Skip to main content

Controlled Polymerization in Flow Microreactor Systems

  • Chapter
  • First Online:
Controlled Polymerization and Polymeric Structures

Part of the book series: Advances in Polymer Science ((POLYMER,volume 259))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering. Wiley, Weinheim

    Google Scholar 

  2. Wirth T (2008) Microreactors in organic synthesis and catalysis. Wiley, Weinheim

    Google Scholar 

  3. Hessel V, Renken A, Schouten JC et al (2009) Micro process engineering. Wiley, Weinheim

    Google Scholar 

  4. Watts P, Wiles C (2011) Micro reaction technology in organic synthesis. CRC, New York

    Google Scholar 

  5. Fletcher PDI, Haswell SJ, Pombo-Villar E et al (2002) Micro reactors: principles and applications in organic synthesis. Tetrahedron 58:4735–4757

    CAS  Google Scholar 

  6. Jähnisch K, Hessel V, Löwe H et al (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446

    Google Scholar 

  7. Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14

    CAS  Google Scholar 

  8. Doku GN, Verboom W, Reinhoudt DN et al (2005) On-microchip multiphase chemistry – a review of microreactor design principles and reagent contacting modes. Tetrahedron 61:2733–2742

    CAS  Google Scholar 

  9. Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246

    CAS  Google Scholar 

  10. Geyer K, Codee JDC, Seeberger PH (2006) Microreactors as tools for synthetic chemists-the chemists’ round-bottomed flask of the 21st century? Chem Eur J 12:8434–8442

    CAS  Google Scholar 

  11. Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373

    CAS  Google Scholar 

  12. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    CAS  Google Scholar 

  13. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    CAS  Google Scholar 

  14. Kobayashi J, Mori Y, Kobayashi S (2006) Multiphase organic synthesis in microchannel reactors. Chem Asian J 1:22–35

    CAS  Google Scholar 

  15. Brivio M, Verboom W, Reinhoudt DN (2006) Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip 6:329–344

    CAS  Google Scholar 

  16. Mason BP, Price KE, Steinbacher JL et al (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107:2300–2318

    CAS  Google Scholar 

  17. Ahmed-Omer B, Brandtand JC, Wirth T (2007) Advanced organic synthesis using microreactor technology. Org Biomol Chem 5:733–740

    CAS  Google Scholar 

  18. Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 443–467

    Google Scholar 

  19. Fukuyama T, Rahman MT, Sato M et al (2008) Adventures in inner space: microflow systems for practical organic synthesis. Synlett 151–163

    Google Scholar 

  20. Lin W, Wang Y, Wang S et al (2009) Integrated microfluidic reactors. Nano Today 4:470–481

    CAS  Google Scholar 

  21. McMullen JP, Jensen KF (2010) Integrated microreactors for reaction automation: new approaches to reaction development. Annu Rev Anal Chem 3:19–42

    CAS  Google Scholar 

  22. Ley SV (2010) The changing face of organic synthesis. Tetrahedron 66:6270–6292

    CAS  Google Scholar 

  23. Webb D, Jamison TF (2010) Continuous flow multi-step organic synthesis. Chem Sci 1:675–680

    CAS  Google Scholar 

  24. Yoshida J, Kim H, Nagaki A (2011) Green and sustainable chemical synthesis using flow microreactors. ChemSusChem 4:331–340

    CAS  Google Scholar 

  25. Chambers RD, Holling D, Spink RCH et al (2001) Elemental fluorine. Part 13. Gas-liquid thin film microreactors for selective direct fluorination. Lab Chip 1:132–137

    CAS  Google Scholar 

  26. Jähnisch K, Baerns M, Hessel V et al (2000) Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J Fluor Chem 105:117–123

    Google Scholar 

  27. Ducry L, Roberge DM (2005) Controlled autocatalytic nitration of phenol in a microreactor. Angew Chem Int Ed 44:7972–7975

    CAS  Google Scholar 

  28. Wakami H, Yoshida J (2005) Grignard exchange reaction using a microflow system: from bench to pilot plan. Org Process Res Dev 9:787–791

    CAS  Google Scholar 

  29. Usutani H, Tomida Y, Nagaki A et al (2007) Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129:3046–3047

    CAS  Google Scholar 

  30. Nagaki A, Tomida Y, Usutani H et al (2007) Integrated micro flow synthesis based on sequential Br-Li exchange reactions of p-, m-, and o-dibromobenzenes. Chem Asian J 2:1513–1523

    CAS  Google Scholar 

  31. Nagaki A, Kim H, Yoshida J (2008) Aryllithium compounds bearing alkoxycarbonyl groups. Generation and reactions using a microflow system. Angew Chem Int Ed 47:7833–7836

    CAS  Google Scholar 

  32. Nagaki A, Takizawa E, Yoshida J (2009) Oxiranyl anion methodology using microflow systems. J Am Chem Soc 131:1654–1655

    CAS  Google Scholar 

  33. Nagaki A, Kim H, Yoshida J (2009) Nitro-substituted aryl lithium compounds in microreactor synthesis: switch between kinetic and thermodynamic control. Angew Chem Int Ed 48:8063–8065

    CAS  Google Scholar 

  34. Tomida Y, Nagaki A, Yoshida J (2009) Carbolithiation of conjugated enynes with aryllithiums in microflow system and applications to synthesis of allenylsilanes. Org Lett 11:3614–3617

    CAS  Google Scholar 

  35. Nagaki A, Takizawa E, Yoshida J (2009) Generation and reactions of α-silyloxiranyllithium in a microreactor. Chem Lett 38:486–487

    CAS  Google Scholar 

  36. Nagaki A, Takizawa E, Yoshida J (2009) Generations and reactions of N-tert-butylsulfonyl-aziridinyllithiums using microreactors. Chem Lett 38:1060–1061

    CAS  Google Scholar 

  37. Nagaki A, Kim H, Matsuo C et al (2010) Generation and reaction of cyano-substituted aryllithium compounds using microreactors. Org Biomol Chem 8:1212–1217

    CAS  Google Scholar 

  38. Nagaki A, Kim H, Moriwaki Y et al (2010) A flow microreactor system enables organolithium reactions without protecting alkoxycarbonyl groups. Chem Eur J 16:11167–11177

