Skip to main content

Microwave-Assisted Synthesis of Polyesters and Polyamides by Ring-Opening Polymerization

  • Chapter
  • First Online:
Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

Microwave-assisted heating has been described as an efficient heating technique that can enhance the reaction rate for many reactions. Consequently, it is a key strategy for ring-opening polymerizations, which are often limited by low polymerization rates. This review summarizes recent efforts in the field of microwave-assisted polyester and polyamide syntheses from cyclic monomers and dimers, with a broad focus on poly(lactic acid)s and poly(ε-caprolactone)s. Homo- and copolymerizations as well as graft polymerizations are discussed. Both the polymerizations themselves as well as the preparation of composites/materials are addressed. Special attention is directed towards the discussion of non-thermal microwave effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(d/l)-LA:

(d/l)-lactic acid

CH:

Conventional heating

CL:

ε-Caprolactone

Đ M :

Molar mass dispersity

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DO:

Dioxanone

DSC:

Differential scanning calorimetry

GA:

Glycolic acid

IR:

Infrared (spectroscopy)

LCCC:

Liquid chromatography under critical conditions

MALDI:

Matrix-assisted laser desorption ionization

M m :

Mass-average molecular weight

M n :

Number-average molecular weight

mPEG:

Methoxylated poly(ethylene glycol)

M v :

Viscosity-average molecular weight

MW:

Microwave

NCA:

N-Carboxyanhydride

P(d/l)LA:

Poly((d/l)-lactic acid)

PAA:

Poly(acrylic acid)

PCL:

Poly(ε-caprolactone)

PDO:

Polydioxanone

PEG:

Poly(ethylene glycol)

PET:

Poly(ethylene terephthalate)

PGA:

Poly(glycolic acid)

PHA:

Poly(hydroxy alkanoate)

PLGA:

Poly(lactic-co-glycolic) acid

PSt:

Polystyrene

PTMC:

Poly(trimethylene carbonate)

PVA:

Poly(vinyl alcohol)

ROP:

Ring-opening polymerization

SBF:

Simulated body fluid

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

stat :

Statistical

TEM:

Transmission electron microscopy

T g :

Glass-transition temperature

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

T m :

Melting temperature

TMC:

Trimethylene carbonate

TOF:

Time of flight (spectroscopy)

wt:

Weight

XRD:

X-ray diffraction

β-TCP:

β-Tricalcium phosphate

References

  1. Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv Polym Sci. doi:10.1007/12_2015_340

  2. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47

    Article  CAS  Google Scholar 

  3. Wiesbrock F, Hoogenboom R, Schubert US (2004) Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol Rapid Commun 25:1739–1764

    Article  CAS  Google Scholar 

  4. Ebner C, Bodner T, Stelzer F, Wiesbrock F (2011) One decade of microwave-assisted polymerizations: quo vadis? Macromol Rapid Commun 32:254–288

    Article  CAS  Google Scholar 

  5. Zhang C, Liao L, Gong S (2007) Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem 9:303–314

    Article  CAS  Google Scholar 

  6. Nakamura T, Nagahata R, Takeuchi K (2011) Microwave-assisted polyester and polyamide synthesis. Mini-Reviews Org Chem 8:306–314

    Article  CAS  Google Scholar 

  7. Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken

    Google Scholar 

  8. Li G, Zhao N, Bai W, Chen DL, Xiong CD (2010) Microwave-assisted ring-opening polymerization of poly(glycolic acid-co-lactic acid) copolymers. e-Polymers 10:557–562. doi:10.1515/epoly.2010.10.1.557

  9. Jin H-H, Min S-H, Hwang KH, Park I-M, Park H-C, Yoon S-Y (2006) Synthesis of biodegradable β-TCP/PLGA composites using microwave energy. Mater Sci Forum 510–511:758–761

    Article  Google Scholar 

  10. Park H-C, Jin H-H, Hyun Y-T, Lee WK, Yoon S-Y (2007) Degradation behaviors of β-TCP/PLGA composites prepared with microwave energy. Key Eng Mater 342–343:205–208

