Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 275))

Abstract

Many soft materials can be viewed as networks of different structure and complexity. Their (statistical) physics determine their elastic deformation behavior, fracture, and failure. In food systems, similar properties are of importance. This contribution discusses some of the common points between elastic materials and food gels. Topics range from fundamental physics to some applications in materials science and food science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deam RT, Edwards SF (1976) Philos Trans R Soc Lond A Math Phys Eng Sci 280(1296):317

    Article  CAS  Google Scholar 

  2. Panyukov S, Rabin Y (1996) Phys Rep 269(1):1

    Article  CAS  Google Scholar 

  3. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  4. Edwards S, Lillford P, Blanshard J (1987) In: Blanshard JMV, Lillford P (eds) Food structure and behaviour. Academic press, London

    Google Scholar 

  5. Vilgis TA, Heinrich G, KlĂĽppel M (2009) Reinforcement of polymer nano-composites: theory, experiments and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Vilgis TA (2015) Rep Prog Phys 78(12):124602

    Article  Google Scholar 

  7. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  8. Rubinstein M, Colby RH (2003) Polymer physics. Clarendon, Oxford

    Google Scholar 

  9. Clisby N (2010) Phys Rev Lett 104(5):055702

    Article  CAS  Google Scholar 

  10. Holm C, Joanny J, Kremer K, Netz R, Reineker P, Seidel C, Vilgis T, Winkler R (2004) Polyelectrolytes with defined molecular architecture II. Springer, Berlin/Heidelberg, pp 67–111

    Book  Google Scholar 

  11. Dobrynin AV, Rubinstein M (2005) Prog Polym Sci 30(11):1049

    Article  CAS  Google Scholar 

  12. Vilgis TA, Johner A, Joanny J (2000) Eur Phys J E 2(3):289

    Article  CAS  Google Scholar 

  13. Edwards SF (1981) Ann N Y Acad Sci 371(1):210

    Article  CAS  Google Scholar 

  14. Peng W, Castillo HE, Goldbart PM, Zippelius A (1998) Phys Rev B 57(2):839

    Article  CAS  Google Scholar 

  15. Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  16. Kuhn W, GrĂĽn F (1946) J Polym Sci 1(3):183