    CAS  Google Scholar 

  39. Nagaki A, Takizawa E, Yoshida J (2010) Generation and reactions of oxiranyllithiums by use of a flow microreactor system. Chem Eur J 16:14149–14158

    CAS  Google Scholar 

  40. Tomida Y, Nagaki A, Yoshida J (2011) Asymmetric carbolithiation of conjugated enynes: a flow microreactor enables the use of configurationally unstable intermediates before they epimerize. J Am Chem Soc 133:3744–3747

    CAS  Google Scholar 

  41. Kim H, Nagaki A, Yoshida J (2011) A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. Nat Commun 2:264

    Google Scholar 

  42. Nagaki A, Yamada S, Doi M et al (2011) Flow microreactor synthesis of disubstituted pyridines from dibromopyridines via Br/Li exchange without using cryogenic conditions. Green Chem 13:1110–1113

    CAS  Google Scholar 

  43. Nagaki A, Tokuoka S, Yamada S et al (2011) Perfluoroalkylation in flow microreactors: generation of perfluoroalkyllithiums in the presence and absence of electrophiles. Org Biomol Chem 9:7559–7563

    CAS  Google Scholar 

  44. Asai T, Takata A, Nagaki A et al (2012) Practical synthesis of photochromic diarylethenes in integrated flow microreactor. ChemSusChem 5:339–350

    CAS  Google Scholar 

  45. Nagaki A, Matsuo C, Kim S et al (2012) Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew Chem Int Ed 51:3245–3248

    CAS  Google Scholar 

  46. He P, Watts P, Marken F et al (2006) Self-supported and clean one-step cathodic coupling of … Derivatives in a micro flow reactor. Angew Chem Int Ed 45:4146–4149

    CAS  Google Scholar 

  47. Tanaka K, Motomatsu S, Koyama K et al (2007) Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. Org Lett 9:299–302

    CAS  Google Scholar 

  48. Sahoo HR, Kralj JG, Jensen KF (2007) Multi-step continuous flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Ed 46:5704–5708

    CAS  Google Scholar 

  49. Hornung CH, Mackley MR, Baxendale IR et al (2007) A microcapillary flow disc reactor for organic synthesis. Org Process Res Dev 11:399–405

    CAS  Google Scholar 

  50. Fukuyama T, Kobayashi M, Rahman MT et al (2008) Spurring radical reactions of organic halides with tin hydride and TTMSS using microreactors. Org Lett 10:533–536

    CAS  Google Scholar 

  51. Tricotet T, O’Shea DF (2010) Automated generation and reactions of 3-hydroxymethylindoles in continuous-flow microreactors. Chem Eur J 16:6678–6686

    CAS  Google Scholar 

  52. Browne DL, Baumann M, Harji BH et al (2011) A new enabling technology for convenient laboratory scale continuous flow processing at low temperatures. Org Lett 13:3312–3315

    CAS  Google Scholar 

  53. Carter CF, Lange H, Sakai D et al (2011) Diastereoselective chain elongation reactions using microreactors for application in complex molecule assembly. Chem Eur J 17:3398–3405

    CAS  Google Scholar 

  54. Zaborenko N, Bedore MW, Jamison TF et al (2011) Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures. Org Process Res Dev 15:131–139

    CAS  Google Scholar 

  55. Noél T, Kuhn S, Musachio AJ et al (2011) Suzuki–Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew Chem Int Ed 50:5943–5946

    Google Scholar 

  56. Gutierrez AC, Jamison TF (2011) Continuous photochemical generation of catalytically active [CpRu]+ complexes from CpRu(η6-C6H6)PF6. Org Lett 13:6414–6417

    CAS  Google Scholar 

  57. Hessel V, Serra C, Löwe H et al (2005) Polymerisationen in mikrostrukturierten reaktoren: ein überblick. Chem Ing Technol 77:1693–1714

    CAS  Google Scholar 

  58. Steinbacher JL, Mcquade DT (2006) Polymer chemistry in flow: new polymers, beads, capsules, and fibers. J Polym Sci A Polym Chem 44:6505–6533

    CAS  Google Scholar 

  59. Wilms D, Klos J, Frey H (2008) Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? Macromol Chem Phys 209:343–356

    CAS  Google Scholar 

  60. Bally F, Serra CA, Hessel V et al (2010) Homogeneous polymerization: benefits brought by microprocess technologies to the synthesis and production of polymers. Macromol React Eng 4:543–561

    CAS  Google Scholar 

  61. Bally F, Serra CA, Hessel V et al (2011) Micromixer-assisted polymerization processes. Chem Eng Sci 66:1449–1462

    CAS  Google Scholar 

  62. Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31:1099–1115

    CAS  Google Scholar 

  63. Kakuta M, Bessoth FG, Manz A (2001) Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem Rec 1:395–405

    CAS  Google Scholar 

  64. Hessel V, Löwe H, Schönfeld F (2005) Micromixers – a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501

    CAS  Google Scholar 

  65. Ehrfeld W, Golbig K, Hessel V et al (1999) Characterization of mixing in micromixers by a test reaction: single mixing unites and mixer arrays. Ind Eng Chem Res 38:1075–1082

    CAS  Google Scholar 

  66. Lu H, Schmidt MA, Jensen KF (2001) Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1:22–28

    CAS  Google Scholar 

  67. Ueno K, Kitagawa F, Kitamura N (2002) Photocyanation of pyrene across an oil/water interface in a polymer microchannel. Lab Chip 2:231–234

    CAS  Google Scholar 

  68. Fukuyama T, Hino Y, Kamata N et al (2004) Quick execution of [2+2] type photochemical cycloaddition reaction by continuous flow system using a glass-made microreactor. Chem Lett 33:1430–1431

    CAS  Google Scholar 

  69. Maeda H, Mukae H, Mizuno K (2005) Enhanced efficiency and regioselectivity of intramolecular (2π+2π) photocycloaddition of 1-cyanonaphthalene derivative using microreactors. Chem Lett 34:66–67

    CAS  Google Scholar 

  70. Jähnisch K, Dingerdissen U (2005) For an example of endoperoxide quenching in a continuous flow system. Chem Eng Technol 28:426–427

