Skip to main content

Electronic and Optical Properties at Organic/Organic Interfaces in Organic Solar Cells

  • Chapter
  • First Online:
Multiscale Modelling of Organic and Hybrid Photovoltaics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

In organic photovoltaic (OPV) devices the formation of free charges from a singlet excited state is the key step in converting light to electrical energy. However, questions still remain as to why the process is so fast and efficient in some OPV devices while not in others. Currently, it is not understood how the binding energy of the charge transfer state formed at an organic/organic interface, ~40 kT, is overcome in order to create free charge carriers. Given the difficulty of experimentally probing the electronic processes occurring at the organic/organic interface, it falls to theoretical and computational studies to provide essential insights into the processes occurring on the microscopic level. In this review we will cover the contributions made by theoretical studies to improve our understanding of the organic/organic interface. We will address the advantages and disadvantages of different theoretical approaches to studying the numerous interesting effects observed, such as shifts in the HOMO and LUMO levels due to the electrostatic environment, increased localization due to disorder, and the general impact of molecular orientation on different molecular properties. Further, we will discuss the currently proposed mechanisms of charge separation at the organic/organic interface and the implications that these mechanisms have on the choice of materials for use in OPV devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goetzberger A, Hebling C, Schock H-W (2003) Mater Sci Eng R 40:1–46

    Google Scholar 

  2. Forrest SR (2004) Nature 428:911–918

    CAS  Google Scholar 

  3. Zhao J, Wang A, Green MA, Ferrazza F (1998) Appl Phys Lett 73:1991–1993

    CAS  Google Scholar 

  4. Petermann JH, Zielke D, Schmidt J, Haase F, Rojas EG, Brendel R (2012) Prog Photovolt Res Appl 20:1–5

    CAS  Google Scholar 

  5. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) Prog Photovolt Res Appl 16:235–239

    CAS  Google Scholar 

  6. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222–225

    CAS  Google Scholar 

  7. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297–302

    CAS  Google Scholar 

  8. Grätzel M (2003) J Photochem Photobiol C 4:145–153

    Google Scholar 

  9. Hardin BE, Snaith HJ, McGehee MD (2012) Nat Photonics 6:162–169

    CAS  Google Scholar 

  10. Fenna RE, Matthews BW (1975) Nature 258:573–577

    CAS  Google Scholar 

  11. Nelson J (2003) The physics of solar cells, vol 57. Imperial College Press, London

    Google Scholar 

  12. Pope M, Swenberg CE (1999) Electronic processes of organic crystals and polymers, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  13. Knupfer M (2003) Appl Phys A 77:623–626

    CAS  Google Scholar 

  14. Gregg BAJ (2003) Phys Chem B 107:4688–4698

    CAS  Google Scholar 

  15. Gregg BA, Hanna MCJ (2003) Appl Phys 93:3605–3614

    CAS  Google Scholar 

  16. Brédas J-L, Norton JE, Cornil J, Coropceanu V (2009) Acc Chem Res 42:1691–1699

    Google Scholar 

  17. Hoppe H, Sariciftci NSJ (2011) Mater Res 19:1924–1945

    Google Scholar 

  18. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634

    CAS  Google Scholar 

  19. Shockley W, Queisser HJJ (1961) Appl Phys 32:510–519

    CAS  Google Scholar 

  20. Koster LJA, Shaheen SE, Hummelen JC (2012) Adv Energy Mater 2:1246–1253

    CAS  Google Scholar 

  21. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324–1338

    Google Scholar 

  22. Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M (2003) Sol Energy Mater Sol Cells 79:81–92

    CAS  Google Scholar 

  23. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498–500

    CAS  Google Scholar 

  24. Yang F, Shtein M, Forrest SR (2004) Nat Mater 4:37–41

    Google Scholar 

  25. Armstrong NR, Wang W, Alloway DM, Placencia D, Ratcliff E, Brumbach M (2009) Macromol Rapid Commun 30:717–731

    CAS  Google Scholar 

  26. Veldman D, Ipek O, Meskers SCJ, Sweelssen J, Koetse MM, Veenstra SC, Kroon JM, van Bavel SS, Loos J, Janssen RAJJ (2008) Am Chem Soc 130:7721–7735