    Article  Google Scholar 

  11. Jin H-H, Min S-H, Song Y-K, Park H-C, Yoon S-Y (2010) Degradation behavior of poly(lactide-co-glycolide)/β-TCP composites prepared using microwave energy. Polym Degrad Stab 95:1856–1861

    Article  CAS  Google Scholar 

  12. Naik S, Carpenter EE (2008) Poly(d,l-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as drug carrier. J Appl Phys 103:07A313

    Google Scholar 

  13. Khodaverdi E, Tekie FSM, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F (2012) Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS Pharm Sci Tech 13(2):590–600

    Article  CAS  Google Scholar 

  14. Wiesbrock F, Hoogenboom R, Leenen MAM, Meier MAR, Schubert US (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034

    Google Scholar 

  15. Ramier J, Renard E, Grande D (2012) Microwave-assisted ring-opening polymerization of d,l-lactide: a probe for the nonexistence of nonthermal microwave effects. Macromol Chem Physic 213:784–788

    Article  CAS  Google Scholar 

  16. Yang X-G, Liu L-J (2008) Improved preparation of d,l-lactide from d,l-lactic acid using microwave irradiation. Polym Bull 61:177–188

    Article  CAS  Google Scholar 

  17. Hirao K, Masutani K, Ohara H (2009) Noncatalytic polycondensation of l-lactic acid under microwave irradiation. J Chem Eng Jpn 42:417–419

    Article  CAS  Google Scholar 

  18. Hirao K, Masutani K, Ohara H (2009) Synthesis of l,l-lactide via depolymerization of oligo(l-lactic acid) by microwave irradiation. J Chem Eng Jpn 42:687–690

    Article  CAS  Google Scholar 

  19. Liu LJ, Zhang C, Liao LQ, Wang XL, Zhuo RX (2001) Microwave-assisted polymerization of d,l-lactide with stannous octanoate as catalyst. Chin Chem Lett 12:663–664

    CAS  Google Scholar 

  20. Zhang C, Liao L, Liu L (2004) Rapid ring-opening polymerization of d,l-lactide by microwaves. Macromol Rapid Commun 25:1402–1405

    Article  CAS  Google Scholar 

  21. Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(d,l-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10:5063–5073

    Article  CAS  Google Scholar 

  22. Jing S, Peng W, Tong Z, Baoxiu Z (2006) Microwave-irradiated ring-opening polymerization of d,l-lactide under atmosphere. J Appl Polym Sci 100:2244–2247

    Article  Google Scholar 

  23. Frediani M, Sémeril D, Matt D, Rizzolo F, Papini AM, Frediani P, Rosi L, Santella M, Giachi G (2010) l-lactide polymerization by calix[4]arene-titanium (IV) complex using conventional heating and microwave irradiation. e-Polymers 10:177–184. doi:10.1515/epoly.2010.10.1.177

  24. Frediani M, Sémeril D, Matt D, Rosi L, Frediani P, Rizzolo F, Papini AM (2010) Ring-opening polymerisation of rac-lactide using a calix[4]arene-based titanium(IV) complex. Int J Polym Sci. doi:10.1155/2010/490724

    Google Scholar 

  25. Pandey A, Aswath P (2010) Microwave-assisted in situ synthesis of poly l-lactic acid with nanoparticles of calcium phosphate. Int J Polym Mater 59:911

    Article  CAS  Google Scholar 

  26. Cao H, Wang P, Yuan W, Lei H (2010) Microwave-assisted preparation of poly-lactide/organomontmorillonite nanocomposites via in situ polymerization. J Appl Polym Sci 115:1468–1473

    Article  CAS  Google Scholar 

  27. Ramier J, Renard E, Grande D (2012) Microwave-assisted synthesis and characterization of biodegradable block copolyesters based on poly(3-hydroxyalkanoate)s and poly(d,l-lactide). J Polym Sci Part A Polym Chem 50:1445–1455

