Skip to main content

Self-Healing Functional Polymeric Materials

  • Chapter
  • First Online:
Self-healing Materials

Part of the book series: Advances in Polymer Science ((POLYMER,volume 273))

Abstract

Self-healing materials have been intensively investigated in recent decades, whereby the healing process was mostly based on the restoration of mechanical properties after mechanical damage. However, self-healing functional polymeric materials have now become the focus of research. In recent years, several approaches have been developed for self-healing of conductivity as well as the restoration of optical properties. In contrast to the healing of mechanical properties, such as stiffness and strength, the self-healing of functional materials focuses on the restoration of functionalities after damage caused by harmful environments (e.g., high temperatures or irradiation). The ultimate goal is the investigation or mimicking of a multifunctional self-healing system (e.g., biological material). In this review, the current state of the art in self-healing functional polymeric materials is summarized. In particular, we discuss self-healing conductive materials, healable optoelectronics, and functional coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42(17):7446–7467

    Article  CAS  Google Scholar 

  2. Zhang MQ, Rong MZ (2013) Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym Chem 4(18):4878–4884

    Article  CAS  Google Scholar 

  3. Billiet S, Hillewaere XKD, Teixeira RFA, Du Prez FE (2013) Chemistry of crosslinking processes for self-healing polymers. Macromol Rapid Commun 34(4):290–309

    Article  CAS  Google Scholar 

  4. van der Zwaag S (2007) An introduction to material design principles: damage prevention versus damage management. In: van der Zwaag S (ed) Self healing materials, vol 100, Springer series in materials science. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  5. Guimard NK, Oehlenschlaeger KK, Zhou JW, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213(2):131–143

    Article  CAS  Google Scholar 

  6. Garcia SJ (2014) Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J 53:118–125

    Article  CAS  Google Scholar 

  7. Odom SA, Caruso MM, Finke AD, Prokup AM, Ritchey JA, Leonard JH, White SR, Sottos NR, Moore JS (2010) Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv Funct Mater 20(11):1721–1727

    Article  CAS  Google Scholar 

  8. Blaiszik BJ, Kramer SLB, Grady ME, McIlroy DA, Moore JS, Sottos NR, White SR (2012) Autonomic restoration of electrical conductivity. Adv Mater 24(3):398–401

    Article  CAS  Google Scholar 

  9. Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88

    Article  CAS  Google Scholar 

  10. Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056

    Article  CAS  Google Scholar 

  11. Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4(13):359–362

    Article  CAS  Google Scholar 

  12. Neilson BM, Tennyson AG, Bielawski CW (2012) Advances in bis(N-heterocyclic carbene) chemistry: new classes of structurally dynamic materials. J Phys Org Chem 25(7):531–543

    Article  CAS  Google Scholar 

  13. Norris BC, Bielawski CW (2010) Structurally dynamic materials based on bis(N-heterocyclic carbene)s and bis(isothiocyanate)s: toward reversible, conjugated polymers. Macromolecules 43(8):3591–3593

    Article  CAS  Google Scholar 

  14. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430

    Article  CAS  Google Scholar 

  15. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41–62

    Article  CAS  Google Scholar 

  16. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  17. Tennyson AG, Norris B, Bielawski CW (2010) Structurally dynamic conjugated polymers. Macromolecules 43(17):6923–6935

    Article  CAS  Google Scholar 

  18. Hucker M, Bond I, Bleay S, Haq S (2003) Experimental evaluation of unidirectional hollow glass fibre/epoxy composites under compressive loading. Compos A Appl Sci Manuf 34(10):927–932

    Article  CAS  Google Scholar 

  19. Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM (2008) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18(1):44–52