    CAS  Google Scholar 

  27. Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S, Zhang W, Heeney M, McCulloch I, Nelson J, Bradley DDC, Durrant JRJ (2008) Am Chem Soc 130:3030–3042

    CAS  Google Scholar 

  28. Zhu X-Y, Yang Q, Muntwiler M (2009) Acc Chem Res 42:1779–1787

    CAS  Google Scholar 

  29. Muntwiler M, Yang Q, Tisdale W, Zhu X-Y (2008) Phys Rev Lett 101:196403

    Google Scholar 

  30. Lee J, Vandewal K, Yost SR, Bahlke ME, Goris L, Baldo MA, Manca JV, Van Voorhis TJ (2010) Am Chem Soc 132:11878–11880

    CAS  Google Scholar 

  31. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) Science 335:1340–1344

    CAS  Google Scholar 

  32. Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant JR (2011) Adv Funct Mater 21:2744–2753

    CAS  Google Scholar 

  33. Marcus RAJ (1956) Chem Phys 24:966

    CAS  Google Scholar 

  34. Dang MT, Wantz G, Bejbouji H, Urien M, Dautel OJ, Vignau L, Hirsch L (2011) Sol Energy Mater Sol Cells 95:3408–3418

    CAS  Google Scholar 

  35. Krebs FC (2009) Sol Energy Mater Sol Cells 93:394–412

    CAS  Google Scholar 

  36. Difley S, Wang L-P, Yeganeh S, Yost SR, Van Voorhis T (2010) Acc Chem Res 43:995–1004

    CAS  Google Scholar 

  37. Milman V, Winkler B, White JA, Pickard CJ, Payne MC, Akhmatskaya EV, Nobes RH (2000) Int J Quantum Chem 77:895–910

    CAS  Google Scholar 

  38. Kresse G (1996) Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  39. Anderson PW (1958) Phys Rev 109:1492–1505

    CAS  Google Scholar 

  40. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, Mineola

    Google Scholar 

  41. Scott AP, Radom LJ (1996) Phys Chem 100:16502–16513

    CAS  Google Scholar 

  42. Bauschlicher CW (1995) Chem Phys Lett 246:40–44

    CAS  Google Scholar 

  43. Bartlett R, Musiaå M (2007) Rev Mod Phys 79:291–352

    CAS  Google Scholar 

  44. Purvis GD, Bartlett RJJ (1982) Chem Phys 76:1910

    CAS  Google Scholar 

  45. Knowles PJ, Hampel C, Werner H-JJ (1993) Chem Phys 99:5219–5227

    CAS  Google Scholar 

  46. Löwdin P-O (1955) Phys Rev 97:1474–1489

    Google Scholar 

  47. Krylov AI (2001) Chem Phys Lett 350:522–530

    CAS  Google Scholar 

  48. Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514–522

    CAS  Google Scholar 

  49. Roos BO, Taylor PR, Siegbahn PE (1980) Chem Phys 48:157–173

    CAS  Google Scholar 

  50. Siegbahn PEM, Almlöf J, Heiberg A, Roos BOJ (1981) Chem Phys 74:2384–2396

    CAS  Google Scholar 

  51. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    CAS  Google Scholar 

  52. Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190:1–12

    CAS  Google Scholar 

  53. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Google Scholar 

  54. Parr RG, Weitao Y (1994) Density-functional theory of atoms and molecules, vol 16. Oxford University Press, New York

    Google Scholar 

  55. Kohn W, Becke AD, Parr RGJ (1996) Phys Chem 100:12974–12980

    CAS  Google Scholar 

  56. Perdew JP, Kurth S (2003) In: Foilhais C, Nogueira F, Marques M (eds) Density functionals for non-relativistic coulomb systems in the new century. Springer Verlag, Berlin, Chap. 1, pp 1–55

    Google Scholar 

  57. Scuseria GE, Staroverov VN (2005) Theory Appl Comput Chem First Forty Years 40:669–724

    Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  59. Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241