    Google Scholar 

  71. Hook BD, Dohle W, Hirst PR et al (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564

    CAS  Google Scholar 

  72. Matsushita Y, Kumada S, Wakabayashi K et al (2006) Photocatalytic reduction in microreactors. Chem Lett 35:410–411

    CAS  Google Scholar 

  73. Sugimoto A, Sumino Y, Takagi M et al (2006) High throughput evaluation of the production of substituted acetylenes by the Sonogashira reaction followed by the Mizoroki–Heck reaction in ionic liquids, in situ, using a novel array reactor. Tetrahedron Lett 47:6197–6200

    CAS  Google Scholar 

  74. Matsushita Y, Ohba N, Suzuki T et al (2008) Photocatalytic reduction of CO2 in a photocatalytic microreactor under gas-liquid-solid multiphase-flow condition excited by 365-nm UV-LEDs. Catal Today 132:153–158

    CAS  Google Scholar 

  75. Horie T, Sumino M, Tanaka T et al (2010) Photodimerization of maleic anhydride in a microreactor without clogging. Org Process Res Dev 14:405–410

    CAS  Google Scholar 

  76. Yoshida J, Kataoka K, Horcajada R et al (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299

    CAS  Google Scholar 

  77. Yoshida J (2009) Organic electrochemistry, microreactors, and their synergy. ECS Interface, Summer 40–45

    Google Scholar 

  78. Löwe H, Ehrfeld W (1999) State-of-the-art in microreaction technology: concepts, manufacturing and applications. Electrochim Acta 44:3679–3689

    Google Scholar 

  79. Suga S, Okajima M, Fujiwara K et al (2001) “Cation flow” method. A new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems. J Am Chem Soc 123:7941–7942

    CAS  Google Scholar 

  80. Kupper M, Hessel V, Löwe H et al (2003) Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim Acta 48:2889–2896

    CAS  Google Scholar 

  81. Paddon CA, Pritchard GJ, Thiemann T et al (2002) Paired electrosynthesis: micro-flow cell processes with and without added electrolyte. Electrochem Commun 4:825–831

    Google Scholar 

  82. Horii D, Atobe M, Fuchigami T et al (2005) Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte. Electrochem Commun 7:35–39

    CAS  Google Scholar 

  83. Horcajada R, Okajima M, Suga S et al (2005) Microflow electroorganic synthesis without supporting electrolyte. Chem Commun 1303–1305

    Google Scholar 

  84. Suga S, Okajima M, Fujiwara K et al (2005) Electrochemical combinatorial organic syntheses using micro flow systems. QSAR Comb Sci 24:728–741

    CAS  Google Scholar 

  85. Horii D, Atobe M, Fuchigami T et al (2006) Self-supported methoxylation and acetoxylation electrosynthesis using a simple thin-layer flow cell. J Electrochem Soc 153:D143–D147

    CAS  Google Scholar 

  86. Horii D, Fuchigami T, Atobe M (2007) A new approach to anodic substitution reaction using parallel laminar flow in a micro-flow reactor. J Am Chem Soc 129:11692–11693

    CAS  Google Scholar 

  87. Yoshida J (2008) Flash chemistry. Fast organic synthesis in microsystems. Wiley-Blackwell, Hoboken

    Google Scholar 

  88. Yoshida J (2010) Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. Chem Rec 10:332–341

    CAS  Google Scholar 

  89. Yoshida J, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem Eur J 14:7450–7459

    CAS  Google Scholar 

  90. Yoshida J (2005) Flash chemistry using electrochemical method and microsystems. Chem Commun 4509–4516

    Google Scholar 

  91. Higashimura T (1971) Cationic polymerization. Kagaku Dojin, Kyoto

    Google Scholar 

  92. Matyjaszewski K, Sawamoto M (1996) In: Matyjaszewski K (ed) Cationic polymerizations. Dekker, New York

    Google Scholar 

  93. Prakash GKS, Schleyer PVR (1997) Stable carbocation chemistry. Wiley Interscience, New York

    Google Scholar 

  94. Olah GA (1995) My search for carbocations and their role in chemistry (Nobel lecture). Angew Chem Int Ed 34:1393–1405

    CAS  Google Scholar 

  95. Olah GA (2001) 100 years of carbocations and their significance in chemistry. J Org Chem 66:5943–5957

    CAS  Google Scholar 

  96. Miyamoto M, Sawamoto M, Higashimura T (1984) Living polymerization of isobutyl vinyl ether with the hydrogen iodide/iodine initiating system. Macromolecules 17:265–268

    CAS  Google Scholar 

  97. Aoshima S, Higashimura T (1989) Living cationic polymerization of vinyl monomers by organoaluminum halides. Living polymerization of isobutyl vinyl ether by EtA1C12 in the presence of ester additives. Macromolecules 22:1009–1013

    CAS  Google Scholar 

  98. Kishimoto Y, Aoshima S, Higashimura T (1989) Living cationic polymerization of vinyl monomers by organoaluminum halides. Polymerization of isobutyl vinyl ether by EtA1C12 in the presence of ether additives. Macromolecules 22:3877–3882

    CAS  Google Scholar 

  99. Puskas JE, Kaszas J (2000) Living carbocationic polymerization of resonance-stabilized monomers. Prog Polym Sci 25:403–452

    CAS  Google Scholar 

  100. Inagaki N, Ando T, Sawamoto M et al (2004) Living cationic polymerization with micromixer: syntheses of end-functinalized polymers and multiblock copolymer. Polym Repr Jpn 53:2416–2417

    Google Scholar 

  101. Rys P (1976) Disguised chemical selectivities. Acc Chem Res 10:345–351

    Google Scholar 

  102. Yoshida J, Nagaki A, Iwasaki T et al (2005) Enhancement of chemical selectivity by microreactors. Chem Eng Technol 3:259–266

    Google Scholar 

  103. Nagaki A, Togai M, Suga S et al (2005) Control of extremely fast competitve consecutive reactions using micromixing. J Am Chem Soc 127:11666–11675

    CAS  Google Scholar 

  104. Suga S, Nagaki A, Yoshida J (2003) Highly selective Friedel–Crafts monoalkylation using micromixing. Chem Commun 354–355