    Article  CAS  Google Scholar 

  20. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39(5):1703–1710

    Article  CAS  Google Scholar 

  21. Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polymer 48(12):3520–3529

    Article  CAS  Google Scholar 

  22. Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68(3–4):978–986

    Article  CAS  Google Scholar 

  23. Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20(10):3288–3297

    Article  CAS  Google Scholar 

  24. Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20(6):719–730

    Article  CAS  Google Scholar 

  25. Lanzara G, Yoon Y, Liu H, Peng S, Lee WI (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology 20(33):335704

    Article  CAS  Google Scholar 

  26. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585

    Article  CAS  Google Scholar 

  27. Williams HR, Trask RS, Knights AC, Williams ER, Bond IP (2008) Biomimetic reliability strategies for self-healing vascular networks in engineering materials. J R Soc Interface 5(24):735–747

    Article  CAS  Google Scholar 

  28. Hamilton AR, Sottos NR, White SR (2010) Self-healing of internal damage in synthetic vascular materials. Adv Mater 22(45):5159–5163

    Article  CAS  Google Scholar 

  29. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980

    Article  CAS  Google Scholar 

  30. Kersey FR, Loveless DM, Craig SL (2007) A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J R Soc Interface 4(13):373–380

    Article  CAS  Google Scholar 

  31. Chujo Y, Sada K, Nomura R, Naka A, Saegusa T (1993) Photogelation and redox properties of anthracene disulfide-modified polyoxazolines. Macromolecules 26(21):5611–5614

    Article  CAS  Google Scholar 

  32. Chung CM, Roh YS, Cho SY, Kim JG (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater 16(21):3982–3984

    Article  CAS  Google Scholar 

  33. Banerjee S, Tripathy R, Cozzens D, Nagy T, Keki S, Zsuga M, Faust R (2015) Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl Mater Interfaces 7(3):2064–2072

    Article  CAS  Google Scholar 

  34. Kang HS, Kim HT, Park JK, Lee S (2014) Light-powered healing of a wearable electrical conductor. Adv Funct Mater 24(46):7273–7283

    Article  CAS  Google Scholar 

  35. Gruendling T, Kaupp M, Blinco JP, Barner-Kowollik C (2011) Photoinduced conjugation of dithioester- and trithiocarbonate-functional RAFT polymers with alkenes. Macromolecules 44(1):166–174

    Article  CAS  Google Scholar 

  36. Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A (2010) A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem Commun 46(7):1150–1152

    Article  CAS  Google Scholar 

  37. Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Photoinduced plasticity in cross-linked polymers. Science 308(5728):1615–1617

    Article  CAS  Google Scholar 

  38. Burnworth M, Tang LM, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–338

    Article  CAS  Google Scholar 

  39. Coulibaly S, Roulin A, Balog S, Biyani MV, Foster EJ, Rowan SJ, Fiore GL, Weder C (2014) Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47(1):152–160

    Article  CAS  Google Scholar 

  40. Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920):1458–1460

    Article  CAS  Google Scholar 

  41. Wang ZH, Yang Y, Burtovyy R, Luzinov I, Urban MW (2014) UV-induced self-repairing polydimethylsiloxane-polyurethane (PDMS-PUR) and polyethylene glycol-polyurethane (PEG-PUR) Cu-catalyzed networks. J Mater Chem A 2(37):15527–15534

    Article  CAS  Google Scholar 

  42. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44(6):921–937

    Article  CAS  Google Scholar 

  43. Kowalski D, Ueda M, Ohtsuka T (2010) Self-healing ion-permselective conducting polymer coating. J Mater Chem 20(36):7630–7633

    Article  CAS  Google Scholar 

  44. Kwok N, Hahn HT (2007) Resistance heating for self-healing composites. J Compos Mater 41(13):1635–1654

    Article  CAS  Google Scholar 

  45. Lv LP, Zhao Y, Vilbrandt N, Gallei M, Vimalanandan A, Rohwerder M, Landfester K, Crespy D (2013) Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J Am Chem Soc 135(38):14198–14205

    Article  CAS  Google Scholar 

  46. Vimalanandan A, Lv LP, Tran TH, Landfester K, Crespy D, Rohwerder M (2013) Redox-responsive self-healing for corrosion protection. Adv Mater 25(48):6980–6984

    Article  CAS  Google Scholar 

  47. Vogt AP, Sumerlin BS (2009) Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 5(12):2347–2351

    Article  CAS  Google Scholar 

  48. Deng GH, Tang CM, Li FY, Jiang HF, Chen YM (2010) Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43(3):1191–1194