    Google Scholar 

  60. Zhao Y, Truhlar DGJ (2004) Phys Chem A 108:6908–6918

    CAS  Google Scholar 

  61. Becke ADJ (1993) Chem Phys 98:1372–1377

    CAS  Google Scholar 

  62. Zhang Y, Yang W (1998) Phys Rev Lett 80:890–890

    CAS  Google Scholar 

  63. Adamo C, Barone VJ (1999) Chem Phys 110:6158–6169

    CAS  Google Scholar 

  64. Becke ADJ (1993) Chem Phys 98:5648–5652

    CAS  Google Scholar 

  65. Iikura H, Tsuneda T, Yanai T, Hirao KJ (2001) Chem Phys 115:3540–3544

    CAS  Google Scholar 

  66. Vydrov OA, Scuseria GEJ (2006) Chem Phys 125:234109

    Google Scholar 

  67. Baer R, Livshits E, Salzner U (2010) Annu Rev Phys Chem 61:85–109

    CAS  Google Scholar 

  68. Rohrdanz MA, Martins KM, Herbert JMJ (2009) Chem Phys 130:054112

    Google Scholar 

  69. Sousa SF, Fernandes PA, Ramos MJA (2007) J Phys Chem A 111:10439–10452

    CAS  Google Scholar 

  70. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    CAS  Google Scholar 

  71. Gross E, Kohn W (1985) Phys Rev Lett 55:2850–2852

    CAS  Google Scholar 

  72. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037

    CAS  Google Scholar 

  73. Jacquemin D, Wathelet V, Perpéte EA, Adamo CJ (2009) Chem Theory Comput 5:2420–2435

    CAS  Google Scholar 

  74. Jacquemin D, Perpéte EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DGJ (2010) Chem Theory Comput 6:2071–2085

    CAS  Google Scholar 

  75. Song J-W, Tokura S, Sato T, Watson MA, Hirao KJ (2009) Chem Phys 131:059901

    Google Scholar 

  76. Kowalczyk T, Yost SR, Van Voorhis TJ (2011) Chem Phys 134:054128

    Google Scholar 

  77. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    CAS  Google Scholar 

  78. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794

    CAS  Google Scholar 

  79. Dreuw A, Weisman JL, Head-Gordon MJ (2003) Chem Phys 119:2943

    CAS  Google Scholar 

  80. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao KJ (2004) Chem Phys 120:8425–8433

    CAS  Google Scholar 

  81. Wu Q, Van Voorhis T (2005) Phys Rev A 72:024502

    Google Scholar 

  82. Wu Q, Van Voorhis TJ (2006) Chem Phys 125:164105

    Google Scholar 

  83. Wu Q, Van Voorhis TJ (2006) Chem Theory Comput 2:765–774

    CAS  Google Scholar 

  84. Hsu C-P, You Z-Q, Chen H-CJ (2008) Phys Chem C 112:1204–1212

    CAS  Google Scholar 

  85. Wu Q, Cheng C-L, Van Voorhis TJ (2007) Chem Phys 127:164119

    Google Scholar 

  86. Wu Q, Kaduk B, Van Voorhis TJ (2009) Chem Phys 130:034109

    Google Scholar 

  87. Hsu C-P (2009) Acc Chem Res 42:509–518

    CAS  Google Scholar 

  88. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926–952

    CAS  Google Scholar 

  89. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5004

    Google Scholar 

  90. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Proc Natl Acad Sci U S A 99:5804–5809

    Google Scholar 

  91. Pople JAJ (1967) Chem Phys 47:2026–2033

    CAS  Google Scholar 

  92. Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UTJ (1980) Am Chem Soc 102:589–599

