Skip to main content

Salient Features of Enantioselective Gas Chromatography: The Enantiomeric Differentiation of Chiral Inhalation Anesthetics as a Representative Methodological Case in Point

  • Chapter
  • First Online:
Differentiation of Enantiomers I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 340))

Abstract

The enantiomeric differentiation of the volatile chiral inhalation anesthetics enflurane, isoflurane, and desflurane by analytical and preparative gas chromatography on various modified cyclodextrins is described. Very large enantioseparation factors α are obtained on the chiral selector octakis(3-O-butanoyl-2,6-di-O-pentyl)-γ-cyclodextrin (Lipodex E). The gas-chromatographically observed enantioselectivities are corroborated by NMR-spectroscopy using Lipodex E as chiral solvating agent and by various sensor devices using Lipodex E as sensitive chiral coating layer. The assignment of the absolute configuration of desflurane is clarified. Methods are described for the determination of the enantiomeric distribution of chiral inhalation anesthetics during narcosis in clinical trials. The quantitation of enantiomers in a sample by the method of enantiomeric labeling is outlined. Reliable thermodynamic parameters of enantioselectivity are determined by using the retention-increment R′ approach for the enantiomeric differentiation of various chiral halocarbon selectands on diluted cyclodextrin selectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He L, Beesley TE (2005) Applications of enantiomeric gas chromatography: a review. J Liq Chromatogr Rel Techn 28:1075–1114

    Google Scholar 

  2. Schurig V (2010) Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharmaceut Française 68:82–98

    CAS  Google Scholar 

  3. Schurig V (2011) Separation of enantiomers by gas chromatography on chiral stationary phases. In: Ahuja S (ed) Chiral separation methods for pharmaceutical and biotechnological products, Chap. 9. Wiley, Hoboken, pp 251–297

    Google Scholar 

  4. Schurig V (2011) Gas-chromatographic enantioseparation of derivatized α-amino acids on chiral stationary phases - past and present. J Chromatogr B 879:3122–3140

    CAS  Google Scholar 

  5. Beesley T, Majors RE (2011) The state of the art in chiral gas chromatography. LC. GC North America 29:642–651 & LC x GC Europe (May 1, 2012) 232–243

    Google Scholar 

  6. Halpern DF (1989) Inhalation anesthetics – the new generation. CHEMTECH 305–308

    Google Scholar 

  7. Halpern DF (1993) Recent developments in fluorine substituted volatile anesthetics. In: Filler R et al. (eds) Organofluorine compounds in medicinal chemistry and biomedical applications. Elsevier Science Publishers B.V., pp 101–133

    Google Scholar 

  8. Zbinden A, Thomson D (1992) Inhalationsanästhetika: Pharmakokinetik. In: Doenicke A, Kettler D, List WF, Tarnow J, Thomson D (eds) Anästhesiologie. Springer, Berlin, Kapitel 2.4, p 116

    Google Scholar 

  9. Halpern DF (1994) Volatile anaesthetics for the 21st century. In: Banks RE, Lowe KC (eds) Fluorine in medicine in the 21st century, Paper 15. Rapra Technology, UMIST Manchester, pp 1–8

    Google Scholar 

  10. Halpern DF (1994) Fluorinated inhalation anesthetics. In: Banks RE et al. (eds) Organofluorine chemistry: principles and commercial applications, Chap. 25. Plenum, New York, 1994, pp 543–554

    Google Scholar 

  11. Franks NP, Dickinson R, Lieb WR (1994) Effects of isoflurane enantiomers on general anaesthetic target sites. In: Banks RE, Lowe KC (eds) Fluorine in medicine in the 21st century, Rapra Technology, UMIST Manchester, Paper 16, pp 1–7

    Google Scholar 

  12. Aboul-Enein HY, Bojarski J, Szymura-Oleksiak J (2000) The impact of chirality of the fluorinated volatile inhalation anaesthetics on their clinical applications. Biomed Chromatogr 14:213–218

    CAS  Google Scholar 

  13. Schurig V (1984) Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. Angew Chem Int Ed 23:747–765

    Google Scholar 

  14. Schurig V (1988) Enantiomer analysis by complexation gas chromatography – scope, merits and limitations. J Chromatogr 441:135–153

    CAS  Google Scholar 

  15. Schurig V, Nowotny H-P (1990) Gas chromatographic separation of enantiomers on cyclodextrin derivatives. Angew Chem Int Ed 29:939–957

    Google Scholar 

  16. König WA (1992) Gas chromatographic enantiomer separation with modified cyclodextrins. Hüthig, Heidelberg

    Google Scholar 

  17. Schurig V, Nowotny H-P (1988) Separation of enantiomers on diluted permethylated β-cyclodextrin by high-resolution gas chromatography. J Chromatogr 441:155–163

