Skip to main content

Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds

  • Chapter
  • First Online:
Differentiation of Enantiomers II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 341))

Abstract

This review describes self-disproportionation of enantiomers (SDE) of non-racemic mixtures, subjected to distillation, sublimation, or chromatography on achiral stationary phase using achiral eluent, which leads to the substantial enantiomeric enrichment and corresponding depletion in different fractions, as compared to the enantiomeric composition of the starting material. This phenomenon is of a very general nature as SDE has been reported for different classes of chiral organic compounds bearing various functional groups and possessing diverse elements of chirality. The literature data discussed in this review clearly suggests that SDE is typical for enantiomerically enriched chiral organic compounds and special care should always be taken in evaluation of the stereochemical outcome of enantioselective reactions as well as determination of enantiomeric ratios of non-racemic mixtures of natural products after any purification process. The role of molecular association of enantiomers on the magnitude and preparative efficiency of SDE, as a new, nonconventional method for enantiomerc purifications, is emphasized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MOM:

Methoxymethyl

PMB:

4-Methoxyphenyl

SEC:

Size-exclusion chromatography

Tol:

4-methylphenyl

References

  1. Groh J (1912) Untersuchungen über die Existenz von Racemkörpern in flüssigem Zustande. Chem Ber 45:1441–4447

    Article  CAS  Google Scholar 

  2. Mauser H (1957) Zur Thermodynamik optischer Antipoden, I. Chem Ber 90:299–306

    Article  CAS  Google Scholar 

  3. McGinn CJ (1961) Diastereoazeotropes as a means of resolution. J Phys Chem 65:1896–1897

    Article  CAS  Google Scholar 

  4. Nerdel F, Diepers W (1962) Zum Destillationsverhalten flüssiger Gemische optischer Antipoden. Tetrahedron Lett 4:783–786

    Article  Google Scholar 

  5. Guetté JP, Boucherot D, Horeau A (1973) Interactions diastereoisomeres d’enantiomeres en phase liquide – II’ Peut-on separer les antipodes d`un compose chiral distillation? Tetrahedron Lett 15:465–468

    Article  Google Scholar 

  6. Horeau A, Guetté JP (1974) Interactions diastereoisomeres d’antipodes en phase liquide. Tetrahedron 30:1923–1931

    Article  CAS  Google Scholar 

  7. Katagiri T, Yoda C, Furuhashi K, Ueki K, Kubota T (1996) Separation of an enantiomorph and its racemate by distillation: strong chiral recognizing ability of trifluorolactates. Chem Lett 115–116

    Google Scholar 

  8. Katagiri T, Uneyama K (2001) Chiral recognition by multicenter single proton hydrogen bonding of trifluorolactates. Chem Lett 1330–1331

    Google Scholar 

  9. Katagiri T, Duan M, Mukae M, Uneyama K (2003) A crystal engineering utilization of hexafurcated hydrogen bonding to construction of subnano fluorinated tunnels. J Fluorine Chem 120:165–172

    Article  CAS  Google Scholar 

  10. Katagiri T, Takahashi S, Tsuboi A, Suzaki M, Uneyama K (2010) Discrimination of enantiomeric excess of optically active trifluorolactate by distillation: evidence for a multi-center hydrogen bonding network in the liquid state. J Fluorine Chem 131:517–520

    Article  CAS  Google Scholar 

  11. Koppenhoefer B, Trettin U (1989) Is it possible to affect the enantiomeric composition by a simple distillation process? Fresenius Z Anal Chem 333:750

    Article  Google Scholar 

  12. Garin DL, Grieco DJC, Kelly L (1977) Enhancement of optical activity by fractional sublimation. An alternative to fractional crystallization and a warning. J Org Chem 42:1249–1251

    Article  CAS  Google Scholar 

  13. Bellec A, Guillemin JC (2010) Attempts to explain the self-disproportionation observed in the partial sublimation of enantiomerically enriched carboxylic acids. J Fluorine Chem 131:545–548

    Article  CAS  Google Scholar 

  14. Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi JS, Singleton DA (2007) Phenomenon of optical self-purification of chiral non-racemic compounds. J Am Chem Soc 129:12112–12113

