Skip to main content

Protein Conformational Disorder and Enzyme Catalysis

  • Chapter
  • First Online:
Dynamics in Enzyme Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 337))

Abstract

Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103

    CAS  Google Scholar 

  2. Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431

    CAS  Google Scholar 

  3. Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5:1996–2000

    CAS  Google Scholar 

  4. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    CAS  Google Scholar 

  5. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci. 37: 509–516

    Google Scholar 

  6. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    CAS  Google Scholar 

  7. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    CAS  Google Scholar 

  8. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    CAS  Google Scholar 

  9. Karplus M, McCammon JA (1981) The internal dynamics of globular proteins. CRC Crit Rev Biochem 9:293–349

    CAS  Google Scholar 

  10. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916

    CAS  Google Scholar 

  11. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1

    Google Scholar 

  12. Romero P, Obradovic Z, Li XH, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    CAS  Google Scholar 

  13. Fitzkee NC, García-Moreno EB (2008) Electrostatic effects in unfolded staphylococcal nuclease. Protein Sci 17:216–227

    CAS  Google Scholar 

  14. Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:8183–8188

    CAS  Google Scholar 

  15. Müller-Späth S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S, Reymond L, Nettels D, Schuler B (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci USA 107:14609–14614

    Google Scholar 

  16. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    CAS  Google Scholar 

  17. Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530

    CAS  Google Scholar 

  18. Morillas M, Eberl H, Allain FH-T, Glockshuber R, Kuennemann E (2008) Novel enzymatic activity derived from the Semliki Forest virus capsid protein. J Mol Biol 376:721–735

    CAS  Google Scholar 

  19. Abian O, Vega S, Neira JL, Velazquez-Campoy A (2010) Conformational stability of hepatitis C virus NS3 protease. Biophys J 99:3811–3820

    CAS  Google Scholar 

  20. Butz M, Neuenschwander M, Kast P, Hilvert D (2011) An N-terminal protein degradation tag enables robust selection of highly active enzymes. Biochemistry 50:8594–8602

    CAS  Google Scholar 

  21. Cardamone M, Puri NK (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J 282(Pt 2):589–593

    CAS  Google Scholar 

  22. Receveur-Bréchot V, Durand D (2011) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Peptide Sci 13:55–75

    Google Scholar 

  23. Bernadó P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M (2010) Structure and dynamics of ribosomal protein L12: an ensemble model based on SAXS and NMR relaxation. Biophys J 98:2374–2382

    Google Scholar 

  24. Pervushin K, Vamvaca K, Vögeli B, Hilvert D (2007) Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 14:1202–1206

    CAS  Google Scholar 

  25. Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14

    CAS  Google Scholar 

  26. Bernadó P, Svergun DI (2011) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8:151–167

    Google Scholar 

  27. Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA et al (2005) UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem 280: 4684–4695

    CAS  Google Scholar 

  28. Zotter Á, Oláh J, Hlavanda E, Bodor A, Perczel A, Szigeti K, Fidy J, Ovádi J (2011) Zn2+-induced rearrangement of the disordered TPPP/p25 affects its microtubule assembly and GTPase activity. Biochemistry 50:9568–9578

    CAS  Google Scholar 

  29. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A (2010) Solution conformation and dynamics of the HIV-1 integrase core domain. J Biol Chem 285:18072–18084

    CAS  Google Scholar 

  30. Fitzkee NC, Torchia DA, Bax A (2011) Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Protein Sci 20:500–512

    CAS  Google Scholar 

  31. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47:7598–7609

    CAS  Google Scholar 

  32. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    CAS  Google Scholar 

  33. Tantos A, Han KH, Tompa P (2012) Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 348:457–465

    CAS  Google Scholar 

  34. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    CAS  Google Scholar 

  35. Chakrabortee S, Meersman F, Kaminski Schierle GS, Bertoncini CW, McGee B, Kaminski CF, Tunnacliffe A (2010) Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proc Natl Acad Sci USA 107: 16084–16089

    CAS  Google Scholar 

  36. Reichmann D, Xu Y, Cremers CM, Ilbert M, Mittelman R, Fitzgerald MC, Jakob U (2012) Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell 148: 947–957

