Skip to main content

How Moving Hormonal Signals Regulate Plant Vascular Differentiation, Adaptation, and Evolution: Hypotheses and Evidence

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany

Abstract

Development of plants and animals depends on the formation of complex vascular systems for the delivery of water, nutrients, and hormonal signals. This review clarifies major controlling mechanisms that regulate vascular differentiation, regeneration, adaptation, and evolution of plants, which were discovered during the past 50 years. Hypotheses and evidence on the hormonal mechanisms that regulate vascular differentiation are discussed, focusing on phloem and xylem relationships, control of vessel width, fiber differentiation, leaf and flower development, root initiation, evolution of ring-porous wood, parasitism, gall formation, cancer development and prevention.

Communicated by Ulrich Lüttge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Google Scholar 

  • Agustí J, Blázquez MA (2020) Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 77:3711–3728

    Google Scholar 

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    Google Scholar 

  • Aloni R (1972) New site of Acacia albida Del. in Sharon coastal plain of Israel. Isr J Bot 21:39–41

    Google Scholar 

  • Aloni R (1976a) Polarity of induction and pattern of primary phloem fiber differentiation in Coleus. Am J Bot 63:877–899

    Google Scholar 

  • Aloni R (1976b) Regeneration of phloem fibres around a wound: a new experimental system for studying the physiology of fibre differentiation. Ann Bot 40:395–397

    Google Scholar 

  • Aloni R (1978) Source of induction and sites of primary phloem fibre differentiation in Coleus blumei. Ann Bot 42:1261–1269

    Google Scholar 

  • Aloni R (1979) Role of auxin and gibberellin in differentiation of primary phloem fibers. Plant Physiol 63:609–614

    Google Scholar 

  • Aloni R (1980) Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150:255–263

    Google Scholar 

  • Aloni R (1982) Role of cytokinin in differentiation of secondary xylem fibers. Plant Physiol 70:1631–1633

    Google Scholar 

  • Aloni R (1984) The vegetation and flora of the Lower Galilee. In: Waisel Y (ed) The vegetation of Israel. The illustrated encyclopedia of plants and animals of the land of Israel, vol 8, Ministry of Defense/The Publishing House Society for Protection of Nature, Israel, pp 143–151, In Hebrew

    Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Google Scholar 

  • Aloni R (1991) Wood formation in deciduous hardwood trees. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 175–197

    Google Scholar 

  • Aloni R (1993) The role of cytokinin in organised differentiation of vascular tissues. Aust J Plant Physiol 20:601–608

    Google Scholar 

  • Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 531–546

    Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation – hypotheses and evidence. J Plant Growth Regul 20:22–34

    Google Scholar 

  • Aloni R (2004) The induction of vascular tissue by auxin. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, pp 471–492

    Google Scholar 

  • Aloni R (2007) Phytohormonal mechanisms that control wood quality formation in young and mature trees. In: Entwistle K, Harris P, Walker J (eds) The compromised wood workshop 2007. The Wood Technology Research Centre, University of Canterbury, Christchurch, pp 1–22

    Google Scholar 

  • Aloni R (2010) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, pp 485–506

    Google Scholar 

  • Aloni R (2013a) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin, pp 99–139

    Google Scholar 

  • Aloni R (2013b) Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 23:819–830

    Google Scholar 

  • Aloni R (2015) Ecophysiological implications of vascular differentiation and plant evolution. Trees 29:1–16

    Google Scholar 

  • Aloni R (2021) Vascular differentiation and plant hormones. Springer, Cham

    Google Scholar 

  • Aloni R (2022a) What can we learn from the hormonal mechanisms and tumor-inducing bacteria that regulate vascular differentiation and cancer in plants? Med Res Arch 10:7. https://doi.org/10.18103/mra.v10i7.2973

    Article  Google Scholar 

  • Aloni R (2022b) How the three organ-produced signals: auxin, cytokinin and gibberellin, induce and regulate wood formation and adaptation. In: Aftab T (ed) Auxins, cytokinins and gibberellins signaling in plants. Springer Nature, Cham, pp 1–23

    Google Scholar 

  • Aloni R, Barnett JR (1996) The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia. Planta 198:595–603

    Google Scholar 

  • Aloni R, Griffith M (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184:123–129

    Google Scholar 

  • Aloni R, Jacobs WP (1977a) Polarity of tracheary regeneration in young internodes of Coleus (Labiatae). Am J Bot 64:395–403

    Google Scholar 

  • Aloni R, Jacobs WP (1977b) The time course of sieve tube and vessel regeneration and their relation to phloem anastomoses in mature internodes of Coleus. Am J Bot 64:615–621

    Google Scholar 

  • Aloni R, Orshan G (1972) A vegetation map of the lower Galilee. Isr J Bot 21:209–227

    Google Scholar 

  • Aloni R, Peterson CA (1990) The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182:583–590

    Google Scholar 

  • Aloni R, Peterson CA (1997) Auxin promotes dormancy callose removal from the phloem of Magnolia kobus and callose accumulation and earlywood vessel differentiation in Quercus robur. J Plant Res 110:37–44

    Google Scholar 

  • Aloni R, Sachs T (1973) The three-dimensional structure of primary phloem systems. Planta 113:343–353

    Google Scholar 

  • Aloni R, Ullrich CI (2008) Biology of crown gall tumors. In: Tzfira T, Citovsky VH (eds) Agrobacterium, from biology to biotechnology. Springer, New York, pp 565–591

    Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis – a new hypothesis. Differentiation 24:203–208

    Google Scholar 

  • Aloni R, Pradel KS, Ullrich CI (1995) The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. Planta 196:597–605

    Google Scholar 

  • Aloni R, Alexander JD, Tyree MT (1997) Natural and experimentally altered hydraulic architecture of branch junctions in Acer saccharum Marsh. and Quercus velutina Lam. trees. Trees 11:255–264

    Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117:841–847

    Google Scholar 

  • Aloni R, Feigenbaum P, Kalev N, Rozovsky S (2000) Hormonal control of vascular differentiation in plants: the physiological basis of cambium ontogeny and xylem evolution. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 223–236

    Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006a) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006b) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Google Scholar 

  • Ashby E (1948) Studies in the morphogenesis of leaves: I. An essay on the leaf shape. New Phytol 47:153–176

    Google Scholar 

  • Atal CK (1961) Effect of gibberellin on the fibers of hemp. Econ Bot 15:133–139

    Google Scholar 

  • Avery GS Jr (1933) Structure and development of tobacco leaf. Am J Bot 20:565–592

    Google Scholar 

  • Baas P, Carlquist S (1985) A comparison of the ecological wood anatomy of the floras of southern California and Israel. IAWA Bull NS 6:349–353

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull NS 4:141–159

    Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley AE, Poole I (eds) The evolution of plant physiology. Linnean Soc Sympm Series, no. 21, Academic Press, Amsterdam, pp 273–295

    Google Scholar 

  • Bailey IW (1958) The structure of tracheids in relation to the movement of liquids, suspensions and undissolved gases. In: Thimann KV (ed) The physiology of forest trees. Ronald, New York, pp 71–82

    Google Scholar 

  • Bailey IW, Tupper WW (1918) Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proc Am Acad Arts Sci 54:149–204

    Google Scholar 

  • Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    Google Scholar 

  • Barker-Bridgers M, Ribnicky DM, Cohen JD, Jones AM (1998) Red-light regulated growth. II. Changes in the abundance of indoleacetic acid in the maize mesocotyl. Planta 204:207–211

    Google Scholar 

  • Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. MC Evol Biol 7:248

    Google Scholar 

  • Baum SF, Aloni R, Peterson CA (1991) The role of cytokinin in vessel regeneration in wounded Coleus internodes. Ann Bot 67:543–548

    Google Scholar 

  • Baylis T, Cierlik I, Sundberg E, Mattsson J (2013) SHORT INTERNODES/STYLISH genes, regulators of auxin biosynthesis, are involved in leaf vein development in Arabidopsis thaliana. New Phytol 197:737–750

    Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    Google Scholar 

  • Benayoun J, Aloni R, Sachs T (1975) Regeneration around wounds and the control of vascular differentiation. Ann Bot 39:447–454

    Google Scholar 

  • Benková E, Bielach A (2010) Lateral root organogenesis – from cell to organ. Curr Opin Plant Biol 13:677–683

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Google Scholar 

  • Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol 14:e1002446

    Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    Google Scholar 

  • Biedroń M, Banasiak A (2018) Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. Plant Cell Rep 37:1215–1229

    Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Google Scholar 

  • Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421

    Google Scholar 

  • Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E (2023) Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nat Plants 9:785–802. https://doi.org/10.1038/s41477-023-01391-3

    Article  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    Google Scholar 

  • Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Google Scholar 

  • Booker J, Chatfield S, Leyser O (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15:495–507

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    Google Scholar 

  • Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304

    Google Scholar 

  • Bradford KJ, Trewavas AJ (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol 105:1029–1036

    Google Scholar 

  • Bromham L, Cowman PF, Lanfear R (2013) Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol 13:126

    Google Scholar 

  • Bünning E (1952) Morphogenesis in plants. Surv Biol Prog 2:105–140

    Google Scholar 

  • Bünning E (1965) Die Entstehung von Mustern in der Entwicklung von Pflanzen. Handb Pflanzenphysiol 15:383–408

    Google Scholar 

  • Candela H, Martinez-Laborda A, Micol JL (1999) Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol 205:205–216

    Google Scholar 

  • Caño-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637

    Google Scholar 

  • Carland FM, Berg BL, FitzGerald JN, Jinamornphongs S, Nelson T, Keith B (1999) Genetic regulation of vascular tissue patterning in Arabidopsis. Plant Cell 11:2123–2137

    Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlquist S (1976) Wood anatomy of Roridulaceae: ecological and phylogenetic implications. Am J Bot 63:1003–1008

    Google Scholar 

  • Carlquist S, Hoekman DA (1985) Ecological wood anatomy of the woody southern Californian flora. IAWA Bull 6:319–346

    Google Scholar 

  • Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenase controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Google Scholar 

  • Chilton M, Currier T, Farrand S, Merlo D, Sciaky D, Montoya A, Gordon M, Nester E (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Google Scholar 

  • Creber GT, Chaloner WG (1984) Influence of environmental factors on the wood structure of living and fossil trees. Bot Rev 50:357–448

    Google Scholar 

  • Cronshaw J, Anderson R (1971) Phloem differentiation in tobacco pith culture. J Ultrastruct Res 34:244–259

    Google Scholar 

  • Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    Google Scholar 

  • Dayan J, Voronin N, Gong F, Sun T-p, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24:66–79

    Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22:643–655

    Google Scholar 

  • De Rybel B, Mähönen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17:30–40

    Google Scholar 

  • De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193:867–873

    Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Freidit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    Google Scholar 

  • Denne MP (1972) A comparison of root and shoot-wood development in conifer seedlings. Ann Bot 36:579–587

    Google Scholar 

  • Deyholos MK, Cordner G, Beebe D, Sieburth LE (2000) The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127:3205–3213

    Google Scholar 

  • Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of cambial derivatives. Ann Bot 30:539–548

    Google Scholar 

  • Du Y, Scheres B (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69:155–167

    Google Scholar 

  • Dubrovsky JG, Doerner PW, Colon-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657

    Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794

    Google Scholar 

  • Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benková E (2011) Auxin minimum defines a developmental window for lateral root initiation. New Phytol 191:970–983

    Google Scholar 

  • Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Google Scholar 

  • Eklund L (1990) Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees 4:150–154

    Google Scholar 

  • Ellmore GS, Ewers FW (1985) Hydraulic conductivity in trunk xylem of elm, Ulmus amaerican. IAWA Bull NS 6:303–307

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and special expression of gibberellin 20-oxidase isolated from hybrid aspen (Populus termulata x P. termuloides Michx.). Planta 214:920–930

    Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinhart & Winston, New York

    Google Scholar 

  • Eschrich W (1968) Translokation radioaktiv markierter Indolyl-3-essigsäure in Siebröhren von Vicia faba. Planta 78:144–157

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Google Scholar 

  • Evert RF, Eichhorn SE (2013) Raven biology of plants, 8th edn. Freeman, New York

    Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees and liana. IAWA Bull NS 6:309–317

    Google Scholar 

  • Fahn A (1964) Some anatomical adaptations of desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Acad Sci, Jerusalem

    Google Scholar 

  • Fegel CA (1941) Comparative anatomy and varying physical properties of trunk, branch and root wood in certain northeastern trees. Bull NY State College of Forestry at Syracuse Univ 14(2b) Tech Publ 55:1–20

    Google Scholar 

  • Ferreira BG, Álvarez R, Bragança GP, Alvarenga DR, Pérez-Hidalgo N, Isaias RMS (2019) Feeding and other gall facets: patterns and determinants in gall structure. Bot Rev 85:78–106

    Google Scholar 

  • Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP (2019) The dynamics of cambial stem cell activity. Annu Rev Plant Biol 70:293–319

    Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235

    Google Scholar 

  • Friml J, Plame K (2002) Polar auxin transport – old questions and new concepts? Plant Mol Biol 49:273–284

    Google Scholar 

  • Fukuda H, Ohashi-Ito K (2019) Vascular tissue development in plants. Curr Top Dev Biol 131:141–160

    Google Scholar 

  • Furuta KM, Hellmann E, Helariutta Y (2014) Molecular control of cell specification and cell differentiation during procambial development. Annu Rev Plant Biol 65:604–638

    Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Google Scholar 

  • Goh T, Toyokura K, Yamaguchi N, Okamoto Y, Uehara T, Kaneko S, Takebayashi Y, Kasahara H, Ikeyama Y, Okushima Y, Nakajima K, Mimura T, Tasaka M, Fukaki H (2019) Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. New Phytol 224:749–760

    Google Scholar 

  • Goldsmith MHM, Catealdo DA, Karn J, Brenneman T, Trip P (1974) The nonpolar transport of auxin in the phloem of intact Coleus plants. Planta 116:301–317

    Google Scholar 

  • Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11:449–456

    Google Scholar 

  • Grew N (1682) The anatomy of plants with an idea of a philosophical history of plants. Rawlins, London

    Google Scholar 

  • Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D (2018) Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. Tree Physiol 39:222–233

    Google Scholar 

  • Gričar J, Vedenik A, Skoberne G, Hafner P, Prislan P (2020) Timeline of leaf and cambial phenology in relation to development of initial conduits in xylem and phloem in three coexisting sub-Mediterranean deciduous tree species. Forests 11:1104

    Google Scholar 

  • Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017) An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ 40:831–845

    Google Scholar 

  • Hartig T (1853) Über die Entwicklung des Jahresringes der Holzpflanzen. Bot Z 11:553–560. 569–579

    Google Scholar 

  • Hellmann E, Ko D, Ruonala R, Helariutta Y (2018) Plant vascular tissues-connecting tissue comes in all shapes. Plants 7:E109

    Google Scholar 

  • Hess T, Sachs T (1972) The influence of a mature leaf on xylem differentiation. New Phytol 71:903–914

    Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida EJ, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Google Scholar 

  • Horner HT, Lersten NR, Wirth CL (1994) Quantitative survey of sieve tube distribution in foliar terminal veins of ten dicot species. Am J Bot 81:1267–1274

    Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    Google Scholar 

  • Ilina EL, Kiryushkin AS, Semenova VA, Demchenko NP, Pawlowski K, Demchenko KN (2018) Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player? Ann Bot 122:873–888

    Google Scholar 

  • Ingemarsson BSM, Lundqvist E, Eliasson L (1991) Seasonal variation in ethylene concentration in wood of Pinus sylvestris L. Tree Physiol 8:273–279

    Google Scholar 

  • Irving LJ, Cameron DD (2009) You are what you eat: interactions between root parasitic plants and their hosts. Adv Bot Res 50:87–138

    Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309

    Google Scholar 

  • Jeffs RA, Northcote DH (1966) Experimental induction of vascular tissue in an undifferentiated plant callus. Biochem J 101:146–152

    Google Scholar 

  • Joel DM (2013) Functional structure of the mature haustorium. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic Orobanchaceae – parasitic mechanisms and control strategies. Springer, Berlin, pp 25–60

    Google Scholar 

  • Kabbage M, Kessens R, Bartholomay LC, Williams B (2017) The life and death of a plant cell. Annu Rev Plant Biol 68:375–404

    Google Scholar 

  • Kalev N, Aloni R (1998) Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea seedlings. New Phytol 138:461–468

    Google Scholar 

  • Kiryushkin AS, Ilina EL, Puchkova VA, Guseva ED, Pawlowski K, Demchenko KN (2019) Lateral root initiation in the parental root meristem of cucurbits: old players in a new position. Front Plant Sci 10:365

    Google Scholar 

  • Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN (2023) Lateral root initiation in cucumber (Cucumis sativus): what does the expression pattern of rapid alkalinization factor 34 (RALF34) tell us? Int J Mol Sci 24:8440

    Google Scholar 

  • Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181

    Google Scholar 

  • Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, Luschnig C, Govaerts W, Hell SW, Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540

    Google Scholar 

  • Kokla A, Melnyk CW (2018) Developing a thief: haustoria formation in parasitic plants. Dev Biol 442:53–59

    Google Scholar 

  • Kondo Y, Nurani AM, Saito C, Ichihashi Y, Saito M, Yamazaki K, Mitsuda N, Ohme-Takagi M, Fukuda H (2016) Vascular cell induction culture system using Arabidopsis Leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell 28:1250–1262

    Google Scholar 

  • Kudo K, Yasue K, Hosoo Y, Funada R (2015) Relationship between formation of earlywood vessels and leaf phenology in two ring-porous hardwoods, Quercus serrata and Robinia pseudoacacia, in early spring. J Wood Sci 61:455–464

    Google Scholar 

  • Kudo K, Utsumi Y, Kuroda K, Yamagishi Y, Nabeshima E, Nakaba S, Yasue K, Takata K, Funada R (2018) Formation of new networks of earlywood vessels in seedlings of the deciduous ring-porous hardwood Quercus serrata in springtime. Trees 32:725–734

    Google Scholar 

  • Kuhlemeier C (2017) Phyllotaxis. Curr Biol 27:R882–R887

    Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuzmanović N, Puławska J, Hao L, Burr TJ (2018) The ecology of Agrobacterium vitis and management of crown gall disease in vineyards. Curr Top Microbiol Immunol 418:15–53

    Google Scholar 

  • Lacombe B, Achard P (2016) Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34:1–8

    Google Scholar 

  • LaMotte CE, Jacobs WP (1963) A role of auxin in phloem regeneration in Coleus internodes. Dev Biol 8:80–98

    Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Google Scholar 

  • Larson PR (1964) Some indirect effects of environment on wood formation. In: Zimmermann MH (ed) Formation of Wood in Forest Trees. Academic, New York, pp 345–365

    Google Scholar 

  • Larson PR (1969) Wood formation and the concept of wood quality. Sch For Bull 74. Yale University, New Haven

    Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Google Scholar 

  • Lavania D, Linh NM, Scarpella E (2021) Of cells, strands, and networks: auxin and the pattern formation of the vascular system. Cold Spring Harb Perspect Biol 13:a039958

    Google Scholar 

  • Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J (2017) Chronological sequence of leaf phenology, xylem and phloem formation and sap flow of Quercus pubescens from abandoned karst grasslands. Front Plant Sci 8:314

    Google Scholar 

  • Lechowicz MJ (1984) Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Am Nat 124:821–842

    Google Scholar 

  • Leitch MA (2001) Vessel-element dimensions and frequency within the most current growth increment along the length of Eucalyptus globules stems. Tree 15:353–357

    Google Scholar 

  • Lersten NR (1990) Sieve tubes in foliar vein endings: review and quantitative survey of Rudbeckia laciniata (Asteraceae). Am J Bot 77:1132–1141

    Google Scholar 

  • Lev-Yadun S, Aloni R (1991) Polycentric vascular rays in Suaeda monoica and the control of ray initiation and spacing. Trees 5:22–29

    Google Scholar 

  • Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody plants. Bot Rev 61:45–84

    Google Scholar 

  • Li S, Pezeshki SR, Shields FD (2006) Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J Plant Physiol 163:619–628

    Google Scholar 

  • Linh NM, Verna C, Scarpella E (2018) Coordination of cell polarity and the patterning of leaf vein networks. Curr Opin Plant Biol 41:116–124

    Google Scholar 

  • Liphschitz N (1995) Ecological wood anatomy: changes in xylem structure in Israeli trees. In: Shuming W (ed) Wood Anatomy Research 1995. Proceedings of the international symposium tree anatomy and wood formation. International Academic Publishers, Beijing, pp 12–15

    Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indol-3-acetic acid in Arabidopsis. Plant Mol Biol 50:309–332

    Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris. Plant Cell Environ 18:661–669

    Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388

    Google Scholar 

  • Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil S, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP (2023) Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nat Plants 9:631–644

    Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11:634–642

    Google Scholar 

  • Mapes CC, Davies PJ (2001a) Indole-3-acetic acid in the ball gall of Solidago altissima. New Phytol 151:195–202

    Google Scholar 

  • Mapes CC, Davies PJ (2001b) Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phytol 151:203–212

    Google Scholar 

  • Marcos D, Berleth T (2014) Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia. Front Plant Sci 5:235

    Google Scholar 

  • Márquez G, Alarcón MV, Salguero J (2019) Cytokinin inhibits lateral root development at the earliest stages of lateral root primordium initiation in maize primary root. J Plant Growth Regul 38:83–92

    Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    Google Scholar 

  • Mattoo AK, Aharoni N (1988) Ethylene and plant senescence. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diago, pp 241–280

    Google Scholar 

  • Mattoo AK, White WB (1991) Regulation of ethylene biosynthesis. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC, Boca Raton, pp 21–42

    Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Google Scholar 

  • Morris DA, Kadir GO, Barry AJ (1973) Auxin transport in intact pea seedlings (Pisum sativum L.): the inhibition of transport by 2,3,5-triiodobenzoic acid. Planta 110:173–182

    Google Scholar 

  • Muraro D, Byrne H, King J, Bennett M (2013) The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. J Theor Biol 317:71–86

    Google Scholar 

  • Musselman LJ (1980) The biology of Striga, Orobanche, and other root parasitic weeds. Annu Rev Phytopathol 18:463–489

    Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Google Scholar 

  • Nelson T (1998) Polarity, vascularization and auxin. Trends Plant Sci 3:245–246

    Google Scholar 

  • Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135

    Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    Google Scholar 

  • O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR (2022) Engineering the multiscale complexity of vascular networks. Nat Rev Mater 7:702–716. https://doi.org/10.1038/s41578-022-00447-8

    Article  Google Scholar 

  • Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T (2017) Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. J Exp Bot 68:17–26

    Google Scholar 

  • Olson ME, Rosell JA (2013) Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol 197:1204–1213

    Google Scholar 

  • Pace MR, Dutra R, Marcati CR, Angyalossy V, Evert RF (2023) Seasonal cambial activity and formation of secondary phloem and xylem in white oaks (Quercus alba L.). Forests 14:920. https://doi.org/10.3390/f14050920

    Article  Google Scholar 

  • Palme P, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Poin Plant Biol 2:375–381

    Google Scholar 

  • Palni LM, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    Google Scholar 

  • Park J, Lee Y, Martinoia E, Geisler M (2017) Plant hormone transporters: what we know and what we would like to know. BMC Biol 15:93

    Google Scholar 

  • Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I (2016) Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol 209:521–530

    Google Scholar 

  • Pérez-de-Lis G, Rozas V, Vázquez-Ruiz RA, García-González I (2018) Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric For Meteorol 248:205–214

    Google Scholar 

  • Perico C, Tan S, Langdale JA (2022) Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. New Phytol 234:783–803

    Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    Google Scholar 

  • Pizzolato TD, Heimsch C (1975a) Ontogeny of the protophloem fibers and secondary xylem fibers within the stem of Coleus. I. A light microscope study. Can J Bot 53:1658–1671

    Google Scholar 

  • Pizzolato TD, Heimsch C (1975b) Ontogeny of the protophloem