kubisa P (2007) Polyester oligodiols by cationic AM copolymerization of L,l-lactide and ε-caprolactone initiated by diols. J Polym Sci A Polym Chem 45(14):3090–3097. doi:10.1002/pola.22065

    Article  CAS  Google Scholar 

  17. Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, Wade CG, Waymouth RM, Hedrick JL, Rice JE (2008) The reaction mechanism for the organocatalytic ring-opening polymerization of l-lactide using guanidine-based catalyst: hydrogen-bonded or covalently bound. J Am Chem Soc 130:6749–6754. doi:10.1021/ja0764411

    Article  CAS  Google Scholar 

  18. Coulembier O, Lohmeijer BGG, Dove AP, Pratt RC, Mespouille L, Culkin DA, Benight SJ, Dubois P, Waymouth RM, Hedrick JL (2006) Alcohol adducts of N-heterocyclic carbenes: latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39:5617–5628. doi:10.1021/ma0611366

    Article  CAS  Google Scholar 

  19. Coulembier O, Dove AP, Pratt RC, Sentman AC, Culkin DA, Mespouille L, Dubois P, Waymouth RM, Hedrick JL (2005) Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Angew Chem Int Ed 44:4964–4968. doi:10.1002/anie.200500723

    Article  CAS  Google Scholar 

  20. Penczek S, Szymanski R, Duda A, Baran J (2003) Living polymerization of cyclic esters – a route to (bio)degradable polymers. Influence of chain transfer to polymer on livingness. Macromol Symp 201(201):261–269. doi:10.1002/masy.200351129

    Article  CAS  Google Scholar 

  21. Yu I, Acosta-Ramirez A, Mehrkhodavandi P (2012) Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity. J Am Chem Soc 134(30):12758–12773. doi:10.1021/ja3048046

    Article  CAS  Google Scholar 

  22. Huang M-H, Li S, Vert M (2004) Synthesis and degradation of PLA-PCl-PLA triblock copolymer prepared by successive polymerization of e-caprolactone and dl-lactide. Polymer 45:8675–8681. doi:10.1016/j.polymer.2004.10.054

    Article  CAS  Google Scholar 

  23. Shen Y, Zhu KJ, Shen Z, Yao K-M (1996) Synthesis and characterization of highly random copolymer of ε-caprolactone and d,l-lactide using rare earth catalyst. J Polym Sci A Polym Chem 34(9):1799–1805. doi:10.1002/(sici)1099-0518(19960715)34:9<1799::aid-pola18>3.0.co;2-1

    Article  CAS  Google Scholar 

  24. Qian H, Bei J, Wang S (2000) Synthesis, characterization and degradation of ABA block copolymer of l-lactide and ε-caprolactone. Polym Degrad Stab 68(3):423–429. doi:10.1016/s0141-3910(00)00031-8

    Article  CAS  Google Scholar 

  25. Chamberlain BM, Jazdzewski BA, Pink M, Hillmyer MA, Tolman WB (2000) Controlled polymerization of dl-lactide and Îμ-caprolactone by structurally well-defined alkoxo-bridged di- and triyttrium(III) complexes. Macromolecules 33(11):3970–3977. doi:10.1021/ma0000834

    Article  CAS  Google Scholar 

  26. Wang X, Thevenon A, Brosmer JL, Yu I, Khan SI, Mehrkhodavandi P, Diaconescu PL (2014) Redox control of group 4 metal ring-opening polymerization activity toward l-lactide and epsilon-caprolactone. J Am Chem Soc 136(32):11264–11267. doi:10.1021/ja505883u

    Article  CAS  Google Scholar 

  27. Cross ED, Allan LEN, Decken A, Shaver MP (2013) Aluminum salen and salan complexes in the ring-opening polymerization of cyclic esters: controlled immortal and copolymerization of rac-β-butyrolactone and rac-lactide. J Polym Sci A Polym Chem 51(5):1137–1146. doi:10.1002/pola.26476

    Article  CAS  Google Scholar 

  28. Inoue S (2000) Immortal polymerization: the outset, development, and application. J Polym Sci Pol Chem 38(16):2861–2871. doi:10.1002/1099-0518(20000815)38:16<2861::Aid-Pola20>3.0.Co;2-1

    Article  CAS  Google Scholar 

  29. Aida T, Maekawa Y, Asano S, Inoue S (1988) Immortal polymerization – polymerization of epoxide and beta-lactone with aluminum porphyrin in the presence of protic compound. Macromolecules 21(5):1195–1202. doi:10.1021/ma00183a001

    Article  CAS  Google Scholar 

  30. Ajellal N, Carpentier J-F, Guillaume C, Guillaume SM, Helou M, Poirier V, Sarazin Y, Trifonov A (2010) Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans 39:8363–8376. doi:10.1039/c001226b

    Article  CAS  Google Scholar 

  31. Amgoune A, Thomas CM, Carpentier J-F (2007) Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA. Macromol Rapid Commun 28:693–697. doi:10.1002/marc.200600862

    Article  CAS  Google Scholar 

  32. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23(1):47–56. doi:10.1016/j.jclepro.2011.10.003

    Article  CAS  Google Scholar 

  33. USFSDA (2015) CFR – Code of Federal Regulations Title 21. U.S. Food and Drug Administration, Silver Spring. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=175.300

  34. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346. doi:10.1016/S0142-9612(00)00101-0

    Article  CAS  Google Scholar 

  35. Ovitt TM, Coates GW (1999) Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid). J Am Chem Soc 121(16):4072–4073. doi:10.1021/ja990088k

    Article  CAS  Google Scholar 

  36. Chile l-E, Mehrkhodavandi P, Hatzikiriakos SG (2016) A comparison of the rheological and mechanical properties of isotactic, syndiotactic, and heterotactic poly(lactide). Macromolecules 49(3):909–919. doi:10.1021/acs.macromol.5b02568

    Article  CAS  Google Scholar 

  37. Perego G, Cella GD (2010) Mechanical properties. Poly(lactic acid). Wiley, pp 141–153. doi:10.1002/9780470649848.ch11