    Article  CAS  Google Scholar 

  17. Grosberg AY, Khokhlov AR, Stanley HE, Mallinckrodt AJ, McKay S et al (1995) Comput Phys 9(2):171

    Article  Google Scholar 

  18. Miao B, Vilgis TA, Poggendorf S, Sadowski G (2010) Macromol Theory Simul 19(7):414

    Article  CAS  Google Scholar 

  19. Edwards S, Vilgis TA (1986) Polymer 27(4):483

    Article  CAS  Google Scholar 

  20. Edwards S, Vilgis TA (1988) Rep Prog Phys 51(2):243

    Article  Google Scholar 

  21. Sukumaran SK, Grest GS, Kremer K, Everaers R (2005) J Polym Sci B Polym Phys 43(8):917

    Article  CAS  Google Scholar 

  22. Ball R, Doi M, Edwards S, Warner M (1981) Polymer 22(8):1010

    Article  CAS  Google Scholar 

  23. Vilgis TA (2005) Polymer 46(12):4223

    Article  CAS  Google Scholar 

  24. Heinrich G, KlĂĽppel M, Vilgis TA (2002) Curr Opinion Solid State Mater Sci 6(3):195

    Article  CAS  Google Scholar 

  25. Smallwood HM (1944) J Appl Phys 15(11):758

    Article  CAS  Google Scholar 

  26. Huber G, Vilgis TA (2002) Macromolecules 35(24):9204

    Article  CAS  Google Scholar 

  27. Felderhof B, Iske P (1992) Phys Rev A 45(2):611

    Article  CAS  Google Scholar 

  28. Christensen RM (2012). Mechanics of composite materials. Courier Corporation, Dover, Mineola NY

    Google Scholar 

  29. Jones R, Schmitz R (1983) Physica A 122(1):105

    Article  Google Scholar 

  30. Jones R, Schmitz R (1983) Physica A 122(1):114

    Article  Google Scholar 

  31. Kluppel M, Heinrich G (1995) Rubber Chem Technol 68(4):623

    Article  Google Scholar 

  32. Bunde A, Havlin S (2012) Fractals and disordered systems. Springer, Berlin/Heidelberg

    Google Scholar 

  33. Payne A, Kraus G (1965) Reinforcement of Elastomers, vol 69. Interscience, New York

    Google Scholar 

  34. Medalia A (1978) Rubber Chem Technol 51(3):437

    Article  CAS  Google Scholar 

  35. Kraus G (1984) J Appl Polym Sci Appl Polym Symp 39:75–92

    CAS  Google Scholar 

  36. Vieweg S, Unger R, Heinrich G, Donth E (1999) J Appl Polym Sci 73(4):495

    Article  CAS  Google Scholar 

  37. Lion A (2005) KGK-Kautschuk Gummi Kunststoffe 58(4):157

    CAS  Google Scholar 

  38. Witten T, Rubinstein M, Colby R (1993) J Phys II 3(3):367

    CAS  Google Scholar 

  39. Huber G, Vilgis TA, Heinrich G (1996) J Phys Condens Matter 8(29):L409

    Article  CAS  Google Scholar 

  40. Aharony A, Stauffer D (2003) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  41. Song Y, Zheng Q (2011) Polymer 52(3):593

    Article  CAS  Google Scholar 

  42. Finkelstein AV, Ptitsyn O (2002) Protein physics: a course of lectures. Academic, San Diego

    Google Scholar 

  43. Yang AS, Honig B (1993) J Mol Biol 231(2):459

    Article  CAS  Google Scholar 

  44. Hong L, Lei J (2008) J Polym Sci B Polym Phys 47(2):207. doi:10.1002/polb

    Article  CAS  Google Scholar 

  45. Belitz HD, Grosch W, Schieberle P (2009) Food chemistry. Springer, Wien

    Google Scholar 

  46. Wieser H (2007) Food Microbiol 24(2):115

    Article  CAS  Google Scholar 

  47. Shewry P, Tatham A (1997) J Cereal Sci 25(3):207

    Article  CAS  Google Scholar 

  48. Schiedt B, Baumann A, Conde-Petit B, Vilgis TA (2013) J Texture Stud 44(4):317

    Article  Google Scholar 

  49. Chaikin PM, Lubensky T (2000) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

  50. Tuhumury H, Small D, Day L (2014) J Cereal Sci 69(1):229–237. doi: 10.1016/j.jcs.2014.03.004

    Google Scholar 

  51. Schönmehl N (2015) Beeinflussung der viskoelastischen Eigenschaften von Weizengluten unter Zugabe von mono-, di-, sowie trivalenten Metallkationen. Bachelor thesis, SRH Fernhochschule, Riedlingen

    Google Scholar 

  52. Bruun SW, Sondergaard IB, Jacobsen S (2007) J Agric Food Chem 55(18):7234. doi:10.1021/jf063680j

    Article  CAS  Google Scholar 

  53. Melnyk JP, Dreisoerner J, Bonomi F, Marcone MF, Seetharaman K (2011) Food Res Int 44(4):893. doi:10.1016/j.foodres.2011.01.053

