Skip to main content

Interplay Between Mechanochemistry and Sonochemistry

  • Chapter
  • First Online:
Polymer Mechanochemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 369))

Abstract

Ultrasonic irradiation-based mechanochemical strategies have recently been the subject of intensive investigation because of the advantages they offer. These include simplicity, energy savings and wide applicability. Traditional areas of sonoprocessing such as cleaning, efficient mixing and solid activation have been extended to both macromolecular and micro/nanostructures, some of which are biologically significant, ultrasound-responsive actuators and crystal design, among others. Unlike conventional mechanochemical protocols, which require little solvent usage if any at all, mechanical (and chemical) effects promoted by ultrasound are observed in a liquid medium. Tensile forces, which share similarities with solid mechanochemistry, are generated by virtue of nonlinear effects, notably cavitation, when high-amplitude waves propagate in a fluid. This work aims to provide insight into some recent developments in the multifaceted field of sono-mechanochemistry using various examples that illustrate the role of ultrasonic activation, which is capable of boosting hitherto sterile transformations and inventing new crafts in applied chemistry. After a preliminary discussion of acoustics, which is intended to provide a mechanistic background, we mainly focus on experimental developments, while we often mention emerging science and occasionally delve into theoretical models and force simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gooberman GL (1990) Sound. In: Gwinn RP, Norton PB, Goetz PW (eds) The new encyclopaedia britannica vol. 27, Encyclopaedia Britannica Inc, Chicago, pp 629–631 (ultrasonics); entire chapter on sound, pp 604–632

    Google Scholar 

  2. Rossing TD (2007) Introduction to acoustics. In: Rossing TD (ed) Springer handbook of acoustics. Springer, New York, pp 1–6

    Chapter  Google Scholar 

  3. Cravotto G, Cintas P (2011) Introduction to sonochemistry: a historical and conceptual overview. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound and sonochemistry. CRC/Taylor & Francis, Boca Raton, pp 23–40, Ch 2

    Google Scholar 

  4. Mason TJ, Lorimer JP (2002) Applied sonochemistry. The uses of power ultrasound in chemistry and processing. Wiley-VCH, Weinheim

    Google Scholar 

  5. Cravotto G, Cintas P (2006) Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem Soc Rev 35:180–196

    Article  CAS  Google Scholar 

  6. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    Article  CAS  Google Scholar 

  7. Cravotto G, Cintas P (2012) Harnessing mechanochemical effects with ultrasound-induced reactions. Chem Sci 3:295–307

    Article  CAS  Google Scholar 

  8. Cravotto G, Calcio Gaudino E, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534

    Article  CAS  Google Scholar 

  9. Suslick KS (2014) Mechanochemistry and sonochemistry: concluding remarks. Faraday Discuss 170. doi:10.1039/c4fd00148f

    Google Scholar 

  10. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    Article  CAS  Google Scholar 

  11. Wiggins KM, Brantley JN, Bielawski CW (2013) Methods for activating and characterizing mechanically responsive polymers. Chem Soc Rev 42:7130–7147

    Article  CAS  Google Scholar 

  12. Brantley JN, Wiggins KM, Bielawski CW (2013) Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62:2–12

    Article  CAS  Google Scholar 

  13. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    Article  CAS  Google Scholar 

  14. Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158–176

    Article  CAS  Google Scholar 

  15. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Article  CAS  Google Scholar 

  16. Sander JRG, Zeiger BW, Suslick KS (2014) Sonocrystallization and sonofragmentation. Ultrason Sonochem 21:1908–1915

    Article  CAS  Google Scholar 

  17. Huang Z, Boulatov R (2011) Chemomechanics: chemical kinetics for multiscale phenomena. Chem Soc Rev 40:2359–2384

    Article  CAS  Google Scholar 

  18. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  19. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009. doi:10.1126/science.1232009