    Google Scholar 

  105. Suga S, Nagaki A, Tsutsui Y et al (2003) “N-Acyliminium ion pool” as hetero diene in [4+2] cycloaddition reaction. Org Lett 5:945–949

    CAS  Google Scholar 

  106. Suga S, Tsutsui Y, Nagaki A et al (2005) Cycloaddition of “N-acyliminium ion pool” with carbon-carbon multiple bond. Bull Chem Soc Jpn 78:1206–1217

    CAS  Google Scholar 

  107. Nagaki A, Takabayashi N, Tomida Y et al (2008) Synthesis of unsymmetrical biaryls by means of mono-selective reaction of polyhaloarenes using integrated microflow system. Org Lett 18:3937–3940

    Google Scholar 

  108. Nagaki A, Takabayashi N, Tomida Y et al (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5:16

    Google Scholar 

  109. Ishigaki Y, Suzuki T, Nishida J et al (2011) Hysteretic tricolor electrochromic systems based on the dynamic redox properties of unsymmetrically substituted dihydrophenanthrenes and biphenyl-2,2′-diyl dications: efficient precursor synthesis by a flow microreactor method. Materials 4:1906–1926

    CAS  Google Scholar 

  110. Suzuki T, Uchimura Y, Ishigaki Y et al (2012) Non-additive substituent effects on expanding prestrained C–C bond in crystal: X-ray analyses on unsymmetrically substituted tetraarylpyracenes prepared by a flow microreactor method. Chem Lett 41:541–543

    CAS  Google Scholar 

  111. Midorikawa K, Suga S, Yoshida J (2006) Selective monoiodination of aromatic compounds with electrochemically generated I+ using micromixing. Chem Commun 3794–3796

    Google Scholar 

  112. Kataoka K, Hagiwara Y, Midorikawa K et al (2008) Practical electrochemical iodination of aromatic compounds. Org Process Res Dev 12:1130–1136

    CAS  Google Scholar 

  113. Hessel V, Hofmann C, Löwe H et al (2004) Selectivity gains and energy savings for the industrial phenyl boronic acid process using micromixer/tubular reactors. Org Process Res Dev 8:511–523

    CAS  Google Scholar 

  114. Yoshida J, Suga S, Suzuki S et al (1999) Direct oxidative carbon-carbon bond formation using the “cation pool” method. Generation of iminium cation pools and their reaction with carbon nucleophiles. J Am Chem Soc 121:9546–9549

    CAS  Google Scholar 

  115. Yoshida J, Suga S (2002) Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chem Eur J 8:2650–2658

    CAS  Google Scholar 

  116. Suga S, Nishida T, Yamada D et al (2004) Three-component coupling based on the “cation pool” method. J Am Chem Soc 126:14338–14339

    CAS  Google Scholar 

  117. Suga S, Suzuki S, Yamamoto A et al (2000) Electrooxidative generation and accumulation of alkoxycarbenium ions and their reactions with carbon nucleophiles. J Am Chem Soc 122:10244–10245

    CAS  Google Scholar 

  118. Suga S, Matsumoto K, Ueoka K et al (2006) Indirect cation pool method. Rapid generation of alkoxycarbenium ion pools from thioacetals. J Am Chem Soc 128:7710–7711

    CAS  Google Scholar 

  119. Suzuki S, Matsumoto K, Kawamura K et al (2004) Generation of alkoxycarbenium ion pools from thioacetals and applications to glycosylation chemistry. Org Lett 6:3755–3758

    CAS  Google Scholar 

  120. Okajima M, Suga S, Itami K et al (2005) “Cation pool” method based on C–C bond dissociation. Effective generation of monocations and dications. J Am Chem Soc 127:6930–6931

    CAS  Google Scholar 

  121. Saito K, Ueoka K, Matsumoto K et al (2011) Indirect cation flow method. Flash generation of alkoxycarbenium ions and studies on stability of glycosyl cations. Angew Chem Int Ed 50:5153–5156

    CAS  Google Scholar 

  122. Okajima M, Soga K, Nokami T et al (2006) Oxidative generation of diarylcarbenium ion pools. Org Lett 8:5005–5007

    CAS  Google Scholar 

  123. Okajima M, Soga K, Watanabe T et al (2009) Generation of diarylcarbenium ion pools via electrochemical C–H bond dissociation. Bull Chem Soc Jpn 82:594–599

    CAS  Google Scholar 

  124. Nokami T, Shibuya A, Tsuyama H et al (2007) Electrochemical generarion of glycosyl triflate pools. J Am Chem Soc 129:10922–10928

    CAS  Google Scholar 

  125. Nagaki A, Kawamura K, Suga S et al (2004) “Cation pool” initiated controlled/living polymerization using microsystems. J Am Chem Soc 126:14702–14703

    CAS  Google Scholar 

  126. Cho CG, Feit BA, Webster OW (1990) Cationic polymerization of isobutyl vinyl ether: livingness enhancement by dialkyl sulfide. Macromolecules 23:1918–1923

    CAS  Google Scholar 

  127. Iwasaki T, Nagaki A, Yoshida J (2007) Microsystem controlled cationic polymerization of vinyl ethers initiated by CF3SO3H. Chem Commun 1263–1265

    Google Scholar 

  128. Nagaki A, Iwasaki T, Kawamura K et al (2008) Microflow system controlled carbocationic polymerization of vinyl ethers. Chem Asian J 3:1558–1567

    CAS  Google Scholar 

  129. Dittmer T, Gruber F, Nuyken O (1989) Cationic polymerization of bis(1-alkylvinyl)benzenes and related monomers – structure elucidation of 1,1,3-trimetnyl substituted polyindane. Makromol Chem 190:1755–1770

    CAS  Google Scholar 

  130. Dittmer T, Gruber F, Nuyken O (1989) Cationic polymerization of bis(1-alkylvinyl)benzenes and related monomers – controlled syntheses of 1,1,3-trimetnyl substitued polyindanes. Makromol Chem 190:1771–1790