  38. Dorgan JR (2010) Rheology of poly(lactic acid). Poly(lactic acid). Wiley, pp 125–139. doi:10.1002/9780470649848.ch10

  39. Degée P, Dubois P, Jerome R (1997) Bulk polymerization of lactides initiated by aluminum isopropoxide, 2. Beneficial effect of Lewis bases and transfer agents. Macromol Chem Phys 198(6):1973–1984. doi:10.1002/macp.1997.021980623

    Article  Google Scholar 

  40. Degée P, Dubois P, Jérôme R (1997) Bulk polymerization of lactides initiated by aluminium isopropoxide, 3. Thermal stability and viscoelastic properties. Macromol Chem Phys 198(6):1985–1995. doi:10.1002/macp.1997.021980624

    Article  Google Scholar 

  41. Kowalski A, Libiszowski J, Duda A, Penczek S (2000) Polymerization of L,l-dilactide initiated by tin(II) butoxide. Macromolecules 33:1964–1971. doi:10.1021/ma991751s

    Article  CAS  Google Scholar 

  42. Kowalski A, Duda A, Penczek S (1998) Polymerization of l,l-lactide initiated by aluminum isopropoxide trimer or tetramer. Macromolecules 31(7):2114–2122. doi:10.1021/ma971737k

    Article  CAS  Google Scholar 

  43. Duda A, Penczek S (1995) Polymerization of epsilon-caprolactone initiated by aluminum isopropoxide trimer andor tetramer. Macromolecules 28(18):5981–5992. doi:10.1021/ma00122a001

    Article  CAS  Google Scholar 

  44. Nomura N, Ishii R, Akakura M, Aoi K (2002) Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism. J Am Chem Soc 124(21):5938–5939. doi:10.1021/ja0175789

    Article  CAS  Google Scholar 

  45. Hormnirun P, Marshall EL, Gibson VC, Pugh RI, White AJP (2006) Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators. Proc Natl Acad Sci 103(42):15343–15348. doi:10.1073/pnas.0602765103

    Article  CAS  Google Scholar 

  46. Hormnirun P, Marshall EL, Gibson VC, White AJP, Williams DJ (2004) Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J Am Chem Soc 126(9):2688–2689. doi:10.1021/ja038757o

    Article  CAS  Google Scholar 

  47. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:17. doi:10.4061/2011/276393

    Google Scholar 

  48. Poirier V, Roisnel T, Carpentier J-F, Sarazin Y (2009) Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Trans 44:9820–9827. doi:10.1039/b917799j

    Article  CAS  Google Scholar 

  49. Chisholm MH, Eilerts NW, Huffman JC, Iyer SS, Pacold M, Phomphrai K (2000) Molecular design of single-site metal alkoxide catalyst precursors for ring-opening polymerization reactions leading to polyoxygenates. 1. Polylactide formation by achiral and chiral magnesium and zinc alkoxides, (eta3-L)MOR, where L = trispyrazolyl- and trisindazolylborate ligands. J Am Chem Soc 122(48):11845–11854. doi:10.1021/ja002160g

    Article  CAS  Google Scholar 

  50. Cheng M, Attygalle AB, Lobkovsky E, Coates GW (1999) Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J Am Chem Soc 121:11583–11584. doi:10.1021/ja992678o

    Article  CAS  Google Scholar 

  51. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) Polymerization of lactide with zinc and magnesium b-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc 123(14):3229–3238. doi:10.1021/ja003851f

    Article  CAS  Google Scholar 

  52. Chen H-Y, Peng Y-L, Huang T-H, Sutar AK, Miller SA, Lin C-C (2011) Comparative study of lactide polymerization by zinc alkoxide complexes with a b-diketiminato ligand bearing different substituents. J Mol Catal A Chem 339:61–71. doi:10.1016/j.molcata.2011.02.013

    Article  CAS  Google Scholar 

  53. Dove AP, Gibson VC, Marshall EL, White AJP, Williams DJ (2004) Magnesium and zinc complexes of a potentially tridentate b-diketiminate ligand. Dalton Trans 2004:570–578. doi:10.1039/B314760F

  54. Williams CK, Brooks NR, Hillmyer MA, Tolman WB (2002) Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Chem Commun 2002:2132–2133. doi:10.1039/b206437e

  55. Williams CK, Breyfogle LE, Choi SK, Nam W, Young JVG, Hillmyer MA, Tolman WB (2003) A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc 125:11350–11359. doi:10.1021/ja0359512

    Article  CAS  Google Scholar 

  56. Breyfogle LE, Williams CK, Young JVG, Hillmyer MA, Tolman WB (2006) Comparison of structurally analogous Zn2, Co2, and Mg2 catalysts for the polymerization of cyclic esters. Dalton Trans:928–936. doi:10.1039/b507014g

  57. Jensen TR, Breyfogle LE, Hillmyer MA, Tolman WB (2004) Stereoelective polymerization of d,l-lactide using N-heterocyclic carbene based compounds. Chem Commun 2004:2504–2505. doi:10.1039/b405362a

  58. Wheaton CA, Hayes PG (2010) Cationic zinc complexes: a new class of catalyst for living lactide polymerization at ambient temperature. Chem Commun 46 (44):8404–8406. doi:10.1039/c0cc03463k

  59. Wu J, Yu T-L, Chen C-T, Lin C-C (2006) Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev 250:602–626. doi:10.1016/j.ccr.2005.07.010

    Article  CAS  Google Scholar 

  60. Collins RA, Unruangsri J, Mountford P (2013) Synthesis and rac-lactide ring-opening polymerisation studies of new alkaline earth tetrahydroborate complexes. Dalton Trans 42(3):759–769. doi:10.1039/c2dt32151c

    Article  CAS  Google Scholar 

  61. Ejfler J, Kobylka M, Jerzykiewicz LB, Sobota P (2005) Highly efficient magnesium initiators for lactide polymerization. Dalton Trans 2005(11):2047–2050. doi:10.1039/b503134f

  62. Wang L, Ma H (2010) Highly active magnesium initiators for ring-opening polymerization of rac-lactide. Macromolecules 43(16):6535–6537

    Article  CAS  Google Scholar 

  63. Zhong Z, Dijkstra PJ, Birg C, Westerhausen M, Feijen J (2001) A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34(12):3863–3868. doi:10.1021/ma0019510