    Article  CAS  Google Scholar 

  20. Brunet T, Leng J, Mondain-Monval O (2013) Soft acoustic metamaterials. Science 342:323–324

    Article  CAS  Google Scholar 

  21. Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503:209–217

    Article  CAS  Google Scholar 

  22. Gustafsson MV, Aref T, Kockum AF, Ekström MK, Johansson G, Delsing P (2014) Propagating phonons coupled to an artificial atom. Science 346:207–211

    Article  CAS  Google Scholar 

  23. Humphrey VF (2007) Ultrasound and matter-physical interactions. Prog Biophys Mol Biol 93:195–211

    Article  Google Scholar 

  24. Lepoint T, Lepoint-Mullie F (1998) Theoretical bases. In: Luche JL (ed) Synthetic organic sonochemistry. Plenum, New York, pp 1–49, Ch 1

    Chapter  Google Scholar 

  25. Nyborg WL (1998) Acoustic streaming. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Academic, San Diego, pp 207–228

    Google Scholar 

  26. Valverde JM (2013) Acoustic streaming in gas-fluidized beds of small particle. Soft Matter 9:8792–8814

    Article  CAS  Google Scholar 

  27. Mason TJ, Peters D (2002) Practical sonochemistry. Power ultrasound uses and applications, 2nd edn. Woodhead Publishing, Oxford, pp 1–46

    Google Scholar 

  28. Fernández Rivas D (2012) Taming acoustic cavitation, PhD Thesis. University of Twente, The Netherlands, Ch 2, p 10. doi:10.3990/1.9789036534192

    Google Scholar 

  29. Mason TJ, Cobley AJ, Graves JE, Morgan D (2011) New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem 18:226–230

    Article  CAS  Google Scholar 

  30. Portenlänger G, Heusinger H (1997) The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason Sonochem 4:127–130

    Article  Google Scholar 

  31. Tran KVB, Kimura T, Kondo T, Koda S (2014) Quantification of frequency dependence of mechanical effects induced by ultrasound. Ultrason Sonochem 21:716–721

    Article  CAS  Google Scholar 

  32. Tudela I, Sáez V, Esclapez MD, Díez-García MI, Bonete P, González-García J (2014) Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem 21:909–919

    Article  CAS  Google Scholar 

  33. Son Y, Lim M, Ashokkumar M, Khim J (2011) Geometric optimization of sonoreactors for the enhancement of sonochemical activity. J Phys Chem C 115:4096–4103

    Article  CAS  Google Scholar 

  34. Merouani S, Ferkous H, Hamdaoui O, Rezgui Y, Guemini M (2015) A method for predicting the number of active bubbles in sonochemical reactors. Ultrason Sonochem 22:51–58

    Article  CAS  Google Scholar 

  35. Alvarez M, Friend JR, Yeo LY (2008) Surface vibration induced spatial ordering of periodic polymeric patterns on a substrate. Langmuir 24:10629–10632

    Article  CAS  Google Scholar 

  36. Friend JR, Yeo LY, Arifin DR, Mechler A (2008) Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization. Nanotechnology 19:145301

    Article  CAS  Google Scholar 

  37. Shilton R, Tan MK, Yeo LY, Friend JR (2008) Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J Appl Phys 104:014910

    Article  CAS  Google Scholar 

  38. Wu C, Zaitsev VY, Zhigilei LV (2013) Acoustic enhancement of surface diffusion. J Phys Chem C 117:9252–9258

    Article  CAS  Google Scholar 

  39. Kelling S, Mitrelias T, Matsumoto Y, Ostanin VP, King DA (1997) Acoustic wave enhancement of the catalytic oxidation of carbon monoxide over Pt{110}. J Chem Phys 107:5609–5612

    Article  CAS  Google Scholar 

  40. Inoue Y (2007) Effects of acoustic waves-induced dynamic lattice distortion on catalytic and adsorptive properties of metal, alloy and metal oxide surfaces. Surf Sci Rep 62:305–336