    CAS  Google Scholar 

  18. Schurig V, Jung M, Schmalzing D, Schleimer M, Duvekot J, Buyten JC, Peene JA, Mussche P (1990) CGS enantiomer separation on diluted cyclodextrin derivatives coated on fused silica columns. J High Resolut Chromatogr 13:470–474

    CAS  Google Scholar 

  19. Schurig V, Schmalzing D, Mühleck U, Jung M, Schleimer M, Mussche P, Duvekot C, Buyten JC (1990) Gas chromatographic enantiomer separation on polysiloxane-anchored permethyl-β-cyclodextrin (Chirasil-Dex). J High Resolut Chromatogr 13:713–718

    CAS  Google Scholar 

  20. Schurig V, Jung M, Mayer S, Negura S, Fluck M, Jakubetz H (1994) Toward unified enantioselective chromatography with a single capillary column coated with Chirasil-Dex. Angew Chem Int Ed 33:2222–2223

    Google Scholar 

  21. Armstrong DW, Li W-Y, Stalcup AM, Secor HV, Izac RR, Seeman JI (1990) Capillary gas-chromatographic separation of enantiomers with stable dipentyl α-cyclodextrin derivatized, β-cyclodextrin derivatized and γ-cyclodextrin derivatized stationary phases. Anal Chem Acta 234:365–380

    CAS  Google Scholar 

  22. Li W-Y, Jin L, Armstrong DW (1990) 2,6-Di-O-pentyl-3-O-trifluoroacetyl cyclodextrin liquid stationary phases for capillary gas chromatographic separation of enantiomers. J Chromatogr 509:303–324

    CAS  Google Scholar 

  23. Hardt I, König WA (1993) Diluted versus undiluted cyclodextrins derivatives in capillary gas chromatography and the effect of linear carrier gas velocity, column temperature, and length on enantiomer separation. J Microcol Sep 5:35–40

    CAS  Google Scholar 

  24. Jung M, Schmalzing D, Schurig V (1991) Theoretical approach to the gas chromatographic separation of enantiomers on dissolved cyclodextrin derivatives. J Chromatogr 552:43–57

    CAS  Google Scholar 

  25. Meinwald J, Thompson WR, Pearson DL, König WA, Runge T, Francke W (1991) Inhalational anesthetics stereochemistry: optical resolution of halothane, enflurane, and isoflurane. Science 251:560–561

    CAS  Google Scholar 

  26. Shitangkoon A, Staerk DU, Vigh G (1993) Gas-chromatographic separation of the enantiomers of volatile fluoroether anesthetics using derivatized cyclodextrins stationary phases, Part 1. J Chromatogr A 657:387–394

    CAS  Google Scholar 

  27. Ramig K, Krishnaswami A, Rozov LA (1996) Chiral interactions of the fluoroether anesthetics desflurane, isoflurane, enflurane, and analogues with modified cyclodextrins studied by capillary gas chromatography and nuclear magnetic resonance spectroscopy: a simple method for column-suitability screening. Tetrahedron 52:319–330

    CAS  Google Scholar 

  28. König WA, Krebber R, Mischnick P (1989) Cyclodextrins as chiral stationary phases in capillary gas chromatography, Part V: Octakis(3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. J High Resolut Chromatogr 12:732–738

    Google Scholar 

  29. Schurig V, Grosenick H (1994) Preparative enantiomer separation of enflurane and isoflurane by inclusion chromatography. J Chromatogr A 666:617–625

    CAS  Google Scholar 

  30. Gnaim JM, Schurig V, Grosenick H, Green BS (1995) Partial preparative resolution of the inhalation anesthetic enflurane using clathrate inclusion complexes. Tetrahedron Asymmetry 6:1499–1502

    CAS  Google Scholar 

  31. Schurig V, Grosenick H, Juza M (1995) Enantiomer separation of chiral inhalation anesthetics (enflurane, isoflurane and desflurane) by gas chromatography on a γ-cyclodextrin derivative. Recl Trav Chim Pays-Bas 114:211–219

    CAS  Google Scholar 

  32. Grosenick H, Schurig V (1997) Enantioelective capillary gas chromatography and capillary supercritical fluid chromatography on an immobilized γ-cyclodextrin derivative. J Chromatogr A 761:181–193

    CAS  Google Scholar 

  33. Schurig V (2004) Preparative-scale separation of enantiomers on chiral stationary phases by gas chromatography. In: Toda F (ed) Enantiomer separation: fundamentals and practical methods. Kluwer, Dordrecht, pp 267–300

    Google Scholar 

  34. Yamamoto C, Okamoto Y (2004) Practical resolution of enantiomers by high-performance liquid chromatography. In: Toda F (ed) Enantiomer separation: fundamentals and practical methods, Kluwer, Dordrecht, pp 301–322