    Article  CAS  Google Scholar 

  49. Jay JI, Langheinrich K, Hanson MC, Mahalingam A, Kiser PF (2011) Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter 7(12):5826–5835

    Article  CAS  Google Scholar 

  50. Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem Int Ed 48(10):1798–1802

    Article  CAS  Google Scholar 

  51. Craven JM (1969) US Patent 3.435.003

    Google Scholar 

  52. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  CAS  Google Scholar 

  53. Chen XX, Wudl F, Mal AK, Shen HB, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807

    Article  CAS  Google Scholar 

  54. Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6):1906–1912

    Article  CAS  Google Scholar 

  55. Kötteritzsch J, Stumpf S, Höppener S, Vitz J, Hager MD, Schubert US (2013) One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions. Macromol Chem Phys 214(14):1636–1649

    Article  CAS  Google Scholar 

  56. Kötteritzsch J, Hager MD, Schubert US (2015) Tuning the self-healing behavior of one-component intrinsic polymers. Polymer 69:321–329

    Article  CAS  Google Scholar 

  57. Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner-Kowollik C (2014) Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv Mater 26(21):3561–3566

    Article  CAS  Google Scholar 

  58. Inglis AJ, Nebhani L, Altintas O, Schmidt FG, Barner-Kowollik C (2010) Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels-Alder chemistry. Macromolecules 43(13):5515–5520

    Article  CAS  Google Scholar 

  59. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, Mackay ME, Rowan SJ (2009) A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. Chem Commun 44:6717–6719

    Article  CAS  Google Scholar 

  60. Burattini S, Colquhoun HM, Greenland BW, Hayes W (2009) A novel self-healing supramolecular polymer system. Faraday Discuss 143:251–264

    Article  CAS  Google Scholar 

  61. Burattini S, Greenland BW, Merino DH, Weng WG, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J Am Chem Soc 132(34):12051–12058

    Article  CAS  Google Scholar 

  62. Lafont U, van Zeijl H, van der Zwaag S (2012) Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl Mater Interfaces 4(11):6280–6288

    Article  CAS  Google Scholar 

  63. Canadell J, Goossens H, Klumperman B (2011) Self-healing materials based on disulfide links. Macromolecules 44(8):2536–2541

    Article  CAS  Google Scholar 

  64. Kuhl N, Bode S, Bose RK, Vitz J, Seifert A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2015) Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv Funct Mater 25(22):3295–3301

    Article  CAS  Google Scholar 

  65. Sandmann B, Bode S, Hager M, Schubert U (2013) Metallopolymers as an emerging class of self-healing materials. In: Percec V (ed) Hierarchical macromolecular structures: 60 Years after the Staudinger Nobel Prize II, vol 262, Advances in polymer science. Springer International, Cham, pp 239–257

    Chapter  Google Scholar 

  66. Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH, Paulus RM, Stumpf S, Sandmann B, Vitz J, Winter A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2013) Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym Chem 4(18):4966–4973

    Article  CAS  Google Scholar 

  67. Kupfer S, Zedler L, Guthmuller J, Bode S, Hager MD, Schubert US, Popp J, Grafe S, Dietzek B (2014) Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Phys Chem Chem Phys 16(24):12422–12432

    Article  CAS  Google Scholar 

  68. Enke M, Bode S, Vitz J, Schacher FH, Harrington MJ, Hager MD, Schubert US (2015) Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69:274–282

    Article  CAS  Google Scholar 

  69. Bode S, Zedler L, Schacher FH, Dietzek B, Schmitt M, Popp J, Hager MD, Schubert US (2013) Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv Mater 25(11):1634–1638

    Article  CAS  Google Scholar 

  70. Mozhdehi D, Ayala S, Cromwell OR, Guan ZB (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136(46):16128–16131

    Article  CAS  Google Scholar 

  71. Kalista SJ, Ward TC (2007) Thermal characteristics of the self-healing response in poly (ethylene-co-methacrylic acid) copolymers. J R Soc Interface 4(13):405–411