    Article  CAS  Google Scholar 

  64. Chisholm MH, Gallucci JC, Phomphrai K (2004) Well-defined calcium initiators for lactide polymerization. Inorg Chem 43(21):6717–6725. doi:10.1021/ic0490730

    Article  CAS  Google Scholar 

  65. Chen H-Y, Mialon L, Abboud KA, Miller SA (2012) Comparative study of lactide polymerization with lithium, sodium, magnesium, and calcium complexes of BHT. Organometallics 31(15):5252–5261. doi:10.1021/om300121c

    Article  CAS  Google Scholar 

  66. Tang Z, Chen X, Liang Q, Bian X, Yang L, Piao L, Jing X (2003) Strontium-based initiator system for ring-opening polymerization of cyclic esters. J Polym Sci A Polym Chem 41(13):1934–1941. doi:10.1002/pola.10740

    Article  CAS  Google Scholar 

  67. Liu B, Dorcet V, Maron L, Carpentier J-F, Sarazin Y (2012) β-Diketiminato–alkaline earth cationic complexes: synthesis, structures, lactide polymerization and unusual oxidative reactivity of the ancillary ligand. Eur J Inorg Chem 18:3023–3031. doi:10.1002/ejic.201200183

    Article  CAS  Google Scholar 

  68. Davidson MG, O'Hara CT, Jones MD, Keir CG, Mahon MF, Kociok-Kohn G (2007) Synthesis and structure of a molecular barium aminebis(phenolate) and its application as an initiator for ring-opening polymerization of cyclic esters. Inorg Chem 46(19):7686–7688. doi:10.1021/ic700583e

    Article  CAS  Google Scholar 

  69. Liu B, Roisnel T, Sarazin Y (2012) Well-defined, solvent-free cationic barium complexes: synthetic strategies and catalytic activity in the ring-opening polymerization of lactide. Inorg Chim Acta 380:2–13. doi:10.1016/j.ica.2011.09.020

    Article  CAS  Google Scholar 

  70. Kim Y, Verkade JG (2002) A tetrameric titanium alkoxide as a lactide polymerization catalyst. Macromol Rapid Commun 23(15):917–921. doi:10.1002/1521-3927(20021001)23:15<917::aid-marc917>3.0.co;2-c

    Article  CAS  Google Scholar 

  71. Kim Y, Verkade JG (2005) Living polymerization of lactide using titanium alkoxide catalysts. Macromol Symp 224(1):105–118. doi:10.1002/masy.200550610

    Article  CAS  Google Scholar 

  72. Kim Y, Jnaneshwara GK, Verkade JG (2003) Titanium alkoxides as initiators for the controlled polymerization of lactide. Inorg Chem 42(5):1437–1447. doi:10.1021/ic026139n

    Article  CAS  Google Scholar 

  73. Ejfler J, Kobylka M, Jerzykiewicz LB, Sobota P (2006) Titanium complexes supported by bis(aryloxo) ligand: structure and lactide polymerization activities. J Mol Catal A Chem 257:105–111. doi:10.1016/j.molcata.2006.04.063

    Article  CAS  Google Scholar 

  74. Zelikoff AL, Kopilov J, Goldberg I, Coates GW, Kol M (2009) New facets of an old ligand: titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis. Chem Commun 2009 (44):6804–6806. doi:10.1039/b915211c

  75. Sauer A, Kapelski A, Fliedel C, Dagorne S, Kol M, Okuda J (2012) Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalton Trans 42(25):9007–9023. doi:10.1039/c3dt00010a

    Article  CAS  Google Scholar 

  76. Saha TK, Ramkumar V, Chakraborty D (2011) Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides. Inorg Chem 50(7):2720–2722. doi:10.1021/ic1025262

    Article  CAS  Google Scholar 

  77. Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunn MD (2008) Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem Commun 2008 11:1293–1295. doi:10.1039/b718678a

    Google Scholar 

  78. Romain C, Heinrich B, Laponnaz SB, Dagorne S (2012) A robust zirconium N-heterocyclic carbene complex for the living and highly stereoselective ring-opening polymerization of rac-lactide. Chem Commun 48(16):2213–2215. doi:10.1039/c2cc16819g

    Article  CAS  Google Scholar 

  79. El-Zoghbi I, Whitehorne TJJ, Schaper F (2013) Exceptionally high lactide polymerization activity of zirconium complexes with bridged diketiminate ligands. Dalton Trans 42(25):9376–9387. doi:10.1039/c2dt31761c

    Article  CAS  Google Scholar 

  80. Sergeeva E, Kopilov J, Goldberg I, Kol M (2010) Dithiodiolate ligands: group 4 complexes and application in lactide polymerization. Inorg Chem 49(9):3977–3979. doi:10.1021/ic100390x

    Article  CAS  Google Scholar 

  81. Horeglad P, Szczepaniak G, Dranka M, Zachara J (2012) The first facile stereoselectivity switch in the polymerization of rac-lactide-from heteroselective to isoselective dialkylgallium alkoxides with the help of N-heterocyclic carbenes. Chem Commun 48(8):1171–1173. doi:10.1039/c2cc16072b

    Article  CAS  Google Scholar 

  82. Bakewell C, White AJP, Long NJ, Williams CK (2013) 8-Quinolinolato gallium complexes: iso-selective initiators for rac-lactide polymerization. Inorg Chem 52(21):12561–12567. doi:10.1021/ic4016756

    Article  CAS  Google Scholar 

  83. Douglas AF, Patrick BO, Mehrkhodavandi P (2008) A highly active chiral indium catalyst for living lactide polymerization. Angew Chem 120(12):2322–2325. doi:10.1002/ange.200705033

    Article  Google Scholar 

  84. Pietrangelo A, Knight SC, Gupta AK, Yao LJ, Hillmyer MA, Tolman WB (2010) Mechanistic study of the stereoselective polymerization of d,l-lactide using indium(III) halides. J Am Chem Soc 132(33):11649–11657. doi:10.1021/ja103841h

    Article  CAS  Google Scholar 

  85. Kowalski A, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octanoate. 3. Polymerizaiton of L,l-dilactide. Macromolecules 33:7359–7370. doi:10.1021/ma000125o