    Google Scholar 

  35. Francotte ER (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    CAS  Google Scholar 

  36. Gil-Av E, Feibush B (1967) Resolution of enantiomers by gas liquid chromatography with optically active stationary phases. Separation on packed columns. Tetrahedron Lett 35:3345–3347

    Google Scholar 

  37. Golding BT, Sellars PJ, Wong AK (1977) Resolution of racemic epoxides on g.l.c. columns containing optically active lanthanoid complexes. J Chem Soc Chem Commun 570–571

    Google Scholar 

  38. Kościelski T, Sybilska D, Jurczak J (1983) Separation of α- and β-pinene into enantiomers in gas-liquid chromatography systems via α-cyclodextrin inclusion complexes. J Chromatogr 280:131–134

    Google Scholar 

  39. Schurig V (1987) Semi-preparative enantiomer separation of 1,6-dioxaspiro[4.4]nonanes by complexation gas chromatography. Naturwissenschaften 74:190–191

    CAS  Google Scholar 

  40. Schurig V, Leyrer U (1990) Semi-preparative enantiomer separation of 1-chloro-2,2-dimethylaziridine by complexation gas chromatography – absolute configuration and barrier of inversion. Tetrahedron Asymmetry 1:865–868

    CAS  Google Scholar 

  41. Lindström M, Norin T, Roeraade J (1990) Gas chromatographic separation of monoterpene hydrocarbon enantiomers on α-cyclodextrin. J Chromatogr 513:315–320

    Google Scholar 

  42. Bicchi C, Balbo C, D’Amato A, Manzin V, Schreier P, Rozenblum A, Brunerie P (1998) Cyclodextrin derivatives in GC separation of racemic mixtures of volatiles – Part XIV: Some applications of thick-film wide-bore columns for enantiomer GC micropreparation. J High Resolut Chromatogr 21:103–106

    CAS  Google Scholar 

  43. Hardt I, König WA (1994) Preparative enantiomer separation with modified cyclodextrins as chiral stationary phases. J Chromatogr 666:611–615

    CAS  Google Scholar 

  44. Schürch S, Saxer A, Claude S, Tabacchi R, Trusch B, Hulliger J (2001) Semi-preparative gas chromatographic separation of all-trans-perhydrotriphenylene enantiomers on a chiral cyclodextrin stationary phase. J Chromatogr 905:175–182

    Google Scholar 

  45. Staerk DU, Shitangkoon A, Vigh G (1994) Gas chromatographic separation of the enantiomers of volatile fluoroether anesthetics by derivatized cyclodextrins. II. Preparative-scale separations for isoflurane. J Chromatogr A 663:79–85

    CAS  Google Scholar 

  46. Staerk DU, Shitangkoon A, Vigh G (1994) Gas chromatographic separation of the enantiomers of volatile fluoroether anesthetics by derivatized cyclodextrins. III. Preparative-scale separations for enflurane. J Chromatogr A 667:133–140

    Google Scholar 

  47. Schurig H, Grosenick BS (1993) Green, Preparative enantiomer separation of the anesthetic enflurane by gas inclusion chromatography. Angew Chem Int Ed 32:1662–1663

    Google Scholar 

  48. Juza M, Braun E, Schurig V (1997) Preparative enantiomer separation of the inhalation anesthetics enflurane, isoflurane and desflurane by gas chromatography on a derivatized γ-cyclodextrin stationary phase. J Chromatogr A 769:119–127

    CAS  Google Scholar 

  49. Schurig V, Grosenick H, Juza M (June 1998) The chiral inhalation anesthetics enflurane, isoflurane and desflurane. Chimica Oggi (Chem Today) 16:40–44

    CAS  Google Scholar 

  50. Eger EI II, Koblin DD, Laster MJ, Schurig V, Juza M, Ionescu P, Gong D (1997) Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally. Anesth Analg 85:188–192

    CAS  Google Scholar 

  51. Schurig V, Czesla H (2001) Miniaturization of enantioselective gas chromatography. Enantiomer 6:107–128

    CAS  Google Scholar 

  52. Juza M, Di Giovanni O, Biressi G, Schurig V, Mazzotti M, Morbidelli M (1998) Continuous enantiomer separation of the volatile inhalation anesthetic enflurane with a gas chromatographic simulated moving bed unit. J Chromatogr A 813:333–347

    CAS  Google Scholar 

  53. Biressi G, Quattrini F, Juza M, Mazzotti M, Schurig V, Morbidelli M (2000) Gas chromatographic simulated moving bed separation of the enantiomers of the inhalation anesthetic enflurane. Chem Engineer Sci 55:4537–4547