    Article  CAS  Google Scholar 

  72. Kalista SJ (2007) Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14(5):391–397

    Article  CAS  Google Scholar 

  73. Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4(18):4910–4926

    Article  CAS  Google Scholar 

  74. Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56(19):5737–5750

    Article  CAS  Google Scholar 

  75. Varley RJ, van der Zwaag S (2008) Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym Test 27(1):11–19

    Article  CAS  Google Scholar 

  76. Varley RJ, van der Zwaag S (2010) Autonomous damage initiated healing in a thermo-responsive ionomer. Polym Int 59(8):1031–1038

    CAS  Google Scholar 

  77. Bose RK, Lafont U, Vega JM, Garcia SJ, van der Zwaag S (2013) Methods to monitor and quantify (self-) healing in polymers and polymer systems. In: Self-healing polymers. Wiley-VCH, Weinheim, pp 335–359

    Chapter  Google Scholar 

  78. Zedler L, Hager MD, Schubert US, Harrington MJ, Schmitt M, Popp J, Dietzek B (2014) Monitoring the chemistry of self-healing by vibrational spectroscopy - current state and perspectives. Mater Today 17(2):57–69

    Article  CAS  Google Scholar 

  79. Chen JH, Shi TW, Cai TC, Xu T, Sun LT, Wu XS, Yu DP (2013) Self healing of defected graphene. Appl Phys Lett 102(10):103107

    Article  CAS  Google Scholar 

  80. Tee BCK, Wang C, Allen R, Bao ZN (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832

    Article  CAS  Google Scholar 

  81. Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao ZA (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1043–1049

    Article  CAS  Google Scholar 

  82. Hou CY, Duan YR, Zhang QH, Wang HZ, Li YG (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996

    Article  CAS  Google Scholar 

  83. Peng RG, Yu Y, Chen S, Yang YK, Tang YH (2014) Conductive nanocomposite hydrogels with self-healing property. RSC Adv 4(66):35149–35155

    Article  CAS  Google Scholar 

  84. Hur J, Im K, Kim SW, Kim J, Chung DY, Kim TH, Jo KH, Hahn JH, Bao ZA, Hwang S, Park N (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10):10066–10076

    Article  CAS  Google Scholar 

  85. Li Y, Chen SS, Wu MC, Sun JQ (2012) Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv Mater 24(33):4578–4582

    Article  CAS  Google Scholar 

  86. Sun H, You X, Jiang YS, Guan GZ, Fang X, Deng J, Chen PN, Luo YF, Peng HS (2014) Self-healable electrically conducting wires for wearable microelectronics. Angew Chem Int Ed 53(36):9526–9531

    Article  CAS  Google Scholar 

  87. Zhang DL, Ju X, Li LH, Kang Y, Gong XL, Li BJ, Zhang S (2015) An efficient multiple healing conductive composite via host-guest inclusion. Chem Commun (Camb) 51(29):6377–6380

    Article  CAS  Google Scholar 

  88. Odom SA, Tyler TP, Caruso MM, Ritchey JA, Schulmerich MV, Robinson SJ, Bhargava R, Sottos NR, White SR, Hersam MC, Moore JS (2012) Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Appl Phys Lett 101(4):043106

    Article  CAS  Google Scholar 

  89. Kang S, Jones AR, Moore JS, White SR, Sottos NR (2014) Microencapsulated carbon black suspensions for restoration of electrical conductivity. Adv Funct Mater 24(20):2947–2956

    Article  CAS  Google Scholar 

  90. Blaiszik BJ, Jones AR, Sottos NR, White SR (2014) Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications. J Microencapsul 31(4):350–354

    Article  CAS  Google Scholar 

  91. Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24(19):2578–2581

    Article  CAS  Google Scholar 

  92. So JH, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19(22):3632–3637

    Article  CAS  Google Scholar 

  93. Palleau E, Reece S, Desai SC, Smith ME, Dickey MD (2013) Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater 25(11):1589–1592