    Article  CAS  Google Scholar 

  54. McCann TH, Day L (2013) J Cereal Sci 57(3):444. doi:10.1016/j.jcs.2013.01.011

    Article  CAS  Google Scholar 

  55. Beck M, Jekle M, Becker T (2012) Int J Food Sci Technol 47(9):1798. doi:10.1111/j.1365-2621.2012.03048.x

    Article  CAS  Google Scholar 

  56. Uthayakumaran S, Newberry M, Phan-Thien N, Tanner R (2002) Rheol Acta 41:162. doi:10.1007/s003970200015

    Article  CAS  Google Scholar 

  57. Smith J, Smith T, Tschoegl N (1970) Rheol Acta 9(2):239

    Article  Google Scholar 

  58. Yang Y, Song Y, Zheng Q (2011) J Food Sci Technol 48(4):489. doi:10.1007/s13197-011-0255-x

    Article  Google Scholar 

  59. Khatkar BS (2005) J Food Sci Technol 42(4):321

    Google Scholar 

  60. Watanabe A, Larsson H, Eliasson AC (2002) Cereal Chem 79(2):203. doi:10.1094/CCHEM.2002.79.2.203

    Article  CAS  Google Scholar 

  61. Larsson H, Eliasson AC, Johansson E, Svensson G (2000) Cereal Chem 77(5):633

    Article  CAS  Google Scholar 

  62. Tanner R, Uthayakumaran S, Qi F, Dai S (2011) J Cereal Sci 54(2):224. doi:10.1016/j.jcs.2011.05.006

    Article  Google Scholar 

  63. Jacobs H, Delcour JA (1998) J Agric Food Chem 46(8):2896

    Article  Google Scholar 

  64. Seguchi M (1984) Cereal Chem 61(3):248

    CAS  Google Scholar 

  65. Schofield J, Bottomley R, Timms M, Booth M (1983) J Cereal Sci 1(4):241. doi:10.1016/S0733-5210(83)80012-5

    Article  CAS  Google Scholar 

  66. Weegels P, de Groot A, Verhoek J, Hamer R (1994) J Cereal Sci 19:39

    Article  CAS  Google Scholar 

  67. Stathopoulos CE, Tsiami AA, David Schofield J, Dobraszczyk BJ (2008) J Cereal Sci 47(2):134. doi:10.1016/j.jcs.2007.03.002

    Article  CAS  Google Scholar 

  68. Mann J, Schiedt B, Baumann A, Conde-Petit B, Vilgis TA (2014) Food Sci Technol Int 20(5):341. doi:10.1177/1082013213488381

    Article  CAS  Google Scholar 

  69. Hoseney R, Zeleznak K (1986) Cereal Chem 63(3):285

    Google Scholar 

  70. Kaletunc G, Breslauer KJ (1996) J Therm Anal 47(5):1267. doi:10.1007/BF01992827

    Article  CAS  Google Scholar 

  71. Shenoy AV (1999) Rheology of filled polymer systems. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  72. Seiffert S, Sprakel J (2012) Chem Soc Rev 41(2):909

    Article  CAS  Google Scholar 

  73. Imeson A (2011) Food stabilisers, thickeners and gelling agents. Wiley, New York

    Google Scholar 

  74. Saha D, Bhattacharya S (2010) J Food Sci Technol 47(6):587

    Article  CAS  Google Scholar 

  75. Armisen R (1997) Thickening and gelling agents for food. Springer, Dordrecht, pp 1–21

    Book  Google Scholar 

  76. Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Biopolymers 59(3):131

    Article  CAS  Google Scholar 

  77. Labropoulos K, Niesz D, Danforth S, Kevrekidis P (2002) Carbohydr Polym 50(4):407

    Article  CAS  Google Scholar 

  78. Rees DA, Welsh EJ (1977) Angew Chem Int Ed Engl 16(4):214

    Article  Google Scholar 

  79. Arnott S, Fulmer ASWE, Scott WE, Dea ICM, Moorhouse R, Rees DA (1974) J Mol Biol 90(2):269

    Article  CAS  Google Scholar 

  80. Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P (2000) Biomacromolecules 1(4):730

    Article  CAS  Google Scholar 

  81. Nordqvist D, Vilgis TA (2011) Food Biophys 6(4):450. doi:10.1007/s11483-011-9225-0

    Article  Google Scholar 

  82. Johns P, Courts A (1977) The science and technology of gelatin. Academic Press, London, pp 137–177

    Google Scholar 

  83. Ross-Murphy SB (1987) Food Hydrocoll 1(5):485

    Article  CAS  Google Scholar 

  84. Weiss RG, Terech P (2006) Molecular gels. Springer, Dordrecht

    Book  Google Scholar 

  85. Ledward D, Phillips G, Williams P et al (2000) Handbook of hydrocolloids. Woodhead, Cambridge, pp 67–86

    Google Scholar 

  86. Ross-Murphy SB (1992) Polymer 33(12):2622

    Article  CAS  Google Scholar 

  87. Russ N, Zielbauer BI, Koynov K, Vilgis TA (2013) Biomacromolecules 14(11):4116. doi:10.1021/bm4012776

    Article  CAS  Google Scholar 

  88. Pernodet N, Maaloum M, Tinland B (1997) Electrophoresis 18(1):55

    Article  CAS  Google Scholar 

  89. Narayanan J, Xiong JY, Liu XY (2006) J Phys Conf Ser 28:83. doi:10.1088/1742-6596/28/1/017

    Article  CAS  Google Scholar 

  90. Doublier JL, Garnier C, Renard D, Sanchez C (2000) Curr Opin Colloid Interface Sci 5(3–4):202. doi:10.1016/S1359-0294(00)00054-6