    Article  CAS  Google Scholar 

  41. Zinovev AV, Veryovkin LV, Moore JF, Pellin MJ (2007) Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal Chem 79:8232–8241

    Article  CAS  Google Scholar 

  42. Dow AM, Wittrig AR, Kenttämaa HI (2012) Laser-induced acoustic desorption (LIAD) mass spectrometry. Eur J Mass Spectrom 18:77–92

    Article  CAS  Google Scholar 

  43. Lipeles R, Kivelson D (1980) Experimental studies of acoustically induced birefringence. J Chem Phys 72:6199–6208

    Article  CAS  Google Scholar 

  44. Nomura H, Matsuoka T, Koda S (2004) Ultrasonically induced birefringence in polymer solution. Pure Appl Chem 76:97–104

    Article  CAS  Google Scholar 

  45. Khunsin W, Amann A, Kocher-Oberlehner G, Romanov SG, Pullteap S, Seat HC, O’Reilly EP, Zentel R, Torres CMS (2012) Noise-assisted crystallization of opal films. Adv Funct Mater 22:1812–1821

    Article  CAS  Google Scholar 

  46. Avetissov I, Sadovskiy A, Belov S, Khomyakov A, Rekunov K, Kostikov V, Sukhanova E (2013) Thermodynamic features of axial vibrational control technique for crystal growth from the melt. CrystEngComm 15:2213–2219

    Article  CAS  Google Scholar 

  47. Ende DJA, Anderson SR, Salan JS (2014) Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev 18:331–341

    Article  CAS  Google Scholar 

  48. Liu C, Wu P, Wang L (2013) Particle climbing along a vibrating tube: a vibrating tube that acts as a pump for lifting granular materials from a silo. Soft Matter 9:4762–4766

    Article  CAS  Google Scholar 

  49. Cravotto G, Cintas P (2009) Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem Soc Rev 38:2684–2697

    Article  CAS  Google Scholar 

  50. Yu X, Chen L, Zhang M, Yi T (2014) Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev 43:5346–5371

    Article  CAS  Google Scholar 

  51. Ye E, Chee PL, Prasad A, Fang X, Owh C, Yeo VJJ, Loh XJ (2014) Supramolecular soft biomaterials for biomedical applications. Mater Today 17:194–202

    Article  CAS  Google Scholar 

  52. Naota T, Koori H (2005) Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J Am Chem Soc 127:9324–9325

    Article  CAS  Google Scholar 

  53. Bardelang D, Zaman MB, Moudrakovski IL, Pawsey S, Margeson JC, Wang D, Wu X, Ripmeester JA, Ratcliffe CI, Yu K (2008) Interfacing supramolecular gels and quantum dots with ultrasound: smart photoluminescent dipeptide gels. Adv Mater 20:4517–4520

    Article  CAS  Google Scholar 

  54. Anderson KM, Day GM, Paterson MJ, Byrne P, Clarke N, Steed JW (2008) Structure calculations of an elastic hydrogel from sonication of rigid small molecule components. Angew Chem Int Ed 47:1058–1062

    Article  CAS  Google Scholar 

  55. Ke D, Zhan C, Li ADQ, Yao J (2011) Morphological transformation between nanofibers and vesicles in a controllable bipyridine-tripeptide self-assembly. Angew Chem Int Ed 50:3715–3719

    Article  CAS  Google Scholar 

  56. Zhang M, Jiang M, Meng L, Liu K, Mao Y, Yi T (2013) Fabrication of multiplicate nanostructures via manipulation of the self-assembly between an adamantine based gelator and cyclodextrin. Soft Matter 9:9449–9454

    Article  CAS  Google Scholar 

  57. Datskos P, Chen J, Sharma J (2014) Synthesis of very small diameter silica nanofibers using sound waves. Chem Commun 50:7277–7279