    CAS  Google Scholar 

  37. Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175

    CAS  Google Scholar 

  38. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    CAS  Google Scholar 

  39. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    CAS  Google Scholar 

  40. Tsai CD, Ma B, Kumar S, Wolfson H, Nussinov R (2001) Protein folding: binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433

    CAS  Google Scholar 

  41. Kiefhaber T, Bachmann A, Jensen KS (2012) Dynamics and mechanisms of coupled protein folding and binding reactions. Curr Opin Struct Biol 22:21–29

    CAS  Google Scholar 

  42. Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62:24–45

    CAS  Google Scholar 

  43. Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F (2007) p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 6:1053–1061

    CAS  Google Scholar 

  44. Lowry DF, Hausrath AC, Daughdrill GW (2008) A robust approach for analyzing a heterogeneous structural ensemble. Proteins 73:918–928

    CAS  Google Scholar 

  45. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    CAS  Google Scholar 

  46. Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) Binding-induced folding of a natively unstructured transcription factor. PLoS Comput Biol 4:e1000060

    Google Scholar 

  47. Espinoza-Fonseca LM (2009) Reconciling binding mechanisms of intrinsically disordered proteins. Biochem Biophys Res Commun 382:479–482

    CAS  Google Scholar 

  48. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1

    Google Scholar 

  49. Schreiber G, Keating AE (2011) Protein binding specificity versus promiscuity. Curr Opin Struct Biol 21:50–61

    CAS  Google Scholar 

  50. Taira N, Yoshida K (2012) Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol 27:437–443

    CAS  Google Scholar 

  51. Vuzman D, Levy Y (2012) Intrinsically disordered regions as affinity tuners in protein-DNA interactions. Mol Biosyst 8:47–57

    CAS  Google Scholar 

  52. Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873

    CAS  Google Scholar 

  53. Huang Y, Liu Z (2009) Kinetic advantage of intrinsically disordered proteins in coupled folding–binding process: a critical assessment of the “fly-casting” mechanism. J Mol Biol 393:1143–1159

    CAS  Google Scholar 

  54. Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    CAS  Google Scholar 

  55. Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci 19:1461–1468

    CAS  Google Scholar 

  56. Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66:761–765

    CAS  Google Scholar 

  57. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    CAS  Google Scholar 

  58. Pauling L (1948) Nature of forces between large molecules of biological interest. Nature 161: 707–709

    CAS  Google Scholar 

  59. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    CAS  Google Scholar 

  60. Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378

    Google Scholar 

  61. Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50:10422–10430

    CAS  Google Scholar 

  62. Redko Y, Tock MR, Adams CJ, Kaberdin VR, Grasby JA, McDowall KJ (2003) Determination of the catalytic parameters of the N-terminal half of Escherichia coli ribonuclease E and the identification of critical functional groups in RNA substrates. J Biol Chem 278: 44001–44008

    CAS  Google Scholar 

  63. Zhang RM, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV (1997) Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 71:6208–6213

    CAS  Google Scholar 

  64. Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007) Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family. Biochemistry 46:3171–3182

    CAS  Google Scholar 

  65. Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95:11637–11642

    CAS  Google Scholar 

  66. Callaghan AJ, Aurikko JP, Ilag LL, Günter Grossmann J, Chandran V, Kühnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF et al (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340:965–979

    CAS  Google Scholar 

  67. Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87

    CAS  Google Scholar 

  68. Tedbury PR, Harris M (2007) Characterisation of the role of zinc in the hepatitis C virus NS2/3 auto-cleavage and NS3 protease activities. J Mol Biol 366:1652–1660

    CAS  Google Scholar 

  69. Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S (2012) Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. Mol Biosyst 8:220–228

    CAS  Google Scholar 

  70. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein–protein interaction networks. Int J Mol Sci 11:1930–1943

    CAS  Google Scholar 

  71. Tirián L, Hlavanda E, Oláh J, Horváth I, Orosz F, Szabó B, Kovács J, Szabad J, Ovádi J (2003) TPPP/p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc Natl Acad Sci USA 100:13976–13981

    Google Scholar 

  72. Ovádi J, Orosz F (2009) An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 31:676–686

    Google Scholar 

  73. Hlavanda E, Kovács J, Oláh J, Orosz F, Medzihradszky KF, Ovádi J (2002) Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations. Biochemistry 41:8657–8664