    Article  CAS  Google Scholar 

  94. Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 27(21):3331–3335

    Article  CAS  Google Scholar 

  95. Boydston AJ, Williams KA, Bielawski CW (2005) A modular approach to main-chain organometallic polymers. J Am Chem Soc 127(36):12496–12497

    Article  CAS  Google Scholar 

  96. Boydston AJ, Rice JD, Sanderson MD, Dykhno OL, Bielawski CW (2006) Synthesis and study of bidentate benzimidazolylidene - group 10 metal complexes and related main-chain organometallic polymers. Organometallics 25(26):6087–6098

    Article  CAS  Google Scholar 

  97. Khramov DM, Boydston AJ, Bielawski CW (2006) Synthesis and study of Janus bis(carbene)s and their transition-metal complexes. Angew Chem Int Ed 45(37):6186–6189

    Article  CAS  Google Scholar 

  98. Boydston AJ, Bielawski CW (2006) Bis(imidazolylidene)s as modular building blocks for monomeric and macromolecular organometallic materials. Dalton Trans 34:4073–4077

    Article  CAS  Google Scholar 

  99. Meyer CD, Joiner CS, Stoddart JF (2007) Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev 36(11):1705–1723

    Article  CAS  Google Scholar 

  100. Fukuda K, Shimoda M, Sukegawa M, Nobori T, Lehn JM (2012) Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chem 14(10):2907–2911

    Article  CAS  Google Scholar 

  101. Ro S, Rowan SJ, Pease AR, Cram DJ, Stoddart JF (2000) Dynamic hemicarcerands and hemicarceplexes. Org Lett 2(16):2411–2414

    Article  CAS  Google Scholar 

  102. Bozdemir OA, Barin G, Belowich ME, Basuray AN, Beuerle F, Stoddart JF (2012) Dynamic covalent templated-synthesis of [c2] daisy chains. Chem Commun 48(84):10401–10403

    Article  CAS  Google Scholar 

  103. Belowich ME, Stoddart JF (2012) Dynamic imine chemistry. Chem Soc Rev 41(6):2003–2024

    Article  CAS  Google Scholar 

  104. Janeliunas D, van Rijn P, Boekhoven J, Minkenberg CB, van Esch JH, Eelkema R (2013) Aggregation-driven reversible formation of conjugated polymers in water. Angew Chem Int Ed 52(7):1998–2001

    Article  CAS  Google Scholar 

  105. Zhao DH, Moore JS (2003) Folding-driven reversible polymerization of oligo(m-phenylene ethynylene) imines: solvent and starter sequence studies. Macromolecules 36(8):2712–2720

    Article  CAS  Google Scholar 

  106. Kovaricek P, Lehn JM (2012) Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes. J Am Chem Soc 134(22):9446–9455

    Article  CAS  Google Scholar 

  107. Kim DY, Sinha-Ray S, Park JJ, Lee JG, Cha YH, Bae SH, Ahn JH, Jung YC, Kim SM, Yarin AL, Yoon SS (2014) Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv Funct Mater 24(31):4986–4995

    Article  CAS  Google Scholar 

  108. Um JE, Chung CH, Lee DC, Yoo PJ, Kim WJ (2014) Restoration of the genuine electronic properties of functionalized single-walled carbon nanotubes. RSC Adv 4(81):42930–42935

    Article  CAS  Google Scholar 

  109. Benight SJ, Wang C, Tok JBH, Bao ZA (2013) Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 38(12):1961–1977

    Article  CAS  Google Scholar 

  110. Liu JQ, Song GS, He CC, Wang HL (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007

    Article  CAS  Google Scholar 

  111. Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM (2013) Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J 49(12):3889–3896

    Article  CAS  Google Scholar 

  112. Roy S, Baral A, Banerjee A (2013) An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. Chem Eur J 19(44):14950–14957

    Article  CAS  Google Scholar 

  113. Caruso MM, Schelkopf SR, Jackson AC, Landry AM, Braun PV, Moore JS (2009) Microcapsules containing suspensions of carbon nanotubes. J Mater Chem 19(34):6093–6096