    CAS  Google Scholar 

  54. Biressi G, Rajendran G, Mazzotti M, Morbidelli M (2002) The GC-SMB separation of the enantiomers of isoflurane. Sep Sci Technol 37:2529–2543

    CAS  Google Scholar 

  55. Biressi G, Mazzotti M, Morbidelli M (2002) Experimental investigation of the behavior of gas phase simulated moving beds. J Chromatogr A 957:211–225

    CAS  Google Scholar 

  56. Bentley J, Huang Q, Kawajiri Y, Eic M, Seidel-Morgenstern A (2011) Optimizing the separation of gaseous enantiomers by simulated moving bed and pressure swing adsorption. Adsorpt J Int Adsorpt Soc 17:159–170

    CAS  Google Scholar 

  57. Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216:709–738

    CAS  Google Scholar 

  58. Bodenhöfer K, Hierlemann A, Juza M, Schurig V, Göpel W (1997) Chiral discrimination of inhalation anesthetics and methyl propionates by thickness shear mode resonators: new insights into the mechanisms of enantioselectivity by cyclodextrins. Anal Chem 69:4017–4031

    Google Scholar 

  59. Bodenhöfer K, Hierlemann A, Göpel W, Juza M, Gross B, Schurig V (June 1998) Efficient gas sensor mediated enantiomer discrimination of 2-substituted methyl propionates and chiral inhalation anesthetics on a modified cyclodextrin. Chimica Oggi (Chem Today) 16:56–58

    Google Scholar 

  60. Hierlemann A, Bodenhöfer K, Juza M, Gross B, Schurig V, Göpel W (1999) Enantioselective monitoring of chiral inhalation anesthetics by simple gas sensors. Sens Mater 11:209–218

    CAS  Google Scholar 

  61. Schurig V (2005) Contribution to the theory and practice of the chromatographic separation of enantiomers. Chirality 17:S205–S226

    CAS  Google Scholar 

  62. Roussel C, Del Rio A, Pierrot-Sanders J, Piras P, Vanthuyne N (2004) Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. J Chromatogr A 1037:311–328

    CAS  Google Scholar 

  63. Schurig V, Juza M, Preschel M, Nicholson GJ, Bayer E (1999) Gas-chromatographic enantiomer separation of proteinogenic amino acid derivatives: comparison of Chirasil-Val and Chirasil-γ-Dex used as chiral stationary phases. Enantiomer 4:297–303

    CAS  Google Scholar 

  64. Schurig V, Bürkle W (1982) Extending the scope of enantiomer resolution by complexation gas chromatography. J Amer Chem Soc 104:7573–7580

    CAS  Google Scholar 

  65. Keinan K, Seth KK, Lamed R (1986) Organic synthesis with enzymes. 3. TBADH-catalyzed reduction of chloro ketones. Total synthesis of (+)-(S, S)-(cis-6-methyltetrahydropyran-2-yl)acetic acid: a civet constituent. J Amer Chem Soc 108:3474–3480

    CAS  Google Scholar 

  66. Schurig V (2002) Review – practice and theory of enantioselective complexation gas chromatography. J Chromatogr A 965:315–356

    CAS  Google Scholar 

  67. Polavarapu PL (2012) Molecular structure determination using chiroptical spectroscopy: where we may go wrong? Chirality 24:909–920

    CAS  Google Scholar 

  68. Polavarapu PL, Cholli AL, Vernice G (1992) Absolute configuration of isoflurane. J Am Chem Soc 114:10953–10955

    CAS  Google Scholar 

  69. Polavarapu PL, Cholli AL, Vernice G (1993) Determination of absolute configurations and predominant conformations of general inhalation anesthetics: desflurane. J Pharmaceut Sci 82:791–793

    CAS  Google Scholar 

  70. Schurig V, Juza M, Green BS, Horakh J, Simon A (1996) Absolute configuration of the inhalation anesthetics isoflurane and desflurane. Angew Chem Int Ed Engl 35:1680–1682

    CAS  Google Scholar 

  71. Ramig K, Lavinda O, Szalda DJ (2012) The highly stereoselective decarboxylation of (+)-bromo-1-chloro-2,2,2-trifluoropropanoic acid to give (+)-1-bromo-1-chloro-2,2,2-trifluoroethane [(+)-halothane] with retention of configuration. Tetrahedron Asymmetry 23:201–204

    CAS  Google Scholar 

  72. Polavarapu PL, Cholli AL, Vernice G (1997) Determination of absolute configurations and predominant conformations of general inhalation anesthetics: desflurane (vol 82, pg 791, 1993). J Pharmaceut Sci 86:267

    CAS  Google Scholar 

  73. Polavarapu PL, Zhao CX, Cholli AL, Vernice GG (1999) Vibrational circular dichroism, absolute configuration, and predominant conformations of volatile anesthetics: desflurane. J Phys Chem 103:6127–6132