    Article  CAS  Google Scholar 

  58. Koenig M, Torres T, Barone V, Brancato G, Guldi DM, Bottari G (2014) Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission. Chem Commun 50:12955–12958

    Article  CAS  Google Scholar 

  59. Sun H, Zhang Y, Yan W, Chen W, Lan Q, Liu S, Jiang L, Chi Z, Chen X, Xu J (2014) A novel ultrasound-sensitive mechanofluorochromic AIE-compound with remarkable blue-shifting and enhanced emission. J Mater Chem C 2:5812–5817

    Article  CAS  Google Scholar 

  60. Kostarelos K, Novoselov KS (2014) Exploring the interface of graphene and biology. Science 344:261–263

    Article  CAS  Google Scholar 

  61. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419. doi:10.1126/science.1226419

    Article  CAS  Google Scholar 

  62. Cravotto G, Cintas P (2010) Sonication-assisted fabrication and post-synthetic modification of graphene-like materials. Chem Eur J 16:5246–5259

    Article  CAS  Google Scholar 

  63. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczharski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  CAS  Google Scholar 

  64. Buzaglo M, Shtein M, Kober S, Lovrincic R, Vilan A, Regev O (2013) Critical parameters in exfoliating graphite into graphene. Phys Chem Chem Phys 15:4428–4435

    Article  CAS  Google Scholar 

  65. Sesis A, Hodnett M, Memoli G, Wain AJ, Jurewicz I, Dalton AB, Casey JD (2013) Influence of acoustic cavitation on the controlled ultrasonic dispersions of carbon nanotubes. J Phys Chem B 117:15141–15150

    CAS  Google Scholar 

  66. Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118:15455–15459

    Article  CAS  Google Scholar 

  67. Janowska I, Chizari K, Ersen O, Zafeiratos S, Soubane D, Da Costa V, Speisser V, Boeglin C, Houllé M, Bégin D, Plee D, Ledoux MJ, Pham-Huu C (2010) Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res 3:126–137

    Article  CAS  Google Scholar 

  68. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  69. Cravotto G, Garella D, Calcio Gaudino E, Turci F, Bertarione S, Agostini G, Cesano F, Scarano D (2011) Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation. New J Chem 35:915–919

    Article  CAS  Google Scholar 

  70. Zheng J, Liu HT, Wu B, Di CA, Guo YL, Wu T, Yu G, Liu YQ, Zhu DB (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662. doi:10.1038/srep00662

    Google Scholar 

  71. Economopoulos SP, Rotas G, Miyata Y, Shinohara H, Tagmatarchis N (2010) Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4:7499–7507

    Article  CAS  Google Scholar 

  72. Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT (2014) A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat Chem 6:774–778

    Article  CAS  Google Scholar 

  73. Kory MJ, Wörle M, Weber T, Payamyar P, van de Poll SW, Dshemuchadse J, Trapp N, Schlüter AD (2014) Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem 6:779–784

    Article  CAS  Google Scholar 

  74. Encina MV, Lissi E, Sarasúa M, Garagallo L, Radic D (1980) Ultrasonic degradation of polyvinylpyrrolidone: effect of peroxide linkages. J Polym Sci Polym Lett Ed 18:757–760

    Article  CAS  Google Scholar 

  75. Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38:8975–8978

    Article  CAS  Google Scholar 

  76. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427

    Article  CAS  Google Scholar 

  77. Luty T, Ordon P, Eckhardt CJ (2002) A model for mechanochemical transformations: applications to molecular hardness, instabilities, and shock initiation of reaction. J Chem Phys 117:1775–1785

    Article  CAS  Google Scholar 

  78. Tian Y, Boulatov R (2013) Comparison of the predictive performance of the Bell-Evans, Taylor-expansion and statistical-mechanics models of mechanochemistry. Chem Commun 49:4187–4189