    CAS  Google Scholar 

  74. Kovács GG, László L, Kovács J, Jensen PH, Lindersson E, Botond G, Molnár T, Perczel A, Hudecz F, Mezo G et al (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17:155–162

    Google Scholar 

  75. Fink AL, Calciano LJ, Goto Y, Kurotsu T, Palleros DR (1994) Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33:12504–12511

    CAS  Google Scholar 

  76. Bemporad F, Gsponer J, Hopearuoho HI, Plakoutsi G, Stati G, Stefani M, Taddei N, Vendruscolo M, Chiti F (2008) Biological function in a non-native partially folded state of a protein. EMBO J 27:1525–1535

    CAS  Google Scholar 

  77. Punchihewa C, Dai J, Carver M, Yang D (2007) Human topoisomerase I C-terminal domain fragment containing the active site tyrosine is a molten globule: implication for the formation of competent productive complex. J Struct Biol 159:111–121

    CAS  Google Scholar 

  78. Stewart L, Ireton GC, Champoux JJ (1997) Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 269:355–372

    CAS  Google Scholar 

  79. Olsson U, Wolf-Watz M (2010) Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 1:111

    Google Scholar 

  80. Kiefhaber T, Schmid FX, Willaert K, Engelborghs Y, Chaffotte A (1992) Structure of a rapidly formed intermediate in ribonuclease T1 folding. Protein Sci 1:1162–1172

    CAS  Google Scholar 

  81. Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24

    CAS  Google Scholar 

  82. Goldberg ME, Semisotnov GV, Friguet B, Kuwajima K, Ptitsyn OB, Sugai S (1990) An early immunoreactive folding intermediate of the tryptophan synthease beta 2 subunit is a ‘molten globule’. FEBS Lett 263:51–56

    CAS  Google Scholar 

  83. Creighton TE (1997) How important is the molten globule for correct protein folding? Trends Biochem Sci 22:6–10

    CAS  Google Scholar 

  84. Hu J, Li D, Su X-D, Jin C, Xia B (2010) Solution structure and conformational heterogeneity of acylphosphatase from Bacillus subtilis. FEBS Lett 584:2852–2856

    CAS  Google Scholar 

  85. Schmid FX, Blaschek H (1981) A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem 114: 111–117

    CAS  Google Scholar 

  86. Protasova NY, Kireeva ML, Murzina NV, Murzin AG, Uversky VN, Gryaznova OI, Gudkov AT (1994) Circularly permuted dihydrofolate-reductase of Escherichia coli has functional activity and a destabilized tertiary structure. Protein Eng 7:1373–1377

    CAS  Google Scholar 

  87. Smith VF, Matthews CR (2001) Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms. Protein Sci 10:116–128

    CAS  Google Scholar 

  88. Zhang H, Huang S, Feng Y, Guo P, Jing G (2005) Effect of N-terminal deletions on the foldability, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 441: 123–131

    CAS  Google Scholar 

  89. Li Y, Jing G (2000) Double point mutant F34W/W140F of staphylococcal nuclease is in a molten globule state but highly competent to fold into a functional conformation. J Biochem 128:739–744

    CAS  Google Scholar 

  90. Huang S, Yin J, Feng Y, Jing G (2003) Effect of a specific hydrogen bond (N138ND2-Q106O) on conformational integrity, stability, and activity of staphylococcal nuclease. Arch Biochem Biophys 420:87–94

    CAS  Google Scholar 

  91. Shortle D, Meeker AK (1989) Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry 28:936–944

    CAS  Google Scholar 

  92. Alexandrescu AT, Dames SA, Wiltscheck R (1996) A fragment of staphylococcal nuclease with an OB-fold structure shows hydrogen-exchange protection factors in the range reported for “molten globules”. Protein Sci 5:1942–1946

    CAS  Google Scholar 

  93. Sullivan BJ, Durani V, Magliery TJ (2011) Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J Mol Biol 413: 195–208

    CAS  Google Scholar 

  94. MacBeath G, Kast P, Hilvert D (1998) Redesigning enzyme topology by directed evolution. Science 279:1958–1961

    CAS  Google Scholar 

  95. Schnell JR, Dyson HJ, Wright PE (2004) Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct 33:119–140

    CAS  Google Scholar 

  96. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642

    CAS  Google Scholar 

  97. Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36: 586–603

    CAS  Google Scholar 

  98. Iwakura M (1998) In search of circular permuted variants of Escherichia coli dihydrofolate reductase. Biosci Biotechnol Biochem 62:778–781