    CAS  Google Scholar 

  93. Bingham RC, Dewar MJS, Lo DHJ (1975) Am Chem Soc 97:1285–1293

    CAS  Google Scholar 

  94. Dewar MJS, Thiel WJ (1977) Am Chem Soc 99:4899–4907

    CAS  Google Scholar 

  95. Stewart JJPJ (1989) Comput Chem 10:209–220

    CAS  Google Scholar 

  96. Stewart JJPJ (2004) Mol Model 10:6–12

    CAS  Google Scholar 

  97. Sattelmeyer KW, Tirado-Rives J, Jorgensen WLJ (2006) Phys Chem A 110:13551–13559

    CAS  Google Scholar 

  98. Cornil J et al(1999) Chem Mater 11:2436–2443

    CAS  Google Scholar 

  99. Castet F, Aurel P, Fritsch A, Ducasse L, Liotard D, Linares M, Cornil J, Beljonne D (2008) Phys Rev B 77:115210

    Google Scholar 

  100. Tsiper E, Soos Z (2003) Phys Rev B 68:085301

    Google Scholar 

  101. Sreearunothai P, Morteani A, Avilov I, Cornil J, Beljonne D, Friend R, Phillips R, Silva C, Herz L (2006) Phys Rev Lett 96:117403

    CAS  Google Scholar 

  102. Idé J, Mothy S, Savoyant A, Fritsch A, Aurel P, Méreau R, Ducasse L, Cornil J, Beljonne D, Castet F (2013) Int J Quantum Chem 113:580–584

    Google Scholar 

  103. Verlaak S, Heremans P (2007) Phys Rev B 75:115127

    Google Scholar 

  104. Tsiper E, Soos Z (2001) Phys Rev B 64:195124

    Google Scholar 

  105. Knowles D, Munn RJ (1940) Mater Sci Mater Electron 5:89–93

    Google Scholar 

  106. Bounds P, Munn R (1981) Chem Phys 59:47–53

    CAS  Google Scholar 

  107. Linares M, Beljonne D, Cornil J, Lancaster K, Brédas J-L, Verlaak S, Mityashin A, Heremans P, Fuchs A, Lennartz C, Idé J, Me Ì, Reau R, Aurel P, Ducasse L, Castet F (2010) J Phys Chem C 114:3215–3224

    Google Scholar 

  108. Verlaak S, Beljonne D, Cheyns D, Rolin C, Linares M, Castet F, Cornil J, Heremans P (2009) Adv Funct Mater 19:3809–3814

    CAS  Google Scholar 

  109. McMahon DP, Cheung DL, Troisi AJ (2011) Phys Chem Lett 2:2737–2741

    CAS  Google Scholar 

  110. Yost SR, Wang L-P, Van Voorhis TJ (2011) Phys Chem C 115:14431–14436

    CAS  Google Scholar 

  111. Jorgensen WL, Maxwell DS, Tirado-Rives JJ (1996) Am Chem Soc 118:11225–11236

    CAS  Google Scholar 

  112. Kline RJ, DeLongchamp DM, Fischer DA, Lin EK, Richter LJ, Chabinyc ML, Toney MF, Heeney M, McCulloch I (2007) Macromolecules 40:7960–7965

    CAS  Google Scholar 

  113. Prosa TJ, Winokur MJ, McCullough RD (1996) Macromolecules 29:3654–3656

    CAS  Google Scholar 

  114. Mu Y, Kosov DS, Stock GJ (2003) Phys Chem B 107:5064–5073

    CAS  Google Scholar 

  115. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712–725

    CAS  Google Scholar 

  116. Aasmundtveit KE, Samuelsen EJ, Guldstein M, Steinsland C, Flornes O, Fagermo C, Seeberg TM, Pettersson LAA, Inganäs O, Feidenhans’l R, Ferrer S (2000) Macromolecules 33:3120–3127