    Article  CAS  Google Scholar 

  86. Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33:689–695. doi:10.1021/ma9906940

    Article  CAS  Google Scholar 

  87. Kricheldorf HR, Sumbel M (1989) Polylactones 18. Polymerization of l,l-lactide with Sn(II) and Sn(IV) halogenides. Eur Polym J 25(6):585–591. doi:10.1016/0014-3057(89)90010-4

    Article  CAS  Google Scholar 

  88. Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ (2006) Synthetic, structural, mechanistic, and computational studies on single-site b-diketiminate tin(II) initiators for the polymerization of rac-lactide. J Am Chem Soc 128(30):9834–9843. doi:10.1021/ja061400a

    Article  CAS  Google Scholar 

  89. Nimitsiriwat N, Marshall EL, Gibson VC, Elsegood MRJ, Dale SH (2004) Unprecedented reversible migration of amide to Schiff base ligands attached to tin: latent single-site initiators for lactide polymerization. J Am Chem Soc 126(42):13598–13599. doi:10.1021/ja0470315

    Article  CAS  Google Scholar 

  90. Aubrecht KB, Hillmyer MA, Tolman WB (2002) Polymerization of lactide by monomeric Sn(II) alkoxide complexes. Macromolecules 35(3):644–650. doi:10.1021/ma011873w

    Article  CAS  Google Scholar 

  91. Poirier V, Roisnel T, Sinbandhit S, Bochmann M, Carpentier J-F, Sarazin Y (2012) Synthetic and mechanistic aspects of the immortal ring-opening polymerization of lactide and trimethylene carbonate with new homo- and heteroleptic tin(II)-phenolate catalysts. Chem Eur J 18(10):2998–3013. doi:10.1002/chem.201102261

    Article  CAS  Google Scholar 

  92. Finne A, Reema, Albertsson A-C (2003) Use of germanium initiators in ring-opening polymerization of l-lactide. J Polym Sci A Polym Chem 41(19):3074–3082. doi:10.1002/pola.10887

    Article  CAS  Google Scholar 

  93. Chmura AJ, Chuck CJ, Davidson MG, Jones MD, Lunn MD, Bull SD, Mahon MF (2007) A germanium alkoxide supported by a C3-symmetric ligand for the stereoselective synthesis of highly heterotactic polylactide under solvent-free conditions. Angew Chem 119(13):2330–2333. doi:10.1002/ange.200603944

    Article  Google Scholar 

  94. Guo J, Haquette P, Martin J, Salim K, Thomas CM (2013) Replacing tin in lactide polymerization: design of highly active germanium-based catalysts. Angew Chem Int Ed 52(51):13584–13587. doi:10.1002/anie.201306623

    Article  CAS  Google Scholar 

  95. Hoppe JO, Agnew Marcelli MG, Tainter ML (1955) A review of the toxicity of iron compounds. Am J Med Sci 230(5):558–571

    Article  CAS  Google Scholar 

  96. Stolt M, Sodergard A (1999) Use of monocarboxylic iron derivatives in the ring-opening polymerization of l-lactide. Macromolecules 32(20):6412–6417. doi:10.1021/ma9902753

    Article  CAS  Google Scholar 

  97. Södergård A, Stolt M (1998) Ring-opening polymerization of l-lactide by means of different iron compounds. Macromol Symp 130(1):393–402. doi:10.1002/masy.19981300133

    Article  Google Scholar 

  98. Arvanitoyannis I, Nakayama A, Psomiadou E, Kawasaki N, Yamamoto N (1996) Synthesis and degradability of a novel aliphatic polyester based on l-lactide and sorbitol: 3. Polymer 37(4):651–660. doi:10.1016/0032-3861(96)83152-1

    Article  CAS  Google Scholar 

  99. Kricheldorf HR, Boettcher C (1993) Polylactones 21. Polymerization of L,l-lactide and rac-d,l-lactide with hematin and related porphyrin complexes. Makromol Chem 194(2):463–473. doi:10.1002/macp.1993.021940209

    Article  CAS  Google Scholar 

  100. Kricheldorf HR, Damrau D-O (1997) Polylactones, 38. Polymerization of l-lactide with Fe(II) lactate and other resorbable Fe(II) salts. Macromol Chem Phys 198(6):1767–1774. doi:10.1002/macp.1997.021980606

    Article  CAS  Google Scholar 

  101. O'Keefe BJ, Monnier SM, Hillmyer MA, Tolman WB (2000) Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides. J Am Chem Soc 123(2):339–340. doi:10.1021/ja003537l

    Article  CAS  Google Scholar 

  102. Wang X, Liao K, Quan D, Wu Q (2005) Bulk ring-opening polymerization of lactides initiated by ferric alkoxides. Macromolecules 38(11):4611–4617. doi:10.1021/ma047545o

    Article  CAS  Google Scholar 

  103. McGuinness DS, Marshall EL, Gibson VC, Steed JW (2003) Anionic iron(II) alkoxides as initiators for the controlled ring-opening polymerization of lactide. J Polym Sci A Polym Chem 41(23):3798–3803. doi:10.1002/pola.10946

    Article  CAS  Google Scholar 

  104. Gibson VC, Marshall EL, Navarro-Llobet D, White AJP, Williams DJ (2002) A well-defined iron(ii) alkoxide initiator for the controlled polymerisation of lactide. J Chem Soc Dalton Trans 2002 (23):4321–4322. doi:10.1039/b209703f

  105. Biernesser AB, Li B, Byers JA (2013) Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. J Am Chem Soc 135(44):16553–16560. doi:10.1021/ja407920d

    Article  CAS  Google Scholar 

  106. Manna C, Kaplan HZ, Li B, Byers JA (2014) High molecular weight poly(lactic acid) produced by an efficient iron catalyst bearing a bis(amidinato)-N-heterocyclic carbene ligand. Polyhedron 84:160–167. doi:10.1016/j.poly.2014.07.002

    Article  CAS  Google Scholar 

  107. Sun J, Shi W, Chen D, Liang C (2002) The ring-opening polymerization of d,l-lactide catalyzed by new complexes of Cu, Zn, Co, and Ni Schiff base derived from salicylidene and l-aspartic acid. J Appl Polym Sci 86(13):3312–3315. doi:10.1002/app.11234