    Article  CAS  Google Scholar 

  28. Nan A, Turcu R, Craciunescu I, Leostean C, Bratu I, Liebscher J (2009) Surface initiated ring-opening polymerization of lactones on iron oxide nanoparticles. J Phys Conf Ser 182:4pp

    Article  Google Scholar 

  29. Nan A, Turcu R, Craciunescu I, Pana O, Scharf H, Liebscher J (2009) Microwave-assisted graft polymerization of ε-caprolactone onto magnetite. J Polym Sci Part A Polym Chem 47:5397–5404

    Article  CAS  Google Scholar 

  30. Koroskenyi B, McCarthy SP (2002) Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. J Polym Environ 10:93–104

    Article  CAS  Google Scholar 

  31. Luo B, Yang J, Zhao J, Hsu CE, Li J, Zhou C (2011) Rapid synthesis and characterization of chitosan-g-poly(d,l-lactide) copolymers with hydroxyethyl chitosan as a macroinitiator under microwave irradiation. J Appl Polym Sci 125:E125–E131

    Article  Google Scholar 

  32. Luo B-H, Zhong C-H, He Z-G, Zhou C-R (2009) Microwave-assisted synthesis of a brush-like copolymer of poly(d,l-lactide) grafted onto chitosan. In: Proceedings 3rd international conference on bioinformatics and biomedical engineering, 11–13 June 2009, Beijing, pp 1–3. doi:10.1109/ICBBE.2009.5163057

  33. Duan J, Han C, Yang J (2012) Preparation of cellulose copolymer grafted polylactide(PLA) by the microwave method. In: Proceedings of the international conference on biobased material science and engineering, 21–23 October 2012, Changsha, pp 96–98. doi:10.1109/BMSE.2012.6466189

  34. Luo B, Hsu CE, Yang J, Zhao J, Zhou C (2011) Synthesis of nano-hydroxyapatite surface-grafting poly(l-lactide) under microwave irradiation. Adv Mater Res 204–210:1929–1933

    Article  Google Scholar 

  35. Luo B-H, Hsu C-E, Li J-H, Zhao L-F, Liu M-X, Wang X-Y, Zhou C-R (2013) Nano-composite of poly(l-lactide) and halloysite nanotube surface-grafted with l-lactide oligomer under microwave irradiation. J Biomed Nanotechnol 9:649–658

    Article  CAS  Google Scholar 

  36. Zhang C, Liao L, Gong S (2007) Microwave-assisted synthesis of PLLA-PEG-PLLA triblock copolymers. Macromol Rapid Commun 28:422–427

    Article  Google Scholar 

  37. Zhang C, Liao L, Gong S (2007) Synthesis of PLLA-MPEG diblock copolymers by microwave-assisted copolymerization of l-lactide and methoxy poly(ethylene glycol). Macromol Chem Phys 208:1122–1128

    Article  CAS  Google Scholar 

  38. Karagöz A, Dinçer S (2010) Microwave-assisted synthesis of poly(ε-caprolactone)-block-poly(ethylene glycol) and poly(lactide)-bloc-poly(ethylene glycol). Macromol Symp 395:131–137

    Article  Google Scholar 

  39. Zhang Z, Ren J, Feng Y, Li J, Yuan W (2010) Microwave-assisted synthesis of star shaped poly(ε-caprolactone)-block-poly(l-lactide) copolymers and the crystalline morphologies. J Polym Sci Part A Polym Chem 48:5063–5071

    Article  CAS  Google Scholar 

  40. Albert P, Warth H, Mülhaupt R (1996) Comparison of thermal and microwave-activated polymerization of ε-caprolactone with titanium tetrabutylate as catalyst. Macromol Chem Phys 197:1633–1641

    Article  CAS  Google Scholar 

  41. Barbier-Baudry D, Brachais C-H, Cretu A, Loupy A, Stuerga D (2002) An easy way toward ε-caprolactone macromonomers by microwave irradiation using early lanthanide halides as catalysts. Macromol Rapid Commun 23:200–204