    CAS  Google Scholar 

  131. Iwasaki T, Yoshida J (2007) CF3SO3H initiated cationic polymerization of diisopropenylbenzenes in macrobatch and microflow systems. Macromol Rapid Commun 28:1219–1224

    CAS  Google Scholar 

  132. Szwarc M (1956) Living polymers. Nature 178:1168–1169

    CAS  Google Scholar 

  133. Hsieh HL, Quirk RP (1996) Anionic polymerization: principles and practical applications. Dekker, New York

    Google Scholar 

  134. Jagur-grodzinski J (2002) Functional polymers by living anionic polymerization. J Polym Sci A Polym Chem 40:2116–2133

    CAS  Google Scholar 

  135. Hong K, Uhrig D, Mays JW (1999) Living anionic polymerization. Curr Opin Solid State Mater Sci 4:531

    Google Scholar 

  136. Hirao A, Loykulnant S, Ishizone T (2002) Recent advance in living anionic polymerization of functionalized styrene derivatives. Prog Polym Sci 27:1399–1471

    CAS  Google Scholar 

  137. Hadjichristidis N, Pitsikalis M, Pispas S et al (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792

    CAS  Google Scholar 

  138. Frechet JMJ (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    CAS  Google Scholar 

  139. Percec V (2001) Frontiers in polymer chemistry. Chem Rev 101(12):3579–3580

    CAS  Google Scholar 

  140. Jagur-Grodzinski J (2006) Living and controlled polymerization: synthesis, characterization, and properties of the respective polymers and copolymers. NOVA, New York

    Google Scholar 

  141. Bhattacharyya DN, Lee CL, Smid J et al (1965) J Phys Chem 69:612

    CAS  Google Scholar 

  142. Figini RV, Hostalka H, Hurm K et al (1965) Z Phys Chem 45:269

    CAS  Google Scholar 

  143. Baskaran D, Müller AHE (1997) Kinetic investigation on metal free anionic polymerization of methyl methacrylate using tetraphenylphosphonium as the counterion in tetrahydrofuran. Macromolecules 30:1869–1874

    CAS  Google Scholar 

  144. Hofe T, Maurer A, Müller AHE (1998) GIT Labor Fahz 42:1127

    CAS  Google Scholar 

  145. Tonhauser C, Frey H (2010) A road less traveled to functional polymers: epoxide termination in living carbanionic polymer synthesis. Macromol Rapid Commun 31:1938–1947

    CAS  Google Scholar 

  146. Nagaki A, Tomida Y, Yoshida J (2008) Microflow system controlled anionic polymerization of styrenes. Macromolecules 41:6322–6330

    CAS  Google Scholar 

  147. Wurm F, Wilms D, Klos J et al (2008) Carbanions on trap – living anionic polymerization in a microstructured reactor. Macromol Chem Phys 209:1106–1114

    CAS  Google Scholar 

  148. Yoshida J, Saito K, Nokami T et al (2011) Space integration of reactions: an approach to increase capability of organic synthesis. Synlett 9:1189–1194

    Google Scholar 

  149. Suga S, Yamada D, Yoshida J (2010) Cationic three-component coupling involving an optically active enamine derivative. From time integration to space integration of reactions. Chem Lett 39:404–405

    CAS  Google Scholar 

  150. Nagaki A, Kenmoku A, Moriwaki Y et al (2010) Cross-coupling in a flow microreactor. Space integration of lithiation and Murahashi coupling. Angew Chem Int Ed 49:7543–7547

    CAS  Google Scholar 

  151. Nagaki A, Uesugi Y, Tomida Y et al (2011) Homocoupling of aryl halides in flow: space integration of lithiation and FeCl3 promoted homocoupling. Beilstein J Org Chem 7:1064–1069

    CAS  Google Scholar 

  152. Nagaki A, Imai K, Kim H et al (2011) Flash synthesis of TAC-101 and its analogues from 1,3,5-tribromobenzene using integrated flow microreactor systems. RSC Adv 1:758–760

    CAS  Google Scholar 

  153. Nagaki A, Moriwaki Y, Haraki S et al (2012) Cross-coupling of aryllithiums with aryl and vinyl halides in flow microreactors. Chem Asian J 7:1061–1068

    CAS  Google Scholar 

  154. Tonhauser C, Wilms D, Wurm F et al (2010) Multihydroxyl-functional polystyrenes in continuous flow. Macromolecules 43:5582–5588

    CAS  Google Scholar 

  155. Pennisi RW, Fetters LJ (1988) Preparation of asymmetric three-arm polybutadiene and polystyrene stars. Macromolecules 21:1094–1099

    CAS  Google Scholar 

  156. Iatrou H, Hadjichristidis N (1992) Synthesis of a model 3-miktoarm star terpolymer. Macromolecules 25:4649–4651

    CAS  Google Scholar 

  157. Rózga-Wijas K, Chojnowski J, Fortuniak W et al (2003) Branched functionalised polysiloxane–silica hybrids for immobilisation of catalysts. J Mater Chem 13:2301–2310

    Google Scholar 

  158. Iida K, Chastek TQ, Beers KL et al (2009) Living anionic polymerization using a microfluidic reactor. Lab Chip 9:339–345

    CAS  Google Scholar 

  159. Zune C, Jérôme R (1999) Anionic polymerization of methacrylic monomers: characterization of the propagating species. Prog Polym Sci 24:631–664

    CAS  Google Scholar 

  160. Baskaran D (2003) Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog Polym Sci 28:521–581

    CAS  Google Scholar 

  161. Nagaki A, Tomida Y, Miyazaki A et al (2009) Microflow system controlled anionic polymerization of MMA. Macromolecules 42:4384–4387

    CAS  Google Scholar 

  162. Nagaki A, Miyazaki A, Tomida Y et al (2011) Anionic polymerization of alkyl methacrylates using flow microreactor systems. Chem Eng J 167:548–555

    CAS  Google Scholar 

  163. Nagaki A, Miyazaki A, Yoshida J (2010) Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules 43:8424–8429

    CAS  Google Scholar 

  164. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, New York

    Google Scholar 

  165. Iwasaki T, Yoshida J (2005) Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules 38:1159–1163

    CAS  Google Scholar 

  166. Leveson P, Dunk WAE, Jachuck RJ (2004) Investigation of shear effects on styrene free radical polymerization using a narrow channel reactor. J Appl Polym Sci 94:1365–1369