    Article  CAS  Google Scholar 

  108. Gowda RR, Chakraborty D (2011) Copper acetate catalyzed bulk ring opening polymerization of lactides. J Mol Catal A Chem 349:86–93. doi:10.1016/j.molcata.2011.08.024

    Article  CAS  Google Scholar 

  109. Chen l-L, Ding l-Q, Zeng C, Long Y, Lü X-Q, Song J-R, Fan D-D, Jin W-J (2011) Bulk solvent-free melt ring-opening polymerization of l-lactide catalyzed by Cu(II) and Cu(II)–Nd(III) complexes of the salen-type Schiff-base ligand. Appl Organomet Chem 25(4):310–316. doi:10.1002/aoc.1760

    Article  CAS  Google Scholar 

  110. John A, Katiyar V, Pang K, Shaikh MM, Nanavati H, Ghosh P (2007) Ni(II) and Cu(II) complexes of phenoxy-ketimine ligands: synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of l-lactide. Polyhedron 26(15):4033–4044. doi:10.1016/j.poly.2007.04.039

    Article  CAS  Google Scholar 

  111. Whitehorne TJJ, Schaper F (2012) Nacnac BnCuOiPr: a strained geometry resulting in very high lactide polymerization activity. Chem Commun 48(83):10334–10336. doi:10.1039/c2cc34247b

    Article  CAS  Google Scholar 

  112. Whitehorne TJJ, Schaper F (2013) Square-planar Cu(II) diketiminate complexes in lactide polymerization. Inorg Chem 52(23):13612–13622. doi:10.1021/ic402133c

    Article  CAS  Google Scholar 

  113. Rajashekhar B, Chakraborty D (2014) Co(II) and Mn(II) catalyzed bulk ring-opening polymerization of cyclic esters. Polym Bull 71(9):2185–2203. doi:10.1007/s00289-014-1180-8

    Article  CAS  Google Scholar 

  114. Idage BB, Idage SB, Kasegaonkar AS, Jadhav RV (2010) Ring opening polymerization of dilactide using salen complex as catalyst. Mater Sci Eng B 168:193–198. doi:10.1016/j.mseb.2009.10.037

    Article  CAS  Google Scholar 

  115. Daneshmand P, Schaper F (2015) Exploring the reactivity of manganese(iii) complexes with diphenolate-diamino ligands in rac-lactide polymerization. Dalton Trans 44(47):20449–20458. doi:10.1039/c5dt03756e

    Article  CAS  Google Scholar 

  116. Ding L, Jin W, Chu Z, Chen L, Lü X, Yuan G, Song J, Fan D, Bao F (2011) Bulk solvent-free melt ring-opening polymerization (ROP) of l-lactide catalyzed by Ni(II) and Ni(II)-Ln(III) complexes based on the acyclic salen-type Schiff-base ligand. Inorg Chem Commun 14(8):1274–1278. doi:10.1016/j.inoche.2011.04.040

    Article  CAS  Google Scholar 

  117. Balasanthiran V, Chatterjee C, Chisholm MH, Harrold ND, Rajan Babu TV, Warren GA (2015) Coupling of propylene oxide and lactide at a porphyrin chromium(III) center. J Am Chem Soc 137(5):1786–1789. doi:10.1021/ja512554t

    Article  CAS  Google Scholar 

  118. Kim Y, Kapoor PN, Verkade JG (2002) (RO)2Ta[tris(2-oxy-3,5-dimethylbenzyl)amine]: structure and lactide polymerization activities. Inorg Chem 41(18):4834–4838. doi:10.1021/ic0257571

    Article  CAS  Google Scholar 

  119. Ray L, Katiyar V, Barman S, Raihan MJ, Nanavati H, Shaikh MM, Ghosh P (2007) Gold(I) N-heterocyclic carbene based initiators for bulk ring-opening polymerization of l-lactide. J Organomet Chem 692(20):4259–4269. doi:10.1016/j.jorganchem.2007.06.033

    Article  CAS  Google Scholar 

  120. Samantaray MK, Katiyar V, Pang K, Nanavati H, Ghosh P (2007) Silver N-heterocyclic carbene complexes as initiators for bulk ring-opening polymerization (ROP) of l-lactides. J Organomet Chem 692(8):1672–1682. doi:10.1016/j.jorganchem.2006.12.022

    Article  CAS  Google Scholar 

  121. Leibfarth FA, Mattson KM, Fors BP, Collins HA, Hawker CJ (2013) External regulation of controlled polymerizations. Angew Chem Int Ed 52(1):199–210. doi:10.1002/anie.201206476

    Article  CAS  Google Scholar 

  122. Blanco V, Leigh DA, Marcos V (2015) Artificial switchable catalysts. Chem Soc Rev 44(15):5341–5370. doi:10.1039/c5cs00096c

    Article  CAS  Google Scholar 

  123. Guillaume SM, Kirillov E, Sarazin Y, Carpentier J-F (2015) Beyond stereoselectivity, switchable catalysis: some of the last frontier challenges in ring-opening polymerization of cyclic esters. Chem Eur J 21(22):7988–8003. doi:10.1002/chem.201500613

    Article  CAS  Google Scholar 

  124. Teator AJ, Lastovickova DN, Bielawski CW (2016) Switchable polymerization catalysts. Chem Rev 116(4):1969–1992. doi:10.1021/acs.chemrev.5b00426

    Article  CAS  Google Scholar 

  125. Gregson CKA, Gibson VC, Long NJ, Marshall EL, Oxford PJ, White AJP (2006) Redox control within single-site polymerization catalysts. J Am Chem Soc 128(23):7410–7411. doi:10.1021/ja061398n

    Article  CAS  Google Scholar 

  126. Brown LA, Rhinehart JL, Long BK (2015) Effects of ferrocenyl proximity and monomer presence during oxidation for the redox-switchable polymerization of l-lactide. ACS Catal 5(10):6057–6060. doi:10.1021/acscatal.5b01434