    Article  CAS  Google Scholar 

  114. Pastine SJ, Okawa D, Zettl A, Frechet JMJ (2009) Chemicals on demand with phototriggerable microcapsules. J Am Chem Soc 131(38):13586–13587

    Article  CAS  Google Scholar 

  115. Mineart KP, Lin YL, Desai SC, Krishnan AS, Spontak RJ, Dickey MD (2013) Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter 9(32):7695–7700

    Article  CAS  Google Scholar 

  116. Coillot D, Méar FO, Podor R, Montagne L (2010) Autonomic self-repairing glassy materials. Adv Funct Mater 20(24):4371–4374

    Article  CAS  Google Scholar 

  117. Coillot D, Méar FO, Podor R, Montagne L (2011) Influence of the active particles on the self-healing efficiency in glassy matrix. Adv Eng Mater 13(5):426–435

    Article  CAS  Google Scholar 

  118. Jackson AC, Bartelt JA, Braun PV (2011) Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv Funct Mater 21(24):4705–4711

    Article  CAS  Google Scholar 

  119. Gerth M, Bohdan M, Fokkink R, Voets IK, van der Gucht J, Sprakel J (2014) Supramolecular assembly of self-healing nanocomposite hydrogels. Macromol Rapid Commun 35(24):2065–2070

    Article  CAS  Google Scholar 

  120. Vidyasagar A, Handore K, Sureshan KM (2011) Soft optical devices from self-healing gels formed by oil and sugar-based organogelators. Angew Chem Int Ed 50(35):8021–8024

    Article  CAS  Google Scholar 

  121. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci (49–50):3–33. doi:10.1016/j.progpolymsci.2015.04.002

  122. Rodriguez ED, Luo XF, Mather PT (2011) Linear/network poly(epsilon-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3(2):152–161

    Article  CAS  Google Scholar 

  123. Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014) Self-healing transparent core-shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2(19):7045–7053

    Article  CAS  Google Scholar 

  124. Wang X, Liu F, Zheng XW, Sun JQ (2011) Water-enabled self-healing of polyelectrolyte multilayer coatings. Angew Chem Int Ed 50(48):11378–11381

    Article  CAS  Google Scholar 

  125. Lei XF, Chen Y, Zhang HP, Li XJ, Yao P, Zhang QY (2013) Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl Mater Interfaces 5(20):10207–10220

    Article  CAS  Google Scholar 

  126. Ham MH, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2(11):929–936

    Article  CAS  Google Scholar 

  127. Surendranath Y, Lutterman DA, Liu Y, Nocera DG (2012) Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J Am Chem Soc 134(14):6326–6336

    Article  CAS  Google Scholar 

  128. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839

    Article  CAS  Google Scholar 

  129. Tromholt T, Manor A, Katz EA, Krebs FC (2011) Reversible degradation of inverted organic solar cells by concentrated sunlight. Nanotechnology 22(22):225401

    Article  CAS  Google Scholar 

  130. Verbakel F, Meskers SCJ, Janssen RAJ (2006) Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Appl Phys Lett 89(10):102103

    Article  CAS  Google Scholar 

  131. Verbakel F, Meskers SCJ, Janssen RAJ (2007) Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene). J Appl Phys 102(8):083701

    Article  CAS  Google Scholar 

  132. Amendola V, Dini D, Polizzi S, Sheng J, Kadish KM, Calvete MJF, Hanack M, Meneghetti M (2009) Self-healing of gold nanoparticles in the presence of zinc phthalocyanines and their very efficient nonlinear absorption performances. J Phys Chem C 113(20):8688–8695

    Article  CAS  Google Scholar 

  133. Saito M, Nishimura T, Sakiyama K, Inagaki S (2012) Self-healing of optical functions by molecular metabolism in a swollen elastomer. AIP Adv 2(4):042118

    Article  CAS  Google Scholar 

  134. Saito M, Sakiyama K (2013) Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency. J Opt 15(10):105404

    Article  CAS  Google Scholar 

  135. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076

    Article  CAS  Google Scholar 

  136. Xue CH, Zhang ZD, Zhang J, Jia ST (2014) Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane. J Mater Chem A 2(36):15001–15007