    CAS  Google Scholar 

  117. Grévin B, Rannou P, Payerne R, Pron A, Travers J-P (2003) Adv Mater 15:881–884

    Google Scholar 

  118. Thurn-Albrecht T, Thomann R, Heinzel T, Hugger S (2004) Colloid Polym Sci 282:932–938

    Google Scholar 

  119. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Nature 401:685–688

    CAS  Google Scholar 

  120. Singh UC, Kollman PAJ (1986) Comput Chem 7:718–730

    CAS  Google Scholar 

  121. Huang DM, Faller R, Do K, Moulé AJJ (2010) Chem Theory Comput 6:526–537

    CAS  Google Scholar 

  122. Moreno M, Casalegno M, Raos G, Meille SV, Po RJ (2010) Phys Chem B 114:1591–1602

    CAS  Google Scholar 

  123. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    CAS  Google Scholar 

  124. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  125. Cossi M, Rega N, Scalmani G, Barone VJ (2003) Comput Chem 24:669–681

    CAS  Google Scholar 

  126. McMahon DP, Troisi A (2009) Chem Phys Lett 480:210–214

    CAS  Google Scholar 

  127. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18:789–794

    CAS  Google Scholar 

  128. Servaites JD, Yeganeh S, Marks TJ, Ratner MA (2010) Adv Funct Mater 20:97–104

    CAS  Google Scholar 

  129. Li G, Nitzan A, Ratner MA (2012) Phys Chem Chem Phys 14:14270–14276

    CAS  Google Scholar 

  130. Kroon R, Lenes M, Hummelen JC, Blom PWM, de Boer B (2008) Polym Rev 48:531–582

    CAS  Google Scholar 

  131. Hüfner S (2003) Photoelectron spectroscopy: principles and applications, 3rd edn. Springer Verlag, Berlin

    Google Scholar 

  132. Zahn DR, Gavrila GN, Gorgoi M (2006) Chem Phys 325:99–112

    CAS  Google Scholar 

  133. Hill I, Kahn A, Cornil J, dos Santos D, Brédas J (2000) Chem Phys Lett 317:444–450

    CAS  Google Scholar 

  134. Zhan X, Risko C, Amy F, Chan C, Zhao W, Barlow S, Kahn A, Brédas J-L, Marder SRJ (2005) Am Chem Soc 127:9021–9029

    CAS  Google Scholar 

  135. Born MZ (1920) Physik 1:45–48

    CAS  Google Scholar 

  136. Nayak PK, Periasamy N (2009) Org Electron 10:532–535

    CAS  Google Scholar 

  137. Nayak PK, Periasamy N (2009) Org Electron 10:1396–1400

    CAS  Google Scholar 

  138. Yost SR, Van Voorhis T (2013) J Phys Chem C 2013

    Google Scholar 

  139. Beljonne D, Cornil J, Muccioli L, Zannoni C, Brédas J-L, Castet F (2011) Chem Mater 23:591–609

    CAS  Google Scholar 

  140. Dunitz JD, Gavezzotti A (2009) Chem Soc Rev 38:2622–2633

    CAS  Google Scholar 

  141. Price SSL (2009) Acc Chem Res 42:117–126

    CAS  Google Scholar 

  142. Murdey RJ, Salaneck WR (2005) Jpn J Appl Phys 44:3751–3756

    CAS  Google Scholar 

  143. Avilov I, Geskin V, Cornil J (2009) Adv Funct Mater 19:624–633

    CAS  Google Scholar 

  144. Smith MB, Michl J (2010) Chem Rev 110:6891–6936

    CAS  Google Scholar 

  145. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MFJ (2004) Am Chem Soc 126:4084–4085

    CAS  Google Scholar 

  146. Akaike K, Kanai K, Ouchi Y, Seki K (2010) Adv Funct Mater 20:715–721

    CAS  Google Scholar 

  147. Van Voorhis T, Kowalczyk T, Kaduk B, Wang L-P, Cheng C-L, Wu Q (2010) Annu Rev Phys Chem 61:149–170

    Google Scholar 

  148. Wang L-P, Wu Q, Van Voorhis T (2010) Inorg Chem 49:4543–4553

    CAS  Google Scholar 

  149. Kowalczyk T, Lin Z, Van Voorhis TJ (2010) Phys Chem A 114:10427–10434

    CAS  Google Scholar 

  150. Jadhav PJ, Brown PR, Thompson N, Wunsch B, Mohanty A, Yost SR, Hontz E, Van Voorhis T, Bawendi MG, Bulović V, Baldo MA (2012) Adv Mater 24:6169–6174