    Article  CAS  Google Scholar 

  127. Broderick EM, Guo N, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Mehrkhodovandi P, Diaconescu PL (2011) Redox control of a ring-opening polymerization catalyst. J Am Chem Soc 133:9278–9281. doi:10.1021/ja2036089

    Article  CAS  Google Scholar 

  128. Broderick EM, Guo N, Wu T, Vogel CS, Xu C, Sutter J, Miller JT, Meyer K, Cantat T, Diaconescu PL (2011) Redox control of a polymerization catalyst by changing the oxidation state of the metal center. Chem Commun 47:9897–9899. doi:10.1039/c1cc13117f

    Article  CAS  Google Scholar 

  129. Sauer A, Buffet J-C, Spaniol TP, Nagae H, Mashima K, Okuda J (2013) Switching the lactide polymerization activity of a cerium complex by redox reactions. ChemCatChem 5:1088–1091. doi:10.1002/cctc.201200705

    Article  CAS  Google Scholar 

  130. Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA (2016) Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew Chem Int Ed 55:5251–5254. doi:10.1002/anie.201511793

    Article  CAS  Google Scholar 

  131. Delle Chiaie KR, Yablon LM, Biernesser AB, Michalowski GR, Sudyn AW, Byers JA (2016) Redox-triggered crosslinking of a degradable polymer. Polym Chem 7:4675–4681. doi:10.1039/c6py00975a

  132. Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL (2001) New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew Chem Int Ed 40(14):2712–2715. doi:10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  133. Lohmeijer BGG, Pratt RC, Leibfarth FA, Logan JW, Long DA, Dove AP, Nederberg F, Choi J, Wade CG, Waymouth RM, Hedrick JL (2006) Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39(25):8574–8583. S0024-9297(06)01938-3

    Article  CAS  Google Scholar 

  134. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128(14):4556–4557. S0002-7863(06)00662-7

    Article  CAS  Google Scholar 

  135. Li H, Zhang S, Jiao J, Jiao Z, Kong L, Xu J, Li J, Zuo J, Zhao X (2009) Controlled synthesis of polylactides using biogenic creatinine carboxylate initiators. Biomacromolecules 10(5):1311–1314. doi:10.1021/bm801479p

    Article  CAS  Google Scholar 

  136. Marion N, Díez-González S, Nolan SP (2007) N-heterocyclic carbenes as organocatalysts. Angew Chem Int Ed 46(17):2988–3000. doi:10.1002/anie.200603380

    Article  CAS  Google Scholar 

  137. Vreese RD, D’hooghe M (2012) N-heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis. Beilstein J Org Chem 8(1):398–402. doi:10.3762/bjoc.8.43

    Article  CAS  Google Scholar 

  138. Seema D, Sumanta G, Sajal D (2014) N-heterocyclic carbenes (NHCs) in asymmetric organocatalysis. Curr Organocatal 1(1):13–39. doi:10.2174/2213337201999131230123630

    Article  CAS  Google Scholar 

  139. Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL (2002) First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc 124(6):914–915. S0002-7863(01)07332-2

    Article  CAS  Google Scholar 

  140. Culkin DA, Jeong W, Csihony S, Gomez ED, Balsara NP, Hedrick JL, Waymouth RM (2007) Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew Chem Int Ed 46(15):2627–2630. doi:10.1002/anie.200604740

    Article  CAS  Google Scholar 

  141. Jeong W, Shin EJ, Culkin DA, Hedrick JL, Waymouth RM (2009) Zwitterionic polymerization: a kinetic strategy for the controlled synthesis of cyclic polylactide. J Am Chem Soc 131(13):4884–4891. doi:10.1021/ja809617v

    Article  CAS  Google Scholar 

  142. Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG (2007) Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40(12):4154–4158. doi:10.1021/ma070316s

    Article  CAS  Google Scholar 

  143. Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG (2007) Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J Am Chem Soc 129:12610–12611. S0002-7863(07)04131-5

    Article  CAS  Google Scholar 

  144. Thomas C, Peruch F, Deffieux A, Milet A, Desvergne J-P, Bibal B (2011) Phenols and tertiary amines: an amazingly simple hydrogen bonding organocatalytic system promoting ring opening polymerization. Adv Synth Catal 353:1049–1054. doi:10.1002/adsc.201100013

    Article  CAS  Google Scholar 

  145. Alba A, Schopp A, Delgado A-PDS, Cherif-Cheikh R, Martin-Vaca B, Bourissou D (2010) Controlled ring-opening polymerization of lactide by bis-sulfonamide/amine associations: cooperative hydrogen-bonding catalysis. J Polym Sci A Polym Chem 48:959–965. doi:10.1002/pola.23852

    Article  CAS  Google Scholar 

  146. Coulembier O, Sanders DP, Nelson A, Hollenbeck AN, Horn HW, Rice JE, Fujiwara M, Dubois P, Hedrick JL (2009) Hydrogen-bonding catalysts based on fluorinated alcohol derivatives for living polymerization. Angew Chem Int Ed 48:5170–5173. doi:10.1002/anie.200901006

    Article  CAS  Google Scholar 

  147. Koeller S, Kadota J, Deffieux A, Peruch F, Massip S, Leger J-M, Desvergne J-P, Bibal B (2009) Ring opening polymerization of l-lactide efficiently triggered by an amido-indole. X-ray structure of a complex between l-lactide and the hydrogen-bonding organocatalyst. J Am Chem Soc 131:15088–15089. doi:10.1021/ja906119t

    Article  CAS  Google Scholar 

  148. Pratt RC, Lohmeijer BGG, Long DA, Lundberg PNP, Dove AP, Li H, Wade CG, Waymouth RM, Hedrick JL (2006) Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules 39:7863–7871. doi:10.1021/ma061607o

    Article  CAS  Google Scholar 

  149. Liu J, Chen C, Li Z, Wu W, Zhi X, Zhang Q, Wu H, Wang X, Cui S, Guo K (2015) A squaramide and tertiary amine: an excellent hydrogen-bonding pair organocatalyst for living polymerization. Polym Chem 6(20):3754–3757. doi:10.1039/C5PY00508F

    Article  CAS  Google Scholar 

  150. Zhi X, Liu J, Li Z, Wang H, Wang X, Cui S, Chen C, Zhao C, Li X, Guo K (2016) Ionic hydrogen bond donor organocatalyst for fast living ring-opening polymerization. Polym Chem 7(2):339–349. doi:10.1039/C5PY01315A