    Article  CAS  Google Scholar 

  79. Nguyen TQ, Liang QZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793

    Article  CAS  Google Scholar 

  80. Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559–562

    Article  CAS  Google Scholar 

  81. Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martinez TJ, Boydston AJ, Moore JS (2014) Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat Chem 6:623–628

    Article  CAS  Google Scholar 

  82. Larsen MB, Boydston AJ (2014) Successive mechanochemical activation and small molecule release in an elastomeric material. J Am Chem Soc 136:1276–1279

    Article  CAS  Google Scholar 

  83. Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, Zhao X, Craig SL (2014) Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett 3:216–219

    Article  CAS  Google Scholar 

  84. Diesendruck CE, Zhu L, Moore JS (2014) Alkyne mechanochemistry: putative activation by transoidal bending. Chem Commun 50:13235–13238

    Article  CAS  Google Scholar 

  85. McNutt M (2014) Editorial expression of concern. Science 344:1460

    Article  CAS  Google Scholar 

  86. Halford B (2014) Texas student falsified data. Chem Eng News December 15 issue, p 9

    Google Scholar 

  87. Li J, Shiraki T, Hu B, Wright RAE, Zhao B, Moore JS (2014) Mechanophore activation at heterointerfaces. J Am Chem Soc 136:15925–15928

    Article  CAS  Google Scholar 

  88. Balkenende DWR, Coulibaly S, Balog S, Simon YC, Fiore GL, Weder C (2014) Mechanochemistry with metallosupramolecular polymers. J Am Chem Soc 136:10493–10498

    Article  CAS  Google Scholar 

  89. Tsuda A, Nagamine Y, Watanabe R, Nagatani Y, Ishii N, Aida T (2010) Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre. Nat Chem 2:977–983

    Article  CAS  Google Scholar 

  90. Hotta Y, Suiko S, Motoyanagi J, Onishi H, Ihozaki T, Arakawa R, Tsuda A (2014) A physical operation of hydrodynamic orientation of an azobenzene supramolecular assembly with light and sound. Chem Commun 50:5615–5618

    Article  CAS  Google Scholar 

  91. O’Brien WD Jr (2007) Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93:212–255

    Article  Google Scholar 

  92. Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321–327

    Article  CAS  Google Scholar 

  93. Yu T, Zhang Y, He H, Zhou S, Liu Y, Huang P (2011) Anticancer potency of cytotoxic drugs after exposure to high-intensity focused ultrasound in the presence of microbubbles and hematoporphyrin. Mol Pharmaceutics 8:1408–1415

    Article  CAS  Google Scholar 

  94. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organogelles to organs. Science 335:1458–1462

    Article  CAS  Google Scholar 

  95. Guo C, Jin Y, Dai Z (2014) Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjugate Chem 25:840–854

    Article  CAS  Google Scholar 

  96. Alvarez-Lorenzo C, Concheiro A (2014) Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 50:7743–7765

    Article  CAS  Google Scholar 

  97. Tong R, Lu X, Xia H (2014) A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun 50:3575–3578

    Article  CAS  Google Scholar 

  98. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60:1193–1208

    Article  CAS  Google Scholar 

  99. Kang M, Huang G, Leal C (2014) Role of lipid polymorphism in acoustically sensitive liposomes. Soft Matter 10:8846–8854

    Article  CAS  Google Scholar 

  100. Santo KP, Berkowitz ML (2014) Shock wave induced collapse of arrays of nanobubbles located next to a lipid membrane: coarse-grained computer simulations. J Phys Chem B. doi:10.1021/jp505720d

    Google Scholar 

  101. Podaru G, Ogden S, Baxter A, Shrestha T, Ren S, Thapa P, Dani RK, Wang H, Basel MT, Prakash P, Bossmann SH, Chikan V (2014) Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation. J Phys Chem B 118:11715–11722