    Article  CAS  Google Scholar 

  42. Liao Q, Liu LJ, Zhang C, He F, Zhuo RX, Wan K (2002) Microwave-assisted ring-opening polymerization of ε-caprolactone. J Polym Sci Part A Polym Chem 40:1749–1755

    Article  CAS  Google Scholar 

  43. Liao LQ, Liu LJ, Zhang C, He F, Zhuo RX (2003) Heating characteristics and polymerization of ε-caprolactone under microwave irradiation. J Appl Polym Sci 90:2657–2664

    Article  CAS  Google Scholar 

  44. Li H, Liao L, Wang Q, Liu L (2010) Flash-heating-enhanced ring-opening polymerizations of ε-caprolactone under conventional conditions. Macromol Chem Phys 207:1789–1793

    Article  Google Scholar 

  45. Li H, Liao L, Liu L (2007) Kinetic investigation into the non-thermal microwave effect on the ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun 28:411–416

    Article  CAS  Google Scholar 

  46. Yu ZJ, Liu LJ, Zhuo RX (2002) Microwave-improved polymerization of ε-caprolactone initiated by carboxylic acids. J Polym Sci Part A Polym Chem 41:13–21

    Article  CAS  Google Scholar 

  47. Tan BY, Cai S, Liao L, Wang Q, Liu L (2009) Microwave-assisted ring-opening polymerization of ε-caprolactone in presence of hydrogen phosphonates. Polym J 41:849–854

    Article  CAS  Google Scholar 

  48. Liu LJ, Cai SJ, Tan Y, Du JJ, Dong HQ, Wu XJ, Wu MY, Liao LQ (2009) Ring opening insertion polymerization of ε-caprolactone with hydrogen phosphonate initiators. J Polym Sci Part A Polym Chem 47:6214–6222

    Article  CAS  Google Scholar 

  49. Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770

    Article  CAS  Google Scholar 

  50. Liao L, Zhang C, Gong S (2007) Preparation of poly(ε-caprolactone)/clay nanocomposites by microwave-assisted in situ ring-opening polymerization. Macromol Rapid Commun 28:1148–1154

    Article  CAS  Google Scholar 

  51. Liao L, Zhang C, Gong S (2007) Microwave-assisted synthesis and characterization of poly(ε-caprolactone)/montmorillonite nanocomposites. Macromol Chem Phys 208:1301–1309

    Article  CAS  Google Scholar 

  52. Liao L, Liu L, Zhang C, Gong S (2006) Microwave-assisted ring-opening polymerization of ε-caprolactone in the presence of ionic liquid. Macromol Rapid Commun 27:2060–2064

    Article  CAS  Google Scholar 

  53. Kerep P, Ritter H (2006) Influence of microwave irradiation on the lipase catalyzed ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun 27:707–710

    Article  CAS  Google Scholar 

  54. Kerep P, Ritter H (2006) Chemoenzymatic synthesis of polycaprolactone-block-polystyrene via macromolecular chain transfer reagents. Macromol Rapid Commun 28:759–766

    Article  Google Scholar 

  55. Matos TD, King N, Simmons L, Walker C, McClain AR, Mahapatro A, Rispoli FJ, McDonnell KT, Shah V (2011) Microwave assisted lipase catalyzed solvent free poly-ε-caprolactone synthesis. Green Chem Lett Rev 4:73–79

    Article  CAS  Google Scholar 

  56. Song Y, Weng X, Zhuo R, Liu L (2002) Acid-initiated polymerization of ε-caprolactone under microwave irradiation and its application in the preparation of drug controlled release system. J Biomater Sci Polymer Edn 14:241–253

    Article  Google Scholar 

  57. Song Y, Liu LJ, Zhuo RX (2003) Microwave-assisted polymerization of ε-caprolactone with maleic acid as initiator and drug release behavior of ibuprofen-poly(ε-caprolactone)system. Chin Chem Lett 14:32–34

    CAS  Google Scholar 

  58. Yu ZJ, Liu LJ (2004) Effect of microwave energy on chain propagation of poly(ε-caprolactone) in benzoic acid-initiated ring opening polymerization of ε-caprolactone. Eur Polym J 40:2213–2220