    Article  CAS  Google Scholar 

  151. Thomas C, Milet A, Peruch F, Bibal B (2013) Activation of carbonyl bonds by quaternary ammoniums and a (Na+:crown-ether) complex: investigation of the ring-opening polymerization of cyclic esters. Polym Chem 4(12):3491–3498. doi:10.1039/C3PY00304C

    Article  CAS  Google Scholar 

  152. Koeller S, Thomas C, Peruch F, Deffieux A, Massip S, Léger J-M, Desvergne J-P, Milet A, Bibal B (2014) α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine. Chem 20(10):2849–2859. doi:10.1002/chem.201303662

    Article  CAS  Google Scholar 

  153. Zhang D, Jardel D, Peruch F, Calin N, Dufaud V, Dutasta J-P, Martinez A, Bibal B (2016) Azaphosphatranes as hydrogen-bonding organocatalysts for the activation of carbonyl groups: investigation of lactide ring-opening polymerization. Eur J Org Chem 2016(8):1619–1624. doi:10.1002/ejoc.201600080

    Article  CAS  Google Scholar 

  154. Makiguchi K, Kikuchi S, Yanai K, Ogasawara Y, S-i S, Satoh T, Kakuchi T (2014) Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of l-lactide leading to diblock and end-functionalized poly(l-lactide)s. J Polym Sci A Polym Chem 52(7):1047–1054. doi:10.1002/pola.27089

    Article  CAS  Google Scholar 

  155. Dove AP, Pratt RC, Lohmeijer BGG, Waymouth RM, Hedrick JL (2005) Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J Am Chem Soc 127(40):13798–13799. S0002-7863(05)04334-9

    Article  CAS  Google Scholar 

  156. Miyake GM, Chen EY-X (2011) Cinchona alkaloids as stereoselective organocatalysts for the partial kinetic resolution polymerization of rac-lactide. Macromolecules 44(11):4116–4124. doi:10.1021/ma2007199

    Article  CAS  Google Scholar 

  157. Patel D, Liddle ST, Mungur SA, Rodden M, Blake AJ, Arnold PL (2006) Bifunctional yttrium(III) and titanium(IV) NHC catalysts for lactide polymerisation. Chem Commun 2006(10):1124–1126. doi:10.1039/B514406J

  158. Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Lindgren TA (1997) High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 30:2422–2428

    Article  CAS  Google Scholar 

  159. Zell MT, Padden BE, Paterick AJ, Thakur KAM, Kean RT, Hillmyer MA, Munson EJ (2002) Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution solution NMR spectroscopy. Macromolecules 35(20):7700–7707. doi:10.1021/ma0204148

    Article  CAS  Google Scholar 

  160. Odian G (2004) Principles of polymerization4th edn. Wiley, New York

    Book  Google Scholar 

  161. Dieter A, Schluter CH, Sakamoto J (2012) Synthesis of polymers: new structures and methods. Wiley, Weinheim

    Google Scholar 

  162. Chisholm MH, Patmore NJ, Zhou Z (2004) Concerning the relative importance of enantiomorphic site vs. chain end control in the stereoselective polymerization of lactides: reactions of (R,R-salen)- and (S,S-salen)-aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl). Chem Commun:127–129. doi:10.1039/B413266A

  163. Pilone A, Press K, Goldberg I, Kol M, Mazzeo M, Lamberti M (2014) Gradient isotactic multiblock polylactides from aluminum complexes of chiral salalen ligands. J Am Chem Soc 136(8):2940–2943. doi:10.1021/ja412798x

    Article  CAS  Google Scholar 

  164. Ewen JA (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc 106:6355–6364

    Article  CAS  Google Scholar 

  165. Chisholm MH, Iyer SS, McCollum DG, Pagel M, Werner-Zwanziger U (1999) Microstructure of poly(lactide). Phase-sensitive HETCOR spectra of poly(meso-lactide), poly(rac-lactide), and atactic poly(lactide). Macromolecules 32(4):963–973. doi:10.1021/ma9806864

    Article  CAS  Google Scholar 

  166. Ovitt TM, Coates GW (2002) Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc 124(7):1316–1326. doi:10.1021/ja012052+

    Article  CAS  Google Scholar 

  167. Buffet J-C, Okuda J (2011) Initiators for the stereoselective ring-opening polymerization of meso-lactide. Polym Chem 2:2758–2763. doi:10.1039/c1py00206f

    Article  CAS  Google Scholar 

  168. Dijkstra PJ, Du H, Feijen J (2011) Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym Chem 2:520–527. doi:10.1039/c0py00204f

    Article  CAS  Google Scholar 

  169. Spassky N, Wisniewski M, Pluta C, Le Borgne A (1996) Highly stereoelective polymerization of rac-(d,l)-lactide with a chiral schiff’s base/aluminium alkoxide initiator. Macromol Chem Phys 197(9):2627–2637. doi:10.1002/macp.1996.021970902

    Article  CAS  Google Scholar 

  170. Du H, Velders AH, Dijkstra PJ, Sun J, Zhong Z, Chen X, Feijen J (2009) Chiral salan aluminium ethyl complexes and their application in lactide polymerization. Chem 15(38):9836–9845. doi:10.1002/chem.200900799

    Article  CAS  Google Scholar 

  171. Jones MD, Hancock SL, McKeown P, Schafer PM, Buchard A, Thomas LH, Mahon MF, Lowe JP (2014) Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem Commun 50(100):15967–15970. doi:10.1039/c4cc07871c

    Article  CAS  Google Scholar 

  172. Honrado M, Otero A, Fernandez-Baeza J, Sanchez-Barba LF, Garces A, Lara-Sanchez A, Rodriguez AM (2014) Stereoselective ROP of rac-lactide mediated by enantiopure NNO-scorpionate zinc initiators. Organometallics 33(7):1859–1866. doi:10.1021/om500207x

    Article  CAS  Google Scholar 

  173. Aluthge DC, Patrick BO, Mehrkhodavandi P (2013) A highly active and site selective indium catalyst for lactide polymerization. Chem Commun 49(39):4295–4297. doi:10.1039/c2cc33519k