    CAS  Google Scholar 

  151. Difley S, Van Voorhis TJ (2011) Chem Theory Comput 7:594–601

    CAS  Google Scholar 

  152. Yi Y, Coropceanu V, Brédas J-LJ (2009) Am Chem Soc 131:15777–15783

    CAS  Google Scholar 

  153. Liu T, Cheung DL, Troisi A (2011) Phys Chem Chem Phys 13:21461–21470

    CAS  Google Scholar 

  154. Ray B, Alam MA (2013) IEEE J Photovolt 3:310–317

    Google Scholar 

  155. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Adv Funct Mater 11:374–380

    CAS  Google Scholar 

  156. Gadisa A, Svensson M, Andersson MR, Inganäs O (2004) Appl Phys Lett 84:1609

    CAS  Google Scholar 

  157. Kietzke T, Egbe DAM, Hörhold H-H, Neher D (2006) Macromolecules 39:4018–4022

    CAS  Google Scholar 

  158. Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC (2007) Org Lett 9:551–554

    CAS  Google Scholar 

  159. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2009) Nat Mater 8:904–909

    CAS  Google Scholar 

  160. Rauh D, Wagenpfahl A, Deibel C, Dyakonov V (2011) Appl Phys Lett 98:133301

    Google Scholar 

  161. Nevil N, Ling Y, Van Mierloo S, Kesters J, Piersimoni F, Adriaensens P, Lutsen L, Vanderzande D, Manca J, Maes W et al(2012) Phys Chem Chem Phys 14:15774–15784

    CAS  Google Scholar 

  162. Faist MA, Kirchartz T, Gong W, Ashraf RS, McCulloch I, de Mello JC, Ekins-Daukes NJ, Bradley DD, Nelson J (2011) J Am Chem Soc 134:685–692

    Google Scholar 

  163. Walker B, Tamayo AB, Dang X-D, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen T-Q (2009) Adv Funct Mater 19:3063–3069

    CAS  Google Scholar 

  164. van Bavel SS, Bärenklau M, de With G, Hoppe H, Loos J (2010) Adv Funct Mater 20:1458–1463

    Google Scholar 

  165. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617–1622

    CAS  Google Scholar 

  166. Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Adv Funct Mater 18:4029–4035

    CAS  Google Scholar 

  167. Liu T, Troisi A (2013) Adv Mater 25:1038–1041

    CAS  Google Scholar 

  168. Jailaubekov AE, Willard AP, Tritsch JR, Chan W-L, Sai N, Gearba R, Kaake LG, Williams KJ, Leung K, Rossky PJ, Zhu X-Y (2013) Nat Mater 12:66–73

    CAS  Google Scholar 

  169. Tamura H, Ramon J, Bittner E, Burghardt I (2008) Phys Rev Lett 100:107402

    Google Scholar 

  170. Deibel C, Strobel T, Dyakonov V (2009) Phys Rev Lett 103:036402

    Google Scholar 

  171. Guo J, Ohkita H, Benten H, Ito SJ (2010) Am Chem Soc 132:6154–6164

    CAS  Google Scholar 

  172. Vázquez H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F, Kahn A (2004) Europhys Lett 65:802–808

    Google Scholar 

  173. Vázquez H, Gao W, Flores F, Kahn A (2005) Phys Rev B 71:041306

    Google Scholar 

  174. Braun S, Salaneck WR, Fahlman M (2009) Adv Mater 21:1450–1472

    CAS  Google Scholar 

  175. Sato N, Seki K, Inokuchi H (1981) J Chem Soc Faraday Trans 2(77):1621–1633

    Google Scholar 

  176. Chen W, Qi DC, Huang H, Gao X, Wee ATS (2011) Adv Funct Mater 21:410–424

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Van Voorhis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yost, S.R., Hontz, E., McMahon, D.P., Van Voorhis, T. (2014). Electronic and Optical Properties at Organic/Organic Interfaces in Organic Solar Cells. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_462

Download citation

Publish with us

Policies and ethics