    Article  CAS  Google Scholar 

  59. Xu Q, Zhang C, Cai S, Zhu P, Liu L (2010) Large-scale microwave-assisted ring-opening polymerization of ε-caprolactone. Ind Eng Chem 16:872–875

    Article  CAS  Google Scholar 

  60. Gotelli GA, Bonelli P, Abraham GA, Sosnik A (2010) Fast and efficient synthesis of high molecular weight poly(epsilon-caprolactone) diols by microwave-assisted polymer synthesis. J Appl Polym Sci 121:1321–1329

    Article  Google Scholar 

  61. Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A (2010) Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B 79:467–479

    Article  CAS  Google Scholar 

  62. Yu Z, Liu L (2005) Microwave-assisted synthesis of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block co-polymers and use as matrices for sustained delivery of ibuprofen taken as model drug. J Biomater Sci Polymer Edn 16:957–971

    Article  CAS  Google Scholar 

  63. Yu Z, Liu L (2007) Biodegradable poly(vinyl alcohol)-graft-poly(ε-caprolactone) comb-like polyester: microwave synthesis and its characterization. J Appl Polym Sci 104:3973–3979

    Article  CAS  Google Scholar 

  64. Chang PR, Zhou Z, Xu P, Chen Y, Zhou S, Huang J (2009) Thermoforming starch-graft-polycaprolactone biocomposites via one-pot microwave assisted ring opening polymerization. J Appl Polym Sci 113:2973–2979

    Article  CAS  Google Scholar 

  65. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  66. Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2008) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112:2830–2837

    Article  Google Scholar 

  67. Liu L, Li Y, Fang Y-E, Chen L (2005) Microwave-assisted graft copolymerization of ε-caprolactone onto chitosan via the phthaloyl protection method. Carbohydr Polym 60:354–356

    Google Scholar 

  68. Tiwari A, Prabaharan M (2010) An amphiphilic nanocarrier based on guar gum-graft-poly(ε-caprolactone) for potential drug-delivery applications. J Biomater Sci 21:937–949

    Article  CAS  Google Scholar 

  69. Sinwell S, Ritter H (2007) Microwave assisted hydroxyalkylamidation of poly(ethylene-co-acrylic acid) and formation of grafted poly(ε-caprolyctone) side chains. J Polym Sci Part A Polym Chem 45:3659–3667

    Article  Google Scholar 

  70. Sinnwell S, Schmidt AM, Ritter H (2006) Direct synthesis of (meth-)acrylate poly(ε-caprolactone) macromonomers. J Macromol Sci Part A Pure Appl Chem 43:469–476

    Article  CAS  Google Scholar 

  71. Hasnat A, Trathnigg B (2009) Characterization of poly(ethylene glycol)-b-poly(ε-caprolactone) by two-dimensional liquid chromatography. J Sep Sci 32:1390–1400

    Article  Google Scholar 

  72. Hasnat A, Trathnigg B, Kappe CO, Saf R (2009) Characterization of poly(ethylene glycol)-b-poly(ε-caprolactone) by liquid chromatography under critical conditions: influence of catalysts and reaction conditions on product composition. Eur Polym J 45:2338–2347

    Article  Google Scholar 

  73. Ahmed H, Trathnigg B, Kappe CO, Saf R (2010) Synthesis of poly(ε-caprolactone) diols and EO-CL block copolymers and their characterization by liquid chromatography and MALDI-TOF-MS. Eur Polym J 46:494–505

    Article  CAS  Google Scholar 

  74. Li Y, Wang X-L, Yang K-K, Wang Y-Z (2006) A rapid synthesis of poly (p-dioxanone) by ring-opening polymerization under microwave irradiation. Polym Bull 57:873–880

    Article  CAS  Google Scholar 

  75. Chen Y-Y, Wu G, Qiu Z-C, Wang X-L, Zhang Y, Lu F, Wang Y-Z (2008) Microwave-assisted ring-opening polymerization of p-dioxanone. J Polym Sci Part A Polym Chem 46:3207–3213