    Article  CAS  Google Scholar 

  174. Ma H, Spaniol TP, Okuda J (2006) Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato)scandium complexes. Angew Chem Int Ed 45(46):7818–7821

    Article  Google Scholar 

  175. Manna CM, Kaur A, Yablon LM, Haeffner F, Li B, Byers JA (2015) Stereoselective catalysis achieved through in situ desymmetrization of an achiral iron catalyst precursor. J Am Chem Soc 137(45):14232–14235. doi:10.1021/jacs.5b09966

    Article  CAS  Google Scholar 

  176. Nomura N, Hasegawa J, Ishii R (2009) A direct function relationship between isotacticity and melting temperature of multiblock stereocopolymer poly(rac-lactide). Macromolecules 42(13):4907–4909. doi:10.1021/ma900760z

    Article  CAS  Google Scholar 

  177. Pilone A, Maio ND, Press K, Venditto V, Pappalardo D, Mazzeo M, Pellecchia C, Kol M, Lamberti M (2015) Ring-opening homo- and co-polymerization of lactides and ε-caprolactone by salalen aluminum complexes. Dalton Trans 44(5):2157–2165. doi:10.1039/C4DT02616K

  178. Vieira IS, Whitelaw EL, Jones MD, Herres-Pawlis S (2013) Synergistic empirical and theoretical study on the stereoselective mechanism for the aluminum salalen complex mediated polymerization of rac-lactide. Chem 19(15):4712–4716. doi:10.1002/chem.201203973

    Article  CAS  Google Scholar 

  179. Dove AP, Gibson VC, Marshall EL, Rzepa HS, White AJP, Williams DJ (2006) Synthetic, structural, mechanistic, and computational studies on single-site β-diketiminate Tin(II) initiators for the polymerization of rac-lactide. J Am Chem Soc 128(30):9834–9843. S0002-7863(06)01400-4

    Article  CAS  Google Scholar 

  180. Mou Z, Liu B, Wang M, Xie H, Li P, Li L, Li S, Cui D (2014) Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes. Chem Commun 50:11411–11414. doi:10.1039/C4CC05033A

    Article  CAS  Google Scholar 

  181. Sun Y, Xiong J, Dai Z, Pan X, Tang N, Wu J (2015) Stereoselective alkali-metal catalysts for highly isotactic poly(rac-lactide) synthesis. Inorg Chem 55:136–143. doi:10.1021/acs.inorgchem.5b02709

    Article  CAS  Google Scholar 

  182. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11(3):167–180. doi:10.1089/ind.2015.0003

    Article  CAS  Google Scholar 

  183. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. doi:10.1002/mabi.200400043

    Article  CAS  Google Scholar 

  184. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid) – mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. doi:10.1016/j.addr.2016.03.010

    Article  CAS  Google Scholar 

  185. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846. doi:10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

    Article  CAS  Google Scholar 

  186. Gruber PR, Kolstad JJ, Hall ES, Conn RSE, Ryan CM (1994) Melt-stable lactide polymer composition and process for manufacture thereof. Patent US5981694 A

    Google Scholar 

  187. De Vos SC (2009) Method for manufacturing stable polylactide. Patent US20090247710 A1

    Google Scholar 

  188. Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL (1993) Continuous process for the manufacture of lactide and lactide polymers. Patent WO1993015127

    Google Scholar 

  189. Shinoda H, Ohtaguro M, Iimuro S (1993) Modified polyester composition and preparation process and use thereof. Patent EP0608921 A2

    Google Scholar 

  190. Spinu M (1994) Manufacture of polylactide stereocomplexes. Patent US07989048

    Google Scholar 

  191. Fedushkin IL, Chudakova VA, Cherkasov VK (2010) Catalyst and method for polymerization and copolymerization of lactide. Patent WO2008128548 A2

    Google Scholar 

  192. Chang WC, Sun WH (2002) Method of polymerization of lactide and polylactide homopolymer thereof. Patent US6376643 B1

    Google Scholar 

  193. Fridman ID, Kwok J, Downey RJ, Nemphos SP (1994) Lactide polymerization. Patent US5357034 A

    Google Scholar 

  194. Ohara HCOSC, Sawa SCOSC, Kawamoto TCOSC (1995) Method for producing polylactic acid. Patent US5508378 A

    Google Scholar 

  195. Williams CK, Romain C, Kember M (2014) Method and catalyst system for preparing polymers and block copolymers. Patent US20160108181 A1

    Google Scholar 

  196. Gobius DSG, Davidson MG, Chuck CJ (2014) Method to manufacture PLA using a new polymerization catalyst. Patent US20160075821 A1

    Google Scholar 

  197. Drysdale NE, Ford TM, Mclain SJ (1993) Polymerization of lactide with rare-earth metal catalysts. Patent WO1993018080 A1

    Google Scholar 

  198. Coady DJ, Fukushima K, Hedrick JL, Horn HW, Rice JE (2014) Methods of ring opening polymerization and catalysts therefor. Patent US8846851 B2

    Google Scholar 

  199. Dong H, Esser-Kahn AP, Thakre PR, Patrick JF, Sottos NR, White SR, Moore JS (2012) Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Appl Mater Interfaces 4:503–509. doi:10.1021/am2010042

    Article  CAS  Google Scholar 

  200. Fan Y, Nishida H, Shirai Y, Tokiwa Y, Endo T (2004) Thermal degradation behavior of poly(lactic acid) stereocomplex. Polym Degrad Stab 86:197–208. doi:10.1016/j.polymdegradstab.2004.03.001

    Article  CAS  Google Scholar 

  201. Fan Y, Nishida H, Mori T, Shirai Y, Endo T (2004) Thermal degradation of poly(l-lactic acid): effect of alkali earth metal oxides for selective L,l-lactide formation. Polymer 45:1197–1205. doi:10.1016/j.polymer.2003.12.058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery A. Byers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Byers, J.A., Biernesser, A.B., Delle Chiaie, K.R., Kaur, A., Kehl, J.A. (2017). Catalytic Systems for the Production of Poly(lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2017_20

Download citation

Publish with us

Policies and ethics