    CAS  Google Scholar 

  74. Biedermann PU, Cheeseman JR, Frisch MJ, Schurig V, Gutman I, Agranat I (1999) Conformational spaces and absolute configurations of chiral fluorinated inhalation anaesthetics. A theoretical study. J Org Chem 64:3878–3884

    CAS  Google Scholar 

  75. Ramig K, Brockunier L, Rafalko PW, Rozov LA (1995) Carbon–carbon bond cleavage with inversion of configuration: conversion of (R)-(+)-1-methoxytetrafluoropropionic acid to (S)-(−)-1,2,2,2-tetrafluoroethyl methyl ether. Angew Chem Int Ed 34:222–223

    CAS  Google Scholar 

  76. Rozov LA, Rafalko PW, Evans SM, Brockunier L, Ramig K (1995) Asymmetric synthesis of the volatile anesthetic 1,2,2,2-tetrafluoroethyl chlorofluoromethyl ether using a stereospecific decarboxylation of unusual stereochemical outcome. J Org Chem 60:1319–1325

    CAS  Google Scholar 

  77. Rozov LA, Rafalko PW, Evans SM, Bockunier L, Ramig K (1995) Asymmetric synthesis of the volatile anesthetic 1,2,2,2-tetrafluoroethyl chlorofluoromethyl ether using a stereospecific decarboxylation of unusual stereochemical outcome, correction. J Org Chem 62:6094

    Google Scholar 

  78. Young JW, Brandt S (1992) Methods of use and compositions of (R)-isoflurane and (R)-desflurane. US patent 5,114,714, 19 May 1992

    Google Scholar 

  79. Young JW, Brandt S (1992) Methods of use and compositions of (S)-isoflurane and (S)-desflurane. US patent 5,114,715, 19 May 1992

    Google Scholar 

  80. Schmidt R (1997) R/S-Isofluran. Enantiomeranalytik mittels Headspace-Gaschromatographie in Patientenblutproben. Diploma thesis, University of Tübingen

    Google Scholar 

  81. Juza M, Jakubetz H, Hettesheimer H, Schurig V (1999) Quantitative determination of isoflurane enantiomers in blood samples during and after surgery via headspace gas chromatography-mass spectrometry. J Chromatogr B 735:93–102

    CAS  Google Scholar 

  82. Schmidt R, Wahl HG, Häberle H, Dieterich H-J, Schurig V (1999) Headspace gas chromatography – mass spectrometry analysis of isoflurane enantiomers in blood samples after anesthesia with the racemic mixture. Chirality 11:206–211

    CAS  Google Scholar 

  83. Haeberle HA, Wahl HG, Jakubetz H, Krause H, Schmidt R, Schurig V, Dieterich H-J (2002) Accumulation of S(+)-enantiomer in human beings after general anaesthesia with isoflurane racemate. Eur J Anaesthes 19:641–646

    CAS  Google Scholar 

  84. Reiner C, Nicholson GJ, Nagel U, Schurig V (2007) Evaluation of enantioselective gas chromatography for the determination of minute deviations from racemic compositions of α-amino acids with emphasis on tyrosine: accuracy and precision of the method. Chirality 19:401–414

    CAS  Google Scholar 

  85. Holaday DA, Fiserova-Bergerova V, Latto IP, Zumbiel MA (1975) Resistance of isoflurane to biotransformation in man. Anesthesiology 43:325–332

    CAS  Google Scholar 

  86. Franks NP, Lieb WR (1991) Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254:427–430

    CAS  Google Scholar 

  87. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    CAS  Google Scholar 

  88. Wahl HG, Günkinger T, Aigner GC, Schmidt R, Häberle H, Schurig V, Liebich HM, Luft D, Dieterich HJ (2000) GC-MS analysis of isoflurane enantiomers in human breath, plasma and urine. In: Proceedings of 23rd international symposium on capillary chromatography, 2000. Riva del Garda, Italy

    Google Scholar 

  89. Wahl HG, Schmidt R (2000) Analyse von Isofluran-Enantiomeren in Blut. Urin und Atem, GIT Labor-Fachzeitschrift 44:412–416

    CAS  Google Scholar 

  90. Schmidt R, Hadjidimos M, Wahl HG, Schurig V (2000) Enantiomer separation of desflurane in human blood and urine samples by headspace GC/MS. In: Proceedings of 23rd international symposium on capillary chromatography, 2000. Riva del Garda, Italy

    Google Scholar 

  91. Aigner GC (2003) Relationsanalyse von Isofluran-Enantiomeren in der Exspirationsluft während der postoperativen Phase. Ph.D. thesis, University of Tübingen