    CAS  Google Scholar 

  167. Iwasaki T, Kawano N, Yoshida J (2006) Radical polymerization using micro flow system. Numbering-up of microreactors and continuous operation. Org Process Res Dev 10:1126–1131

    CAS  Google Scholar 

  168. Bayer T, Pysall D, Wachsen O (2000) Micro mixing effects in continuous radical polymerization. In: Ehrfeld W (ed) Proceedings 3rd international conference on microreaction technology. Springer, Berlin, pp 165–170

    Google Scholar 

  169. Axiva GmbH, Pysall D, Wachsen O et al (1999) Method and device for continuous production of polymers. Patent WO/1999/054362

    Google Scholar 

  170. Serra C, Sary N, Schlatter G et al (2005) Numerical simulation of polymerization in interdigital multilamination micromixers. Lab Chip 5:966–973

    CAS  Google Scholar 

  171. Serra C, Schlatter G, Sary N et al (2007) Free radical polymerization in multilaminated microreactors: 2D and 3D multiphysics CFD modelling. Microfluid Nanofluid 3:451–461

    CAS  Google Scholar 

  172. Rollin AL, Patterson I, Huneault R et al (1977) The effect of flow regime on the continuous emulsion polymerization of styrene in a tubular reactor. Can J Chem Eng 55:565–571

    CAS  Google Scholar 

  173. Dalpe J, Bataille P (1989) Loop polymerization of vinyl acetate. J Appl Polym Sci 38:2237–2244

    Google Scholar 

  174. Abad C, de la Cal JC, Asua JM (1995) Start-up procedures in the emulsion copolymerization of vinyl esters in a continuous loop reactor. Polymer 36:4293–4299

    CAS  Google Scholar 

  175. Ouzine K, Graillat C, McKenna T (2004) Continuous tubular reactors for latex production: conventional emulsion and miniemulsion polymerizations. J Appl Polym Sci 91:2195–2207

    Google Scholar 

  176. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley-Interscience, New York

    Google Scholar 

  177. Moad G, Solomon DH (2006) The chemistry of radical polymerization. Elsevier, Amsterdam

    Google Scholar 

  178. Braunecke WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    Google Scholar 

  179. Matyjaszewski K (1998) Controlled radical polymerization, vol 685. American Chemical Society, Washington

    Google Scholar 

  180. Matyjaszewski K (2000) Controlled/living radical polymerization: progress in ATRP, NMP, and RAFT, vol 768. American Chemical Society, Washington

    Google Scholar 

  181. Otsu T (2000) Iniferter concept and living radical polymerization. J Polym Sci Polym Chem 38:2121–2136

    CAS  Google Scholar 

  182. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  Google Scholar 

  183. Ouchi M, Terashima T, Sawamoto M (2008) Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers. Acc Chem Res 41:1120–1132

    CAS  Google Scholar 

  184. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746

    CAS  Google Scholar 

  185. Wang J, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901–7910

    CAS  Google Scholar 

  186. Wang J, Matyjaszewski K (1995) Atom transfer radical polymerization in the presence of transition metal complexes. J Am Chem Soc 117:5614–5615

    CAS  Google Scholar 

  187. Kato M, Kamigaito M, Sawamoto M et al (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723

    CAS  Google Scholar 

  188. Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131

    CAS  Google Scholar 

  189. Löwe AB, McCormick CL (2007) Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351

    Google Scholar 

  190. Chiefari J, Chong YKB, Ercole F et al (1998) Living free-radical polymerization by reversible addition-fragmentation. Chain transfer: the RAFT process. Macromolecules 31:5559–5562

    CAS  Google Scholar 

  191. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    CAS  Google Scholar 

  192. Studer A (2004) Tin-free radical chemistry using the persistent radical effect: alkoxyamine isomerization, addition reactions and polymerizations. Chem Soc Rev 33:267–273

    CAS  Google Scholar 

  193. Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137

    CAS  Google Scholar 

  194. David G, Boyer C, Tonnar J, Ameduri B et al (2006) Use of iodocompounds in radical polymerization. Chem Rev 106:3936–3962

    CAS  Google Scholar 

  195. Poli R (2006) Relationship between one-electron transition-metal reactivity and radical polymerization processes. Angew Chem Int Ed 45:5058–5070

    CAS  Google Scholar 

  196. Yamago S (2009) Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain transfer agents. Chem Rev 109:5051–5068

    CAS  Google Scholar 

  197. Yamago S (2006) The development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. J Polym Sci A Polym Chem 44:1–12

    CAS  Google Scholar 

  198. Goto A, Kwak Y, Fukuda T et al (2003) Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc 125:8720–8721

    CAS  Google Scholar 

  199. Yamago S, Iida K, Yoshida J (2002) Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc 124:2874–2875

    CAS  Google Scholar 

  200. Kwak Y, Goto A, Fukuda T et al (2006) A systematic study on activation processes in organotellurium-mediated living radical polymerizations (TERPs) of styrene, methyl methacrylate, methyl acrylate, and vinyl acetate. Macromolecules 39:4671–4679

    CAS  Google Scholar 

  201. Yamago S, Iida K, Yoshida J (2002) Synthesis of poly(meth)acrylate derivatives and their di- and triblock copolymers. J Am Chem Soc 124:13666–13667

    CAS  Google Scholar 

  202. Matyjaszewski K (1997) Controlled radical polymerization, ACS Symposium Series, vol 685. American Chemical Society, Washington

    Google Scholar 

  203. Shen Y, Zhu S, Pelton R (2000) Packed column reactor for continuous atom transfer radical polymerization: methyl methacrylate polymerization using silica gel supported catalyst. Macromol Rapid Commun 21:956–959

    CAS  Google Scholar 

  204. Shen Y, Zhu S (2002) Continuous atom transfer radical block copolymerization of methacrylates. AIChE J 48:2609–2619

    CAS  Google Scholar 

  205. Wu T, Mei Y, Cabral JT et al (2004) A new synthetic method for controlled polymerization using a microfluidic system. J Am Chem Soc 126:9880–9881