    Article  CAS  Google Scholar 

  15. Tsuzuki S, Orita H, Ueki H, Soloshonok VA (2010) First principle lattice energy calculations for enantiopure and racemic crystals of α-(trifluoromethyl)lactic acid: is self-disproportionation of enantiomers controlled by thermodynamic stability of crystals? J Fluorine Chem 131:461–466

    Article  CAS  Google Scholar 

  16. Albrecht M, Soloshonok VA, Schrader L, Yasumoto M, Suhm MA (2010) Chirality-dependent sublimation of α-(trifluoromethyl)-lactic acid: relative vapor pressures of racemic, eutectic, and enantiomerically pure forms, and vibrational spectroscopy of isolated (S,S) and (S,R) dimmers. J Fluorine Chem 131:495–504

    Article  CAS  Google Scholar 

  17. Yasumoto M, Ueki H, Soloshonok VA (2010) Self-disproportionation of enantiomers of α-trifluoromethyl lactic acid amides via sublimation. J Fluorine Chem 131:540–544

    Article  CAS  Google Scholar 

  18. Yasumoto M, Ueki H, Ono T, Katagiri T, Soloshonok VA (2010) Self-disproportionation of enantiomers via sublimation: isopropyl 3,3,3-(trifluoro)lactate. J Fluorine Chem 131:535–539

    Article  CAS  Google Scholar 

  19. Yasumoto M, Ueki H, Soloshonok VA (2010) Self-disproportionation of enantiomers of 3,3,3-trifluorolactic acid amides via sublimation. J Fluorine Chem 131:266–269

    Article  CAS  Google Scholar 

  20. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  CAS  Google Scholar 

  21. Pracejus G (1959) Optische Aktivierung von N-phthalyl-α-aminosäure-derivaten durch tert.-Basen-Katalyse. Liebigs Ann Chem 622:10–22

    Article  CAS  Google Scholar 

  22. Perry RH, Wu C, Nefliu M, Cooks G (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun 1071–1073

    Google Scholar 

  23. Nanita SC, Cooks RG (2006) Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed 45:554–569

    Article  CAS  Google Scholar 

  24. Yang P, Xu R, Nanita SC, Cooks RG (2006) Thermal formation of homochiral serine clusters and implications for the origin of homochirality. J Am Chem Soc 128:17074–17086

    Article  CAS  Google Scholar 

  25. Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun 2587–2580

    Google Scholar 

  26. Bellec A, Guillemin JC (2010) A simple explanation of the enhancement or depletion of the enantiomeric excess in the partial sublimation of enantiomerically enriched amino acids. Chem Commun 46:1482–1484

    Article  CAS  Google Scholar 

  27. Viedma C, Noorduin WL, Ortiz JE, de Torres T, Cintas P (2011) Asymmetric amplification in amino acid sublimation involving racemic compound to conglomerate conversion. Chem Commun 47:671–673

    Article  CAS  Google Scholar 

  28. Kwart H, Hoster DP (1967) Separation of an enantiomorph and its racemate by sublimation. J Org Chem 32:1867–1870

    Article  CAS  Google Scholar 

  29. Doucet H, Fernandez E, Layzell TP, Brown JM (1999) The scope of catalytic asymmetric hydroboration/oxidation with rhodium complexes of 1,1′-(2-diarylphosphino-1-naphthyl)isoquinolines. Chem Eur J 5:1320–1330

    Article  CAS  Google Scholar 

  30. Ueki H, Yasumoto M, Soloshonok VA (2010) Rational application of selfdisproportionation of enantiomers via sublimation a novel methodological dimension for optical purifications. Tetrahedron Asymmetry 21:1396–1400

    Article  CAS  Google Scholar 

  31. Jacques J, Collet A, Wilen S, Krieger H (1981) Enantiomers, racemates, and resolutions. Wiley, New York

    Google Scholar 

  32. Cintas P (2008) Sublime arguments: rethinking the generation of homochirality under prebiotic conditions. Angew Chem Int Ed 47:2918–2920

    Article  CAS  Google Scholar 

  33. Blackmond DG, Klussmann LM (2007) Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem Commun 3990–3996

    Google Scholar 

  34. Klussmann M, Mathew SP, Iwamura H, Wells DH Jr, Armstrong A, Blackmond DG (2006) Kinetic rationalization of nonlinear effects in asymmetric catalysis based on phase behavior. Angew Chem Int Ed 45:7989–7992

    Article  CAS  Google Scholar 

  35. Horeau A (1969) Interections d’enantiomeres en solution; influence sur le pouvoir rotatoire: purete optique et purete enantiomerique. Tetrahedron Lett 10:3121–3124

    Article  Google Scholar 

  36. Schurig V (1996) Terms for the quantitation of a mixture of stereoisomers. Enantiomer 1:139–143

    CAS  Google Scholar 

  37. Baciocchi R, Zenoni G, Valentini M, Mazzotti M, Morbidelli M (2002) Measurement of the dimerization equilibrium constants of enantiomers. J Phys Chem A 106:10461–10469

    Article  CAS  Google Scholar 

  38. Baciocchi R, Juza M, Classen J, Mazzotti M, Morbidelli M (2004) Determination of the dimerization equilibrium constants of Omeprazole and Pirkle’s alcohol through optical-rotation measurements. Helv Chim Acta 87:1917–1926

    Article  CAS  Google Scholar 

  39. Georges J (1995) Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements. Spectrochim Acta A 51:985–994

    Article  Google Scholar 

  40. Girard C, Kagan HB (2000) On diastereomeric perturbations. Can J Chem 78:816–828

    Article  CAS  Google Scholar 

  41. Kitamura M, Suga S, Oka H, Noyori R (1998) Quantitative analysis of the chiral amplification in the amino alcohol-promoted asymmetric alkylation of aldehydes with dialkylzincs. J Am Chem Soc 120:9800–9809

    Article  CAS  Google Scholar 

  42. Shibata T, Yamamoto J, Matsumoto N, Yonekubo S, Osanai S, Soai KJ (1998) Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis: the first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J Am Chem Soc 120:12157–12158

    Article  CAS  Google Scholar 

  43. Soai K, Kawasaki T (2006) Discovery of asymmetric autocatalysis with amplification of chirality and its implication in chiral homogeneity of biomolecules. Chirality 18:469–478

    Article  CAS  Google Scholar 

  44. Williams T, Pitcher RG, Bommer P, Gutzwiller J, Uskokovic M (1969) Diastereomeric solute-solute interactions of enantiomers in achiral solvents. Nonequivalence of the nuclear magnetic resonance spectra of racemic and optically active dihydroquinine. J Am Chem Soc 91:1871–1872

    Article  CAS  Google Scholar 

  45. Luchinat C, Roelens S (1986) Enantiomeric purity determination of 1,2-diols through NMR spectroscopy without chiral auxiliaries. J Am Chem Soc 108:4873–4878

    Article  CAS  Google Scholar 

  46. Dobashi A, Saito N, Motoyama Y, Hara S (1986) Self-induced nonequivalence in the association of d- and l-amino acid derivatives. J Am Chem Soc 108:307–308

    Article  CAS  Google Scholar 

  47. Jursic BS, Goldberg SI (1992) Enantiomer discrimination arising from solute-solute interactions in partially resolved chloroform solutions of chiral carboxamides. J Org Chem 57:7172–7174

    Article  CAS  Google Scholar 

  48. Cung MT, Marraud M, Neel J, Aubry A (1978) Experimental study on aggregation of model dipeptide molecules. V. Stereoselective association of leucine dipeptides. Biopolymers 17:1149–1173

    Article  Google Scholar 

  49. Harger MJP (1977) Proton magnetic resonance non-equivalence of the enantiomers of alkylphenylphosphinic amides. J Chem Soc Perkin Trans 2 1882–1887

    Google Scholar 

  50. Harger MJP (1978) Chemical shift non-equivalence of enantiomers in the proton magnetic resonance spectra of partly resolved phosphinothioic acids. J Chem Soc Perkin Trans 2 326–331

    Google Scholar 

  51. Schurig V (2009) Elaborate treatment of retention in chemoselective chromatography – the retention increment approach and non-linear effects. J Chromatogr A 1216:1723–1736

    Article  CAS  Google Scholar 

  52. Trapp O, Schurig V (2010) Nonlinear effects in enantioselective chromatography: prediction of unusual elution profiles of enantiomers in non-racemic mixtures on an achiral stationary phase doped with small amounts of a chiral selector. Tetrahedron Asymmetry 21:1334–1340

    Article  CAS  Google Scholar 

  53. Jung M, Schurig V (1992) Computer simulation of three scenarios for the separation of non-racemic mixtures by chromatography on achiral stationary phases. J Chromatogr A 605:161–166

    Article  CAS  Google Scholar 

  54. Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525

    Article  CAS  Google Scholar 

  55. Kurganov A (1996) Effect of solute association on the apparent adsorption isotherm. A model of the separation of non-racemic mixtures of enantiomers in achiral chromatographic systems. Chromatographia 43:17–24

    Article  CAS  Google Scholar 

  56. Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok VA, Aceña JL, Kitagawa O (2012) Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron 68:4013–4017

    Article  CAS  Google Scholar 

  57. Soloshonok VA, Berbasov DO (2006) Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim Oggi/Chem Today 24:44–47

    Google Scholar 

  58. Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45:766–769

    Article  CAS  Google Scholar 

  59. Soloshonok VA, Berbasov DO (2006) Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J Fluorine Chem 127:597–603

    Article  CAS  Google Scholar 

  60. Luppi G, Cozzi PG, Monari M, Kaptein B, Broxterman QB, Tomasini C (2005) Dipeptide-catalyzed asymmetric aldol condensation of acetone with (N-alkylated) isatins. J Org Chem 70:7418–7421

    Article  CAS  Google Scholar 

  61. Takahashi H, Tanabe T, Nakamura D, Kuribara T, Yamazaki O, Kitagawa O (2010) Atropisomeric lactam chemistry: catalytic enantioselective synthesis, application to asymmetric enolate chemistry and synthesis of key intermediates for NET inhibitors. Tetrahedron 66:288–296

    Article  CAS  Google Scholar 

  62. Carman RM, Klika KD (1991) The optical fractionation of a partially racemic natural product by chromatography over an achiral substrate. Aust J Chem 44:895–896

    Article  CAS  Google Scholar 

  63. Matusch R, Coors C (1989) Chromatographic separation of the excess enantiomer under achiral conditions. Angew Chem Int Ed 28:626–627

    Article  Google Scholar 

  64. Sorochinsky AE, Katagiri T, Ono T, Wzorek A, Aceña JL, Soloshonok VA (2013) Optical purifications via self-disproportionation of enantiomers by achiral chromatography; case study of a series of α-CF3-containing secondary alcohols. Chirality (accepted)

    Google Scholar 

  65. Ogawa S, Nishimine T, Tokunaga E, Nakamura S, Shibata N (2010) Self-disproportionation of enantiomers of heterocyclic compounds having a tertiary trifluoromethyl alcohol center on chromatography with a non-chiral system. J Fluorine Chem 131:521–524

    Article  CAS  Google Scholar 

  66. Nicoud R-M, Jaubert J-N, Rupprecht I, Kinkel J (1996) Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality 8:234–243

    Article  CAS  Google Scholar 

  67. Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944:225–240

    Article  CAS  Google Scholar 

  68. Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024:15–20

    Article  CAS  Google Scholar 

  69. Nakajima M, Kanayama K, Miyoshi I, Hashimoto S (1995) Catalytic asymmetric synthesis of binaphthol derivatives by aerobic oxidative coupling of 3-hydroxy-2-naphthoates with chiral diamine–copper complex. Tetrahedron Lett 36:9519–9520

    Article  CAS  Google Scholar 

  70. Nakajima M, Miyoshi I, Kanayama K, Hashimoto S (1999) Enantioselective synthesis of binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine·copper complexes. J Org Chem 64:2264–2271

    Article  CAS  Google Scholar 

  71. Tsai W-L, Hermann K, Hug E, Rohde B, Dreiding AS (1985) Enantiomer-differentiation induced by an enantiomeric excess during chromatography with achiral phases. Helv Chim Acta 68:2238–2243

    Article  CAS  Google Scholar 

  72. Loža E, Lola D, Kemme A, Freimanis J (1995) Enantiomeric enrichment of partially resolved 4-hydroxy-2-carboxymethylcyclopentanone derivatives by achiral phase chromatography. J Chromatogr A 708:231–243

    Article  Google Scholar 

  73. Aceña JL, Sorochinsky AE, Katagiri T, Soloshonok VA (2013) Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions. Chem Commun 49:373–375

    Article  Google Scholar 

  74. Diter P, Taudien S, Samuel O, Kagan HB (1994) Enantiomeric enrichment of sulfoxides by preparative flash chromatography on an achiral phase. J Org Chem 59:370–373

    Article  CAS  Google Scholar 

  75. Charles R, Gil-Av E (1984) Self-amplification of optical activity by chromatography on an achiral adsorbent. J Chromatogr A 298:516–520

    Article  CAS  Google Scholar 

  76. Dobashi A, Motoyama Y, Kinoshita K, Hara S, Fukasaku N (1987) Self-induced chiral recognition in the association of enantiomeric mixtures on silica gel chromatography. Anal Chem 59:2209–2211

    Article  CAS  Google Scholar 

  77. Cundy KC, Crooks PA (1983) Unexpected phenomenon in the highperformance liquid chromatographic analysis of racemic 13C-labeled nicotine: separation of enantiomers in a totally achiral system. J Chromatogr 281:17–33

    Article  CAS  Google Scholar 

  78. Stephani R, Cesare V (1998) Enantiomeric enrichment of non-racemic antihistamines by achiral high-performance liquid chromatography. J Chromatogr A 813:79–84

    Article  CAS  Google Scholar 

  79. Monde K, Harada N, Takasugi M, Kutschy P, Suchy M, Dzurilla M (2000) Enantiomeric excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system. J Nat Prod 63:1312–1314

    Article  CAS  Google Scholar 

  80. Suchy M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentova E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)-(−)-spirobrassinin, and its oxazoline analog. J Org Chem 66:3940–3947

    Article  CAS  Google Scholar 

  81. Takahata H, Takahashi S, Kouno S, Momose T (1998) Symmetry-assisted synthesis of c2-Symmetric trans-α, α′-bis(hydroxymethyl)pyrrolidine and -piperidine derivatives via double Sharpless asymmetric dihydroxylation of α, ω-terminal dienes. J Org Chem 63:2224–2231

    Article  CAS  Google Scholar 

  82. Tanaka K, Osuga H, Suzuki, H, Shogase Y, Kitahara Y (1998) Synthesis, enzymic resolution and enantiomeric enhancement of bis(hydroxymethyl)[7]thiaheterohelicenes. J Chem Soc Perkin Trans 1 935–940

    Google Scholar 

  83. Kosugi H, Abe M, Hatsuda R, Uda H, Kato M (1997) A study of asymmetric protonation with chiral β-hydroxy sulfoxides. Asymmetric synthesis of (−)-epibatidine. Chem Commun 1857–1858

    Google Scholar 

  84. Ernholt BV, Thomsen IB, Lohse A, Plesner IW, Jensen KB, Hazell RG, Liang X, Jacobsen A, Bols M (2000) Enantiospecific synthesis of 1-azafagomine. Chem Eur J 6:278–287

    Article  CAS  Google Scholar 

  85. Ray SK, Singh PK, Molleti N, Singh VK (2012) Enantioselective synthesis of Coumarin derivatives by PYBOX-DIPH-Zn(II) complex catalyzed Michael reaction. J Org Chem 77:8802–8808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Soloshonok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sorochinsky, A.E., Soloshonok, V.A. (2013). Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds. In: Schurig, V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, vol 341. Springer, Cham. https://doi.org/10.1007/128_2013_434

Download citation

Publish with us

Policies and ethics