Skip to main content

Physical Limits of Solar Energy Conversion in the Earth System

  • Chapter
  • First Online:
Solar Energy for Fuels

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 371))

Abstract

Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation – which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion – as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW = 1015 W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schloemer S, von Stechnow C (eds) (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  2. Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Hall D, Kagramanian V, Knonov S, Lefevre T, Moreira R, Noetstaller R, Odell P, Taylor M (2000) Energy resources. In: World energy assessment. Energy and the challenge of sustainability. United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, pp 135–171

    Google Scholar 

  3. Petela R (1964) Exergy of heat radiation. J Heat Trans 86:187–192

    Article  Google Scholar 

  4. Press WH (1976) Theoretical maximum for energy from direct and diffuse sunlight. Nature 264:734–735

    Article  CAS  Google Scholar 

  5. Landsberg PT, Tonge G (1979) Thermodynamics of the conversion of diluted radiation. J Phys A 12:551–562

    Article  Google Scholar 

  6. Atkins P, de Paula J (2010) Physical chemistry, 9th edn. Oxford University Press, New York

    Google Scholar 

  7. Eddington AS (1928) The nature of the physical world. Macmillan, New York

    Google Scholar 

  8. Planck M (1906) Theorie der Wärmestrahlung. Barth, Leipzig

    Google Scholar 

  9. Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460

    Article  Google Scholar 

  10. Kleidon A (2012) How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Phil Trans R Soc A 370:1012–1040

    Article  CAS  Google Scholar 

  11. Wu W, Liu Y (2010) Radiation entropy flux and entropy production of the Earth system. Rev Geophys 48:RG2003

    Article  Google Scholar 

  12. Kleidon A, Renner M (2013) Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol Earth Syst Sci 17:2873–2892

    Article  Google Scholar 

  13. Kleidon A, Renner M (2013) A simple explanation for the sensitivity of the hydrologic cycle to climate change. Earth Syst Dyn 4:455–465. doi:10.5194/esd-4-455-2013

    Article  Google Scholar 

  14. Kleidon A, Renner M, Porada P (2014) Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol Earth Syst Sci 18:2201–2218

    Article  Google Scholar 

  15. Kleidon A, Kravitz B, Renner M (2015) The hydrologic sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys Res Lett 42:138–144

    Article  Google Scholar 

  16. Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696

    Article  CAS  Google Scholar 

  17. Pauluis O (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer, Heidelberg, pp 173–190

    Google Scholar 

  18. Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2:1–12

    Article  CAS  Google Scholar 

  19. Gans F, Miller LM, Kleidon A (2012) The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth Syst Dyn 3:79–86

    Article  Google Scholar 

  20. Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282

    Article  Google Scholar 

  21. Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295

    Google Scholar 

  22. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766

    Article  Google Scholar 

  23. Sharkey TD (1985) Photosynthesis in intact leaves of c3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105

    Article  Google Scholar 

  24. Hill R, Rich PR (1983) A physical interpretation for the natural photosynthetic process. Proc Natl Acad Sci U S A 80:978–982

    Article  CAS  Google Scholar 

  25. Duysens LNM (1958) The path of light energy in photosynthesis. In: Brookhaven Symposia in Biology 1: the photochemical apparatus, its structure and function. Brookhaven Natl. Lab., Upton, pp 10–25

    Google Scholar 

  26. Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 27:599–605

    Article  Google Scholar 

  27. Landsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys 51:R1

    Article  CAS  Google Scholar 

  28. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  Google Scholar 

  29. Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci U S A 111:E1327–E1333

    Article  CAS  Google Scholar 

  30. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Qúeŕe CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  31. Trieb F, Schillings C, O’Sullivan M, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power. In: Proceedings of the SolarPACES Conference, Berlin

    Google Scholar 

  32. Lewis N (2007) Toward cost-effective solar energy use. Science 315(5813):798–801

    Article  CAS  Google Scholar 

  33. Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24. doi:10.5194/se-1-5-2010, http://www.solid-earth.net/1/5/2010/

    Article  Google Scholar 

  34. Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266

    Article  Google Scholar 

  35. EIA (2009) International energy outlook. Tech. rep., Energy Information Administration, US Dept. of Energy, Energy Information Administration

    Google Scholar 

  36. Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373

    Article  Google Scholar 

  37. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Pluttzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary productivity in Earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947

    Article  CAS  Google Scholar 

  38. AGEB (2014) Auswertungstabellen zur Energiebilanz Deutschland. Tech. Rep., Arbeitsgemeinschaft Energiebilanzen e.V. www.ag-energiebilanzen.de

Download references

Acknowledgements

The datasets of solar radiation were obtained from the NASA Langley Research Center Atmospheric Science Data Center Surface meteorology and Solar Energy (SSE) web portal supported by the NASA LaRC POWER Project (http://eosweb.larc.nasa.gov/sse/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kleidon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kleidon, A., Miller, L., Gans, F. (2015). Physical Limits of Solar Energy Conversion in the Earth System. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_637

Download citation

Publish with us

Policies and ethics