    Article  CAS  Google Scholar 

  91. McClements DJ (2006) Biotechnol Adv 24(6):621. doi:10.1016/j.biotechadv.2006.07.003

    Article  CAS  Google Scholar 

  92. Tolstoguzov VB (1991) Food Hydrocoll 4(6):429. doi:10.1016/S0268-005X(09)80196-3

    Article  CAS  Google Scholar 

  93. Grinberg V, Tolstoguzov V (1997) Food Hydrocoll 11(2):145. doi:10.1016/S0268-005X(97)80022-7

    Article  CAS  Google Scholar 

  94. Rodriguez Patino JM, Pilosof AM (2011) Food Hydrocoll 25(8):1925. doi:10.1016/j.foodhyd.2011.02.023

    Article  CAS  Google Scholar 

  95. Tolstoguzov V (2006) Biotechnol Adv 24(6):626. doi:10.1016/j.biotechadv.2006.07.001

    Article  CAS  Google Scholar 

  96. Kobayashi M, Nakahama N (1986) J Texture Stud 17(2):161. doi:10.1111/j.1745-4603.1986.tb00402.x

    Article  CAS  Google Scholar 

  97. Gotlieb AM, Plashchina IG, Braudo EE, Titova EF, Belavtseva EM, Tolstoguzov VB (1988) Food Nahrung 32(10):927. doi:10.1002/food.19880321002

    Article  CAS  Google Scholar 

  98. Plucknett KP, Pomfret SJ, Normand V, Ferdinando D, Veerman C, Frith WJ, Norton IT (2001) J Microsc 201(Pt 2):279

    Article  CAS  Google Scholar 

  99. Brink J, Langton M, Stading M, Hermansson A (2007) Food Hydrocoll 21(3):409. doi:10.1016/j.foodhyd.2006.04.012

    Article  CAS  Google Scholar 

  100. Taylor AJ, Besnard S, Puaud M, Linforth RS (2001) Biomol Eng 17(4–5):143

    Article  CAS  Google Scholar 

  101. Djabourov M, Maquet J, Theveneau H, Leblond J, Papon P (1985) Br Polym J 17(2):169. doi:10.1002/pi.4980170215

    Article  CAS  Google Scholar 

  102. von Hippel PH, Wong KY (1963) Biochemistry 2(6):1399

    Article  CAS  Google Scholar 

  103. Shrinivas P, Kasapis S, Tongdang T (2009) Langmuir 25(15):8763. doi:10.1021/la9002127

    Article  CAS  Google Scholar 

  104. Sharma D, George P, Button PD, May BK, Kasapis S (2011) Food Chem 127(4):1784. doi:10.1016/j.foodchem.2011.02.060

    Article  CAS  Google Scholar 

  105. Watase M, Nishinari K (1980) Rheol Acta 19(2):220. doi:10.1007/BF01521934

    Article  CAS  Google Scholar 

  106. Zasypkin D, Braudo E, Tolstoguzov V (1997) Food Hydrocoll 11(2):159. doi:10.1016/S0268-005X(97)80023-9

    Article  CAS  Google Scholar 

  107. de Jong S, van de Velde F (2007) Food Hydrocoll 21(7):1172. doi:10.1016/j.foodhyd.2006.09.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vilgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zielbauer, B.I., Schönmehl, N., Chatti, N., Vilgis, T.A. (2016). Networks: From Rubbers to Food. In: Stöckelhuber, K., Das, A., Klüppel, M. (eds) Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, vol 275. Springer, Cham. https://doi.org/10.1007/12_2016_6

Download citation

Publish with us

Policies and ethics