    Google Scholar 

  92. Haeberle HA, Wahl HG, Aigner G, Unertl K, Dieterich H-J (2004) Release of S(+) enantiomers in breath samples after anaesthesia with isoflurane racemate. Eur J Anaesthes 21:144–150

    CAS  Google Scholar 

  93. Bonner WA (1973) Enantiomeric markers in the quantitative gas chromatographic analysis of optical isomers. Application to the estimation of amino acid degradation. J Chromatogr Sci 11:101–104

    CAS  Google Scholar 

  94. Blair NE, Bonner WA (1980) Quantitative determination of D ≠ L mixtures of optical enantiomers by gas chromatography. J Chromatogr 198:185–187

    CAS  Google Scholar 

  95. Frank H, Nicholson GJ, Bayer E (1978) Enantiomer labelling, a method for the quantitative analysis of amino acids. J Chromatogr 167:187–196

    CAS  Google Scholar 

  96. Frank H, Rettenmeier A, Weicker H, Nicholson GJ, Bayer E (1980) A new gas chromatographic method for determination of amino acid levels in human serum. Clinica Chim Acta 105:201–211

    CAS  Google Scholar 

  97. Bayer E, Frank H, Gerhardt J, Nicholson G (1987) Capillary gas chromatographic analysis of amino acids by enantiomer labelling. J Assoc Off Anal Chem 70:234–240

    CAS  Google Scholar 

  98. Tsai W-L, Hermann K, Hug E, Rohde B, Dreiding AS (1985) Enantiomer-differentiation induced by an enantiomeric excess during chromatography with achiral phases. Helv Chim Acta 68:2238–2243

    CAS  Google Scholar 

  99. Trapp O, Schurig V (2010) Nonlinear effects in enantioselective chromatography: prediction of unusual elution profiles of enantiomers in non-racemic mixtures on an achiral stationary phase doped with small amounts of a chiral selector. Tetrahedron Asymmetry 21:1334–1340

    CAS  Google Scholar 

  100. Rohrschneider L (1973) Solvent characterization by gas-liquid partition coefficients of selected solutes. Anal Chem 45:1241–1247

    CAS  Google Scholar 

  101. Levkin PA, Schurig V (2008) Apparent and true enantioselectivity of single- and binary-selector chiral stationary phases in gas chromatography. J Chromatogr A 1184:309–322

    CAS  Google Scholar 

  102. Schurig V (2009) Review: Elaborate treatment of retention in chemoselective chromatography – the retention increment approach and non-linear effects. J Chromatogr A 1216:1723–1736

    CAS  Google Scholar 

  103. Schurig V, Weber R (1981) Manganese(II)-bis(3-heptafluorobutyryl-1R-camphorate): a versatile agent for the resolution of racemic cyclic ethers by complexation gas chromatography. J Chromatogr 217:51–70

    CAS  Google Scholar 

  104. Schurig V, Juza M (1997) Approach to the thermodynamics of enantiomer separation by gas chromatography – enantioselectivity between the chiral inhalation anesthetics enflurane, isoflurane and desflurane and a diluted γ-cyclodextrin derivative. J Chromatogr A 757:119–135

    CAS  Google Scholar 

  105. McGachy NT, Grinberg N, Variankaval N (2005) Thermodynamic study of N-trifluoroacetyl-O-alkyl nipecotic acid ester enantiomers on diluted permethylated β-cyclodextrin stationary phase. J Chromatogr A 1064:193–204

    CAS  Google Scholar 

  106. Allenmark S (1993) Chiral discrimination by albumin: a mechanistic study of liquid chromatographic optical resolution of nonaromatic carboxylic acids. Chirality 5:295–299

    CAS  Google Scholar 

  107. Götmar G, Fornstedt T, Guiochon G (2000) Apparent and true enantioselectivity in enantioseparations. Chirality 12:558–564

    Google Scholar 

  108. Levkin P, Maier NM, Lindner W, Schurig V (2012) A practical method for the quantitative assessment of non-enantioselective versus enantioselective interactions encountered in liquid chromatography on a brush-type chiral stationary phase. J Chromatogr A 1269:270–278

    CAS  Google Scholar 

  109. Schurig V, Bürkle W, Hintzer K, Weber R (1989) Evaluation of nickel(II) bis[α-(heptafluorobutanoyl)-terpeneketonates] as chiral stationary phases for the enantiomer separation of alkyl-substituted cyclic ethers by complexation chromatography. J Chromatogr 475:23–44

    CAS  Google Scholar 

  110. Schurig V (1998) Peak coalescence phenomena in enantioselective chromatography. Chirality 10:140–146

    CAS  Google Scholar 

  111. Watabe K, Charles R, Gil-Av E (1989) Temperature dependent inversion of elution sequence in the resolution of α-amino acid enantiomers on chiral diamide selectors. Angew Chem Int Ed 28:192–194