    Article  CAS  Google Scholar 

  137. Wei Q, Schlaich C, Prevost S, Schulz A, Bottcher C, Gradzielski M, Qi ZH, Haag R, Schalley CA (2014) Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces. Adv Mater 26(43):7358–7364

    Article  CAS  Google Scholar 

  138. Liu YH, Liu YP, Hu HY, Liu ZL, Pei XW, Yu B, Yan PX, Zhou F (2015) Mechanically induced self-healing superhydrophobicity. J Phys Chem C 119(13):7109–7114

    Article  CAS  Google Scholar 

  139. Zhang Y, Rocco C, Karasu F, van der Ven LGJ, van Benthem RATM, Allonas X, Croutxé-Barghorn C, Esteves ACC, de With G (2015) UV-cured self-replenishing hydrophobic polymer films. Polymer 69:384–393

    Article  CAS  Google Scholar 

  140. Esteves ACC, Luo Y, van de Put MWP, Carcouët CCM, de With G (2014) Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv Funct Mater 24(7):986–992

    Article  CAS  Google Scholar 

  141. Wang Y, Liu XW, Zhang HF, Zhou ZP (2015) Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates. AIP Adv 5(4):041314

    Article  CAS  Google Scholar 

  142. Zhu DD, Lu XM, Lu QH (2014) Electrically conductive PEDOT coating with self-healing superhydrophobicity. Langmuir 30(16):4671–4677

    Article  CAS  Google Scholar 

  143. Liu QZ, Wang XL, Yu B, Zhou F, Xue QJ (2012) Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica. Langmuir 28(13):5845–5849

    Article  CAS  Google Scholar 

  144. Wang HX, Zhou H, Gestos A, Fang J, Niu HT, Ding J, Lin T (2013) Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 9(1):277–282

    Article  CAS  Google Scholar 

  145. Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50(48):11433–11436

    Article  CAS  Google Scholar 

  146. Wang HD, Zhou H, Gestos A, Fang J, Lin T (2013) Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5(20):10221–10226

    Article  CAS  Google Scholar 

  147. Zhou H, Wang HX, Niu HT, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670

    Article  CAS  Google Scholar 

  148. Wang H, Zhu BW, Jiang WC, Yang Y, Leow WR, Wang H, Chen XD (2014) A mechanically and electrically self-healing supercapacitor. Adv Mater 26(22):3638–3643

    Article  CAS  Google Scholar 

  149. Huang WG, Besar K, Zhang Y, Yang SY, Wiedman G, Liu Y, Guo WM, Song J, Hemker K, Hristova K, Kymissis IJ, Katz HE (2015) A high-capacitance salt-free dielectric for self-healable, printable, and flexible organic field effect transistors and chemical sensor. Adv Funct Mater 25(24):3745–3755

    Article  CAS  Google Scholar 

  150. James NK, Lafont U, van der Zwaag S, Groen WA (2014) Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites. Smart Mater Struct 23(5):055001

    Article  CAS  Google Scholar 

  151. Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) p-Type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833

    Article  CAS  Google Scholar 

  152. Lafont U, Moreno-Belle C, van Zeijl H, van der Zwaag S (2013) Self-healing thermally conductive adhesives. J Intell Mater Syst Struct 25(1):67–74

    Article  CAS  Google Scholar 

  153. Ramuz M, Tee BC-K, Tok JB-H, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24(24):3223–3227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support within the framework of the priority program SPP1568 (Design and Generic Principles of Self-healing Materials; HA6306/3-1, DI1517/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Hager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahner, J., Bode, S., Micheel, M., Dietzek, B., Hager, M.D. (2015). Self-Healing Functional Polymeric Materials. In: Hager, M., van der Zwaag, S., Schubert, U. (eds) Self-healing Materials. Advances in Polymer Science, vol 273. Springer, Cham. https://doi.org/10.1007/12_2015_333

Download citation

Publish with us

Policies and ethics