    Article  CAS  Google Scholar 

  76. Wang X-L, Chen Y-Y, Wang Y-Z (2010) Synthesis of poly(p-dioxanone) catalyzed by Zn L-lactate under microwave irradiation and its application in ibuprofen delivery. J Biomater Sci 21:927–936

    Article  CAS  Google Scholar 

  77. Chen R, Hao JY, Xiong CD, Deng XM (2010) Rapid synthesis of biodegradable poly(epsilon-caprolactone-co-p-dioxanone) random copolymers under microwave irradiation. Chin Chem Lett 21:249–252

    Article  CAS  Google Scholar 

  78. Liao L, Zhang C, Gong S (2007) Rapid synthesis of poly(trimethylene carbonate) by microwave-assisted ring-opening polymerization. Eur Polym J 43:4289–4296

    Article  CAS  Google Scholar 

  79. Liao L, Zhang C, Gong S (2007) Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid. J Polym Sci Part A Polym Chem 45:5857–5863

    Article  CAS  Google Scholar 

  80. Zhang C, Liao L, Gong S (2008) Zinc lactate-catalyzed ring–opening polymerization of trimethylene carbonate under microwave irradiation. J Appl Polym Sci 110:1236–1241

    Article  CAS  Google Scholar 

  81. Liao L, Zhang C, Gong S (2008) Preparation of poly(trimethylene carbonate)-block-poly(ethylene glycol)-block-poly(trimethylene carbonate) triblock copolymers under microwave irradiation. React Funct Polym 68:751–758

    Article  CAS  Google Scholar 

  82. You Z, Bi X, Jeffries EM, Wang Y (2012) A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polym Chem 3:384–389

    Article  CAS  Google Scholar 

  83. Nagahata R, Sugiyama J-I, Velmathi S, Nakao Y, Goto M, Takeuchi K (2004) Synthesis of poly(ethylene terephthalate-co-isophthalate) by copolymerization of ethylene isophthalate cyclic dimer and bis(2-hydroxyethyl) terephthalate. Polym J 36:483–488

    Article  CAS  Google Scholar 

  84. Pingale ND, Shukla SR (2008) Microwave assisted ecofriendly recycling of poly(ethylene terephthalate) bottle waste. Eur Polym J 44:4151–4156

    Article  CAS  Google Scholar 

  85. Tsintzou GP, Antonakou EV, Achilias DS (2012) Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation. J Hazard Mater 241–242:137–145

    Article  Google Scholar 

  86. Wu Q, Zhou L, Zhang D, Song X, Zhang G (2011) Synthesis and characterization of biodegradable poly(ε-caprolactone)/poly(γ-benzyl L-glutamate) block copolymer. Polym Bull 67:1227–1236

    Article  CAS  Google Scholar 

  87. Fang X, Hutcheon R, Scola DA (2000) Microwave syntheses of poly(ε-caprolactam-co-ε-caprolactone). J Polym Sci Part A Polym Chem 38:1379–1390

    Article  CAS  Google Scholar 

  88. Fang X, Simone CD, Vaccaro E, Huang SJ, Scola DA (2002) Ring-opening polymerization of ε-caprolactam and ε-caprolactone via microwave irradiation. J Polym Sci Part A Polym Chem 40:2264–2275

    Article  CAS  Google Scholar 

  89. Klun U, Kržan A (2002) Degradation of polyamide-6 by using metal salts as catalyst. Polym Adv Technol 13:817–822

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research work was performed within the K-Project “PolyComp” and at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and the Federal Ministry for Economy, Family and Youth, with contributions by the Graz University of Technology and Infineon Technologies Austria AG. Funding of the K-Project “PolyComp” is provided by the Austrian Government and the State Government of Styria; the PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria, and Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wiesbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fimberger, M., Wiesbrock, F. (2014). Microwave-Assisted Synthesis of Polyesters and Polyamides by Ring-Opening Polymerization. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2014_293

Download citation

Publish with us

Policies and ethics