    CAS  Google Scholar 

  206. Save M, Weaver JVM, Armes SP et al (2002) Atom transfer radical polymerization of hydroxy-functional methacrylates at ambient temperature: comparison of glycerol monomethacrylate with 2-hydroxypropyl methacrylate. Macromolecules 35:1152–1159

    CAS  Google Scholar 

  207. Wu T, Mei Y, Xu C et al (2005) Block copolymer PEO-b-PHPMA synthesis using controlled radical polymerization on a chip. Macromol Rapid Commun 26:1037–1042

    Google Scholar 

  208. Russum JP, Jones CW, Schork FJ (2004) Continuous reversible addition-fragmentation chain transfer polymerization in miniemulsion utilizing a multi-tube reaction system. Macromol Rapid Commun 25:1064–1068

    CAS  Google Scholar 

  209. Russum JP, Jones CW, Schork FJ (2005) Continuous living polymerization in miniemulsion using reversible addition fragmentation chain transfer (RAFT) in a tubular reactor. Ind Eng Chem Res 44:2484–2493

    CAS  Google Scholar 

  210. Diehl C, Laurino P, Azzouz N et al (2010) Accelerated continuous flow RAFT polymerization. Macromolecules 43:10311–10314

    CAS  Google Scholar 

  211. Hornung CH, Guerrero-Sanchez C, Brasholz M et al (2011) Controlled RAFT polymerization in a continuous flow microreactor. Org Process Res Dev 15:593–601

    CAS  Google Scholar 

  212. Rosenfeld C, Serra C, Brochon C et al (2007) High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: towards a better control of the polymerization reaction. Chem Eng Sci 62:5245–5250

    CAS  Google Scholar 

  213. Enright TE, Cunningham MF, Keoshkerian B (2005) Nitroxide-mediated polymerization of styrene in a continuous tubular reactor. Macromol Rapid Commun 26:221–225

    CAS  Google Scholar 

  214. Enright TE, Cunningham MF, Keoshkerian B (2010) Nitroxide-mediated bulk and miniemulsion polymerization in a continuous tubular reactor: synthesis of homo-, di- and triblock copolymers. Macromol React Eng 4:186–196

    CAS  Google Scholar 

  215. Rosenfeld C, Serra C, Brochon C et al (2008) Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations. Chem Eng J 135S:S242–S246

    Google Scholar 

  216. Rosenfeld C, Serra C, Brochon C et al (2008) Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors. Lab Chip 8:1682–1687

    CAS  Google Scholar 

  217. Miele S, Nesvadba P, Studer A (2009) 1-tert-Butyl-3,3,5,5-tetraalkyl-2-piperazinon-4-oxyls: highly efficient nitroxides for controlled radical polymerization. Macromolecules 42:2419–2427

    CAS  Google Scholar 

  218. Knoop CA, Studer A (2003) Hydroxy- and silyloxy-substituted TEMPO derivatives for the living free-radical polymerization of styrene and n-butyl acrylate: synthesis, kinetics, and mechanistic studies. J Am Chem Soc 125:16327–16333

    CAS  Google Scholar 

  219. Fukuyama T, Kajihara Y, Ryu I et al (2012) Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology. Synthesis 44:2555–2559

    Google Scholar 

  220. Rosenfeld C, Serra C, O’Donohue S et al (2007) Continuous online rapid size exclusion chromatography monitoring of polymerizations – CORSEMP. Macromol React Eng 1:547–552

    CAS  Google Scholar 

  221. Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A (2010) Bifurcation analysis of a tubular reactor for nitroxide-mediated radical polymerization of styrene. Macromol React Eng 4:599–612

    CAS  Google Scholar 

  222. Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A (2010) Grade transition dynamic optimization of the living nitroxide-mediated radical polymerization of styrene in a tubular reactor. Macromol React Eng 4:516–533

    CAS  Google Scholar 

  223. Stridsberg KM, Ryner M, Albertsson AC (2002) Controlled ring opening polymerization: polymers with controlled architecture. In: Albertsson AC (ed) Advances in polymers science. Springer, Berlin

    Google Scholar 

  224. Sanda F, Endo T (1999) Syntheses and functions of polymers based on amino acids. Macromol Chem Phys 200:2651–2661

    CAS  Google Scholar 

  225. Deming TJ (2000) Living polymerization of α-amino acid-N-carboxyanhydrides. J Polym Sci A Polym Chem 38:3011–3018

    CAS  Google Scholar 

  226. Bamfold CH, Block H (1961) The initiation step in the polymerization of N-carboxy α-amino acid anhydrides. J Chem Soc IV:4989–4991

    Google Scholar 

  227. Honda T, Miyazaki M, Nakamura H et al (2005) Controllable polymerization of N-carboxy anhydrides in a microreaction system. Lab Chip 5:812–818

    CAS  Google Scholar 

  228. Yamaguchi Y, Ogino K, Yamashita K et al (2004) Rapid micromixing based on multilayer laminar flows. J Chem Eng Jpn 37:1265–1270

    CAS  Google Scholar 

  229. Miyazaki M, Honda T, Nakamura H et al (2007) Development of a microreactor for amino acid polymerization. Chem Eng Technol 30:300–304

    CAS  Google Scholar 

  230. Kainthan RK, Janzen J, Levin E et al (2006) Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709

    CAS  Google Scholar 

  231. Wilms D, Nieberle J, Klos J et al (2007) Synthesis of hyperbranched polyglycerol in a continuous flow microreactor. Chem Eng Technol 30:1519–1524

    CAS  Google Scholar 

  232. Paulus RM, Erdmenger T, Becer CR et al (2007) Scale-up of microwave-assisted polymerizations in continuous-flow mode: cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 28:484–491

    CAS  Google Scholar 

  233. Rogers ME, Long TE, Turner SR (2003) Introduction to synthetic methods in step-growth polymers. In: Rogers ME, Long TE (eds) Synthetic methods in step-growth polymers. Wiley, Chichester, pp 1–16

    Google Scholar 

  234. Kuboyama T, Yoshida J (2005) Synthesis of terminally modified polymer with a micromixer. In: Proceedings of the 8th topical conference on microreaction technology. American Institute of Chemical Engineers, New York, 132d