    Article  CAS  Google Scholar 

  102. Toublan FJJ, Boppart S, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem Soc 128:3472–3473

    Article  CAS  Google Scholar 

  103. Baram-Pinto D, Shukla S, Richman M, Gedanken A, Rahimipour S, Sarid R (2012) Surface-modified protein nanospheres as potential antiviral agents. Chem Commun 48:8359–8361

    Article  CAS  Google Scholar 

  104. Skirtenko N, Tzanov T, Gedanken A, Rahimipour S (2010) One-step preparation of multifunctional chitosan microspheres by a simple sonochemical method. Chem Eur J 16:562–567

    Article  CAS  Google Scholar 

  105. Erriu M, Blus C, Szmukler-Moncler S, Buogo S, Levi R, Barbato G, Madonnaripa D, Denotti G, Piras V, Orrù G (2014) Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem 21:15–22

    Article  CAS  Google Scholar 

  106. Ensing GT, Roeder BL, Nelson JL, van Horn JR, van der Mei HC, Busscher HJ, Pitt WG (2005) Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. J Appl Microbiol 99:443–448

    Article  CAS  Google Scholar 

  107. Bigelow TA, Northagen T, Hill TM, Sailer FC (2009) The destruction of Escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol 35:1026–1031

    Article  Google Scholar 

  108. Miller DL (1976) Instrument for microscopical observation of the biophysical effects of ultrasound. J Acoust Soc Am 60:1203–1212

    Article  CAS  Google Scholar 

  109. Iida Y, Tuziuti T, Yasui K, Kozuka T, Towata A (2008) Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrason Sonochem 15:995–1000

    Article  CAS  Google Scholar 

  110. Fernandez Rivas D, Verhaagen B, Seddon JRT, Zijlstra AG, Jiang LM, van der Sluis LWM, Versluis M, Lohse D, Gardeniers HJGE (2012) Localized removal of layers of metal, polymer, or biomaterial by cavitating microbubbles. Biomicrofluidics 6:034114

    Article  CAS  Google Scholar 

  111. Fernández Rivas D (2012) Taming acoustic cavitation, PhD thesis, University of Twente, The Netherlands, Ch 7, pp 119–141

    Google Scholar 

  112. Ohhashi Y, Kihara M, Naiki H, Goto Y (2005) Ultrasonication-induced amyloid fibril formation of β2-microglobulin. J Biol Chem 280:32843–32848

    Article  CAS  Google Scholar 

  113. Carulla N, Caddy GL, Hall DR, Zurdo J, Gairí M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558

    Article  CAS  Google Scholar 

  114. Chatani E, Lee YH, Yagi H, Yoshimura Y, Naiki H, Goto Y (2009) Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proc Natl Acad Sci USA 106:11119–11124

    Article  CAS  Google Scholar 

  115. Okumura H, Itoh SG (2014) Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations. J Am Chem Soc 136:10549–10552

    Article  CAS  Google Scholar 

  116. Lee M, Baek I, Chang HJ, Yoon G, Na S (2014) The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight. Chem Phys Lett 600:68–72

    Article  CAS  Google Scholar 

  117. Tanaka K, Yamamoto K, Kadokawa JI (2014) Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water. Carbohydr Res 398:25–30

    Article  CAS  Google Scholar 

  118. Editorial (2014) Mechanobiology in harness. Nat Mater 13:531

    Google Scholar 

  119. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape–the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. doi:10.1038/nrm3903

    Google Scholar 

  120. Alves-Pereira M, Castelo Branco NAA (2007) Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Prog Biophys Mol Biol 93:256–279

    Article  Google Scholar 

  121. Guix M, Mayorga-Martinez CC, Merkoçi A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114:6285–6322

    Article  CAS  Google Scholar 

  122. Gao W, Wang J (2014) The environmental impact of micro/nanomachines: a review. ACS Nano 8:3170–3180

    Article  CAS  Google Scholar 

  123. Hu J, Tay C, Cai Y, Du J (2005) Controlled rotation of sound-trapped small particles by an acoustic needle. Appl Phys Lett 87:094104