    Google Scholar 

  112. Levkin PA, Levkina A, Czesla H, Schurig V (2007) Temperature-induced inversion of the elution order of enantiomers in gas chromatography: N-ethoxycarbonyl propylamides and N-trifluoroacetyl ethyl esters of α-amino acids on Chirasil-Val-C11 and Chirasil-Dex stationary phases. Anal Chem 79:4401–4409

    CAS  Google Scholar 

  113. Schurig V, Ossig J, Link R (1989) Evidence for a temperature dependent reversal of the enantioselectivity in complexation gas chromatography on chiral phases. Angew Chem Int Ed 28:194–196

    Google Scholar 

  114. Jiang Z, Schurig V (2008) Existence of a low isoenantioselective temperature in complexation gas chromatography. Profound change of enantioselectivity of a nickel(II) chiral selector either bonded to, or dissolved in, poly(dimethylsiloxane). J Chromatogr A 1186:262–270

    CAS  Google Scholar 

  115. König WA, Icheln D, Hardt I (1991) Unusual retention behaviour of methyl lactate and methyl 2-hydroxybutyrate enantiomers on a modified cyclodextrin. J High Resolut Chromatogr 14:694–695

    Google Scholar 

  116. Grosenick H, Juza M, Klein J, Schurig V (1996) NMR spectroscopic investigation of the enantioselective complexation between the inhalation anesthetics enflurane and isoflurane and a γ-cyclodextrin derivative. Enantiomer 1:337–349

    CAS  Google Scholar 

  117. Sicoli G, Pertici F, Jiang Z, Jicsinszky L, Schurig V (2007) Gas-chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins (“acyclodextrins”) as novel chiral stationary phases. Chirality 19:391–400

    CAS  Google Scholar 

  118. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Google Scholar 

  119. Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838

    CAS  Google Scholar 

  120. Pirkle WH, Pochapsky TC (1989) Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem Rev 89:347–362

    CAS  Google Scholar 

  121. Lipkowitz KB (1998) Application of computational chemistry to the study of cyclodextrins. Chem Rev 98:1829–1873

    CAS  Google Scholar 

  122. Dodziuk H, Lukin O (2000) Dependence of the average energy between the 1: 2 complexes of enantiomeric α-pinenes with α-cyclodextrin on the length of dynamic simulation. Chem Phys Lett 327:18–22

    CAS  Google Scholar 

  123. Dodziuk H, Lukin O, Nowiński KS (2000) Molecular mechanics calculations of molecular and chiral recognition by cyclodextrins. Is it reliable? The selective complexation of decalins by β-cyclodextrin. J Mol Struct (Theochem) 503:221–230

    Google Scholar 

  124. König WA, Lutz S, Wenz G, van der Bey E (1988) Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part II: heptakis(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin. J High Resolut Chromatogr 11:506–509

    Google Scholar 

  125. Köhler JEH, Hohla M, Richters M, König WA (1992) Cyclodextrin derivatives as chiral selectors – investigation of the interaction with (R, S)-methyl-2-chloropropionate by enantioselective gas-chromatography, NMR-spectroscopy, and molecular-dynamics simulation. Angew Chem Int Ed 31:319–320

    Google Scholar 

  126. Köhler JEH, Hohla M, Richters M, König WA (1994) A molecular-dynamics simulation of the complex formation methyl (R)/(S)-2-chloropropionate and heptakis(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin. Chem Ber 127:119–126

    Google Scholar 

  127. Koen de Vries N, Coussens B, Meier RJ, Heemels G (1992) The separation of enantiomers on modified cyclodextrin columns: measurements and molecular modeling. J High Resolut Chromatogr 15:499–504

    CAS  Google Scholar 

  128. Berthod A, Li W, Armstrong DW (1992) Multiple enantioselective retention mechanisms on derivatized cyclodextrin gas chromatographic chiral stationary phases. Anal Chem 64:873–879

    CAS  Google Scholar 

  129. Schmidt R, Roeder M, Oeckler O, Simon A, Schurig V (2000) Separation and absolute configuration of the enantiomers of a degradation product of the new inhalation anesthetic sevoflurane. Chirality 12:751–755

    CAS  Google Scholar 

  130. Huang CL, Venturella VS, Cholli AL, Venutolo FM, Silbermann AT, Vernice GG (1989) Detailed investigation of fluoromethyl-1,1,1,3,3,3-hexafluoro-2-propyl ether (sevoflurane) and its degradation products. 1. Synthesis of fluorinated, soda lime induced degradation products. J Fluorine Chem 45:239–253