    CAS  Google Scholar 

  99. Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B (2007) Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol 3:e117

    Google Scholar 

  100. Svensson A-KE, Zitzewitz JA, Matthews CR, Smith VF (2006) The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E. coli. Protein Eng Des Sel 19:175–185

    CAS  Google Scholar 

  101. Uversky VN, Kutyshenko VP, Protasova NY, Rogov VV, Vassilenko KS, Gudkov AT (1996) Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 5:1844–1851

    CAS  Google Scholar 

  102. Flanagan JM, Kataoka M, Shortle D, Engelman DM (1992) Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci USA 89:748–752

    CAS  Google Scholar 

  103. Ermácora MR, Ledman DW, Fox RO (1996) Mapping the structure of a non-native state of staphylococcal nuclease. Nat Struct Biol 3:59–66

    Google Scholar 

  104. Alexandrescu AT, Jahnke W, Wiltscheck R, Blommers MJ (1996) Accretion of structure in staphylococcal nuclease: an 15N NMR relaxation study. J Mol Biol 260:570–587

    CAS  Google Scholar 

  105. MacBeath G, Kast P, Hilvert D (1998) A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37: 10062–10073

    CAS  Google Scholar 

  106. Vamvaca K, Vögeli B, Kast P, Pervushin K, Hilvert D (2004) An enzymatic molten globule: efficient coupling of folding and catalysis. Proc Natl Acad Sci USA 101:12860–12864

    CAS  Google Scholar 

  107. Vamvaca K, Jelesarov I, Hilvert D (2008) Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 382:971–977

    CAS  Google Scholar 

  108. Nagel ZD, Klinman JP (2009) A 21st century revisionist’s view at a turning point in enzymology. Nat Chem Biol 5:543–550

    CAS  Google Scholar 

  109. Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14:644–651

    CAS  Google Scholar 

  110. Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234–238

    CAS  Google Scholar 

  111. Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108:14115–14120

    CAS  Google Scholar 

  112. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M et al (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844

    CAS  Google Scholar 

  113. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235

    CAS  Google Scholar 

  114. Loveridge EJ, Behiry EM, Guo J, Allemann RK (2012) Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nat Chem 4:292–297

    CAS  Google Scholar 

  115. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    CAS  Google Scholar 

  116. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    CAS  Google Scholar 

  117. Schramm VL (1998) Enzymatic transition states and transition state analog design. Annu Rev Biochem 67:693–720

    CAS  Google Scholar 

  118. Torbeev VY, Raghuraman H, Hamelberg D, Tonelli M, Westler WM, Perozo E, Kent SB (2011) Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc Natl Acad Sci USA 108:20982–20987

    CAS  Google Scholar 

  119. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    CAS  Google Scholar 

  120. Pineda JRET, Antoniou D, Schwartz SD (2010) Slow conformational motions that favor sub-picosecond motions important for catalysis. J Phys Chem B 114:15985–15990

    CAS  Google Scholar 

  121. Pisliakov AV, Cao J, Kamerlin SCL, Warshel A (2009) Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci USA 106:17359–17364

    CAS  Google Scholar 

  122. Schramm VL (2011) Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes. Annu Rev Biochem 80:703–732

    CAS  Google Scholar 

  123. Rajagopalan PT, Benkovic SJ (2002) Preorganization and protein dynamics in enzyme catalysis. Chem Rec 2:24–36

    CAS  Google Scholar 

  124. Nagel ZD, Klinman JP (2006) Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 106:3095–3118

    CAS  Google Scholar 

  125. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410

    CAS  Google Scholar 

  126. Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945

    CAS  Google Scholar 

  127. Vendruscolo M (2010) Enzymatic activity in disordered states of proteins. Curr Opin Chem Biol 14:671–675

    CAS  Google Scholar 

  128. Roca M, Messer B, Hilvert D, Warshel A (2008) On the relationship between folding and chemical landscapes in enzyme catalysis. Proc Natl Acad Sci USA 105:13877–13882