    Google Scholar 

  235. Liu S, Chang CH (2007) High rate convergent synthesis and deposition of polyamide dendrimers using a continuous-flow microreactor. Chem Eng Technol 30:334–340

    CAS  Google Scholar 

  236. Miller RD (1999) In search of low-k dielectrics. Science 286:421–423

    CAS  Google Scholar 

  237. Chiang CL, Ma CCM (2003) Synthesis, characterization and properties of novolac ladder-like polysilsesquioxanes containing phosphorus. J Polym Sci A Polym Chem 41:1371–1379

    CAS  Google Scholar 

  238. Kessler D, Theato P (2008) Synthesis of functional inorganic-organic hybrid polymers based on poly(silsesquioxanes) and their thin film properties. Macromolecules 41:5237–5244

    CAS  Google Scholar 

  239. de Boer B, Simon HK, Werts MPL et al (2000) “Living” free radical photopolymerization initiated from surface-grafted iniferter monolayers. Macromolecules 33:349–356

    Google Scholar 

  240. Kessler D, Löwe H, Theato P (2009) Synthesis of defined poly(silsesquioxane)s: fast polycondensation of trialkoxysilanes in a continuous-flow microreactor. Macromol Chem Phys 210:807–813

    CAS  Google Scholar 

  241. Andresen A, Cordes HG, Herwig H et al (1976) Influence of long-chain branching on the viscoelastic properties of low-density polyethylenes. Angew Chem Int Ed 15:630–632

    Google Scholar 

  242. Sinn H, Kaminsky W, Vollmer HJ et al (1980) Living polymers on polymerization with extremely productive Ziegler catalysts. Angew Chem Int Ed 19:390–392

    Google Scholar 

  243. Santos LS, Metzger JO (2006) Study of homogeneously catalyzed Ziegler-Natta polymerization of ethene by ESI-MS. Angew Chem Int Ed 45:977–981

    Google Scholar 

  244. Luo N, Hutchinson JB, Anseth KS et al (2002) Integrated surface modification of fully polymeric microfluidic devices using living radical photopolymerization chemistry. J Polym Sci A Polym Chem 40:1885–1891

    CAS  Google Scholar 

  245. Luo N, Metters AT, Hutchison JB et al (2003) Methacrylated photoiniferter as a chemical basis for microlithography: micropatterning based on photografting polymerization. Macromolecules 36:6739–6745

    CAS  Google Scholar 

  246. Hutchison JB, Haraldsson KT, Good BT et al (2004) Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP). Lab Chip 4:658–662

    CAS  Google Scholar 

  247. Simms HM, Brotherton CM, Good BT et al (2005) In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. Lab Chip 5:151–157

    CAS  Google Scholar 

  248. Xu C, Wu T, Drain CM et al (2005) Microchannel confined surface-initiated polymerization. Macromolecules 38:6–8

    CAS  Google Scholar 

  249. Jeon NL, Dertinger SKW, Chiu DT et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    CAS  Google Scholar 

  250. Dertinger SKW, Chiu DT, Jeon NL et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246

    CAS  Google Scholar 

  251. Jiang X, Xu Q, Dertinger SKW et al (2005) A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal Chem 77:2338–2347

    CAS  Google Scholar 

  252. Stroock A, Dertinger SKW, Ajdari A et al (2002) Chaotic mixer for microchannels. Science 295:647–651

    CAS  Google Scholar 

  253. Xu C, Barnes SE, Wu T et al (2006) Solution and surface composition gradients via microfluidic confinement: fabrication of a statistical-copolymer-brush composition gradient. Adv Mater 18:1427–1430

    CAS  Google Scholar 

  254. Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156

    CAS  Google Scholar 

  255. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    CAS  Google Scholar 

  256. Weigl BH, Yager P (1999) Microfluidic diffusion-based separation and detection. Science 283:346–347

    Google Scholar 

  257. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85

    CAS  Google Scholar 

  258. Kenis PJA, Ismagilov RF, Takayama S et al (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33:841–847

    CAS  Google Scholar 

  259. Zhao B, Viernes NOL, Moore JS et al (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284–5285

    CAS  Google Scholar 

  260. Hisamoto H, Shimizu Y, Uchiyama K et al (2003) Chemicofunctional membrane for integrated chemical processes on a microchip. Anal Chem 75:350–354

    CAS  Google Scholar 

  261. Uozumi Y, Yamada YMA, Beppu T et al (2006) Instantaneous carbon–carbon bond formation using a microchannel reactor with a catalytic membrane. J Am Chem Soc 128:15994–15995

    CAS  Google Scholar 

  262. Yamada YMA, Torii K, Uozumi Y (2009) Oxidative cyclization of alkenols with oxone using a miniflow reactor. Beilstein J Org Chem 5:18

    Google Scholar 

  263. Yamada YMA, Watanabe T, Torii K et al (2009) Catalytic membrane-installed microchannel reactors for one-second allylic arylation. Chem Commun 5594–5596

    Google Scholar 

  264. Yamada YMA, Watanabe T, Torii K et al (2010) Palladium membrane-installed microchannel devices for instantaneous Suzuki–Miyaura cross-coupling. Chem Eur J 16:11311–11319

    CAS  Google Scholar 

  265. Yamada YMA, Watanabe T, Ohno A et al (2012) Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation. ChemSusChem 5:293–299

    CAS  Google Scholar 

  266. Gargiuli J, Shapiro E, Gulhane H et al (2006) Microfluidic systems for in situ formation of nylon 6,6 membranes. J Membr Sci 282:257–265

    CAS  Google Scholar 

  267. Honda T, Miyazaki M, Nakamura H et al (2006) Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Adv Synth Catal 348:2163–2171

    CAS  Google Scholar 

  268. Cao L, Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagaki, A., Yoshida, Ji. (2012). Controlled Polymerization in Flow Microreactor Systems. In: Abe, A., Lee, KS., Leibler, L., Kobayashi, S. (eds) Controlled Polymerization and Polymeric Structures. Advances in Polymer Science, vol 259. Springer, Cham. https://doi.org/10.1007/12_2012_179

Download citation

Publish with us

Policies and ethics