    Article  CAS  Google Scholar 

  124. Shilton RJ, Glass NR, Chan P, Yeo LY, Friend JR (2011) Rotational microfluidic motor for on-chip microcentrifugation. Appl Phys Lett 98:254103

    Article  CAS  Google Scholar 

  125. Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–6132

    Article  CAS  Google Scholar 

  126. Takatori SC, Brady JF (2014) Swim stress, motion, and deformation of active matter: effect of an external field. Soft Matter 10:9433–9445

    Article  CAS  Google Scholar 

  127. Xu T, Soto F, Gao W, Garcia-Gradilla V, Li J, Zhang X, Wang J (2014) Ultrasound-modulated bubble propulsion of chemically powered microengines. J Am Chem Soc 136:8552–8555

    Article  CAS  Google Scholar 

  128. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–9240

    Article  CAS  Google Scholar 

  129. Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S, Castro LA, Hoyos M, Huang TJ, Mallouk TE (2013) Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29:16113–16118

    Article  CAS  Google Scholar 

  130. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE (2014) Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed 53:3201–3204

    Article  CAS  Google Scholar 

  131. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem Int Ed 51:7519–7522

    Article  CAS  Google Scholar 

  132. De Silva L, Yao L, Xu S (2014) Mechanically resolving noncovalent bonds using acoustic radiation force. Chem Commun 50:10786–10789

    Article  Google Scholar 

  133. Valverde JM, Ebri JMP, Quintanilla MAS (2013) Acoustic streaming enhances the multicyclic CO2 capture of natural limestone at Ca-looping conditions. Env Sci Technol 47:9538–9544

    Article  CAS  Google Scholar 

  134. Valverde JM, Raganati F, Quintanilla MAS, Ebri JMP, Ammendola P, Chirone R (2013) Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields. Appl Energy 111:538–549

    Article  CAS  Google Scholar 

  135. Gallego-Juarez JA, Riera-Franco de Sarabia E, Rodriguez-Corral G, Hoffmann TL, Galvez-Moraleda JC, Rodriguez-Maroto JJ, Gomez-Moreno FJ, Bahillo-Ruiz A, Martin-Espigares M, Acha M (1999) Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Env Sci Technol 33:3843–3849

    Article  CAS  Google Scholar 

  136. Fernandez Rivas D, Betjes J, Verhaagen B, Bouwhuis W, Bor TC, Lohse D, Gardeniers HJGE (2013) Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. J Appl Phys 113:064902

    Article  CAS  Google Scholar 

  137. Virot M, Pflieger R, Skorb EV, Ravaux J, Zemb T, Möhwald H (2012) Crystalline silicon under acoustic cavitation: from mechanoluminescence to amorphization. J Phys Chem C 116:15493–15499

    Article  CAS  Google Scholar 

  138. Ball P (2009) Flow–nature’s patterns. A tapestry in three parts. Oxford University Press, pp 1–20, Ch 1

    Google Scholar 

Download references

Acknowledgments

Financial support from the following agencies is gratefully acknowledged: University of Turin (fondi ricerca locale 2013) and the Junta de Extremadura-FEDER (Ayuda a Grupos Consolidados, Grant No. GR10049). The authors are also deeply indebted to Dr. David Fernández-Rivas (University of Twente, The Netherlands, and BubClean) for his stimulating feedback and permission to reproduce Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Cintas or Giancarlo Cravotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cintas, P., Cravotto, G., Barge, A., Martina, K. (2014). Interplay Between Mechanochemistry and Sonochemistry. In: Boulatov, R. (eds) Polymer Mechanochemistry. Topics in Current Chemistry, vol 369. Springer, Cham. https://doi.org/10.1007/128_2014_623

Download citation

Publish with us

Policies and ethics