    CAS  Google Scholar 

  131. Dietrich A, Maas B, Karl V, Kreis P, Lehmann D, Weber B, Mosandl A (1992) Stereoisomeric flavor compounds. LV. Stereodifferentiation of some chiral volatiles on heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin. J High Resolut Chromatogr 15:176–179

    CAS  Google Scholar 

  132. Wang F, Polavarapu PL, Schurig V, Schmidt R (2002) Absolute configuration and conformational analysis of a degradation product of inhalation anaesthetic sevoflurane: a vibrational circular dichroism study. Chirality 14:618–624

    CAS  Google Scholar 

  133. Uccello-Baretta G, Sicoli G, Balzano F, Schurig V, Salvadori P (2006) Highly efficient NMR enantiodiscrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane, a chiral degradation product of sevoflurane, by heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-ß-cyclodextrin. Tetrahedron Asymmetry 17:2504–2510

    Google Scholar 

  134. Schurig V, Schmidt R (2003) Extraordinary chiral discrimination in inclusion gas chromatography. Thermodynamics of enantioselectivity between a racemic perfluorodiether and a modified γ-cyclodextrin. J Chromatogr A 1000:311–324

    CAS  Google Scholar 

  135. Mele A, Raffaini G, Ganazzoli F, Juza M, Schurig V (2003) Macrocycle conformation and self-inclusion phenomena in octakis(3-O-butanoyl-2,6-di-O-pentyl)-γ-cyclodextrin (Lipodex E) by NMR spectroscopy and molecular dynamics. Carbohydr Res 338:625–635

    CAS  Google Scholar 

  136. Bogdanski A, Larsen KL, Wimmer R (2008) Structural and thermodynamic investigation of an unusual enantiomeric separation: Lipodex E and compound B. Tetrahedron 64:1257–1262

    CAS  Google Scholar 

  137. Sicoli G, Kreidler D, Czesla H, Hopf H, Schurig V (2009) Gas chromatographic enantioseparation of unfunctionalized chiral alkanes: a challenge in separation science (overview, state of the art, and perspectives). Chirality 21:183–198

    CAS  Google Scholar 

  138. Schurig V, Kreidler D (2013) Gas-chromatographic enantioseparation of unfunctionalized chiral hydrocarbons: an overview. In: Scriba GKE (ed) Chiral separations, methods and protocols, 2nd edn. Chap. 3. Humana, Springer, New York, pp 45–67

    Google Scholar 

  139. Francotte E (1997) Enantioselective chromatography: an essential and versatile tool for the analytical and preparative separation of enantiomers. Chimia 51:717–725

    CAS  Google Scholar 

  140. Schurig V, Link R (1988) Recent developments in enantiomer separation by complexation gas chromatograpy. In: Stevenson D, Wilson ID (eds) Chiral separations. Plenum, New York, pp 91–114

    Google Scholar 

  141. Kieser B, Fietzek C, Schmidt R, Belge G, Weimar U, Schurig V, Gauglitz G (2002) Use of a modified cyclodextrin host for the enantioselective detection of a halogenated diether as chiral guest via optical and electrical transducers. Anal Chem 74:3005–3012

    CAS  Google Scholar 

  142. Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618–4630

    CAS  Google Scholar 

  143. Darquie B et al (2010) Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22:870–884

    CAS  Google Scholar 

  144. Barron LD (2012) From cosmic chirality to protein structure: Lord Kelvin’s legacy. Chirality 24:879–893

    CAS  Google Scholar 

  145. Crassous J, Jiang Z, Schurig V, Polavarapu P (2004) Preparation of (+)-chlorofluoroiodomethane, determination of its enantiomeric excess and its absolute configuration. Tetrahedron Asymmetry 15:1995–2001

    CAS  Google Scholar 

  146. Grosenick H, Schurig V, Costante J, Collet A (1995) Gas chromatographic enantiomer separation of bromochlorofluoromethane. Tetrahedron Asymmetry 6:87–88

    CAS  Google Scholar 

  147. Jiang Z, Crassous J, Schurig V (2005) Gas-chromatographic separation of tri(hetero)halogenomethane enantiomers. Chirality 17:488–493

    CAS  Google Scholar 

  148. Costante-Crassous J, Marrone TJ, Briggs JM, McCammon JA, Collet A (1997) Absolute configuration of bromochlorofluoromethane from molecular dynamics simulation of its enantioselective complexation by cryptophane-C. J Am Chem Soc 119:3818–3823

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schurig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schurig, V. (2013). Salient Features of Enantioselective Gas Chromatography: The Enantiomeric Differentiation of Chiral Inhalation Anesthetics as a Representative Methodological Case in Point. In: Schurig, V. (eds) Differentiation of Enantiomers I. Topics in Current Chemistry, vol 340. Springer, Cham. https://doi.org/10.1007/128_2013_440

Download citation

Publish with us

Policies and ethics