    CAS  Google Scholar 

  129. Silva RG, Murkin AS, Schramm VL (2011) Femtosecond dynamics coupled to chemical barrier crossing in a Born–Oppenheimer enzyme. Proc Natl Acad Sci USA 108:18661–18665

    CAS  Google Scholar 

  130. Kipp DR, Silva RG, Schramm VL (2011) Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J Am Chem Soc 133:19358–19361

    CAS  Google Scholar 

  131. Loveridge EJ, Tey L-H, Behiry EM, Dawson WM, Evans RM, Whittaker SB-M, Günther UL, Williams C, Crump MP, Allemann RK (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133:20561–20570

    CAS  Google Scholar 

  132. Doshi U, McGowan LC, Ladani ST, Hamelberg D (2012) Resolving the complex role of enzyme conformational dynamics in catalytic function. Proc Natl Acad Sci USA 109(15): 5699–5704

    CAS  Google Scholar 

  133. Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324:203–207

    CAS  Google Scholar 

  134. James LC, Tawfik DS (2003) Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368

    CAS  Google Scholar 

  135. Zimmermann J, Oakman EL, Thorpe IF, Shi X, Abbyad P, Brooks CL 3rd, Boxer SG, Romesberg FE (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci USA 103:13722–13727

    CAS  Google Scholar 

  136. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    CAS  Google Scholar 

  137. Hou L, Honaker MT, Shireman LM, Balogh LM, Roberts AG, Ng KC, Nath A, Atkins WM (2007) Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 282:23264–23274

    CAS  Google Scholar 

  138. O'Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105

    Google Scholar 

  139. Jimenez R, Salazar G, Yin J, Joo T, Romesberg FE (2004) Protein dynamics and the immunological evolution of molecular recognition. Proc Natl Acad Sci USA 101:3803–3808

    CAS  Google Scholar 

  140. James LC, Tawfik DS (2009) The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12:2183–2193

    Google Scholar 

  141. Lin Y-S, Hsu W-L, Hwang J-K, Li W-H (2007) Proportion of solvent-exposed amino acids in a protein and rate of protein evolution. Mol Biol Evol 24:1005–1011

    CAS  Google Scholar 

  142. Jernigan RL, Kloczkowski A (2007) Packing regularities in biological structures relate to their dynamics. Methods Mol Biol 350:251–276

    CAS  Google Scholar 

  143. Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110

    CAS  Google Scholar 

  144. Woycechowsky KJ, Choutko A, Vamvaca K, Hilvert D (2008) Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 47:13489–13496

    CAS  Google Scholar 

  145. Gould SM, Tawfik DS (2005) Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 44:5444–5452

    CAS  Google Scholar 

  146. Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    CAS  Google Scholar 

  147. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210

    CAS  Google Scholar 

  148. Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662

    CAS  Google Scholar 

  149. Jourden MJ, Clarke CN, Palmer AK, Barth EJ, Prada RC, Hale RN, Fraga D, Snider MJ, Edmiston PL (2007) Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site. Biochim Biophys Acta 1774: 1519–1527

    CAS  Google Scholar 

  150. Chen ZL, Katzenellenbogen BS, Katzenellenbogen JA, Zhao HM (2004) Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. J Biol Chem 279:33855–33864

    CAS  Google Scholar 

  151. Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci USA 100:5694–5699

    CAS  Google Scholar 

  152. Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775

    CAS  Google Scholar 

  153. DeGrado WF (1993) Peptide engineering. Catalytic molten globules. Nature 365:488–489

    CAS  Google Scholar 

  154. Guarnera E, Pellarin R, Caflisch A (2009) How does a simplified-sequence protein fold? Biophys J 97:1737–1746

    CAS  Google Scholar 

  155. Suskiewicz MJ, Sussman JL, Silman I, Shaul Y (2011) Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 20:1285–1297

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. An Vandemeulebroucke and Dr. Vladimir Torbeev for fruitful discussions and carefully reading the manuscript and Richard Obexer for refining the figures. Investigations of disordered proteins in the Hilvert group have been generously supported by the Schweizerischer Nationalfonds and the ETH Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Hilvert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulenburg, C., Hilvert, D. (2013). Protein Conformational Disorder and Enzyme Catalysis. In: Klinman, J., Hammes- Schiffer, S. (eds) Dynamics in Enzyme Catalysis. Topics in Current Chemistry, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_411

Download citation

Publish with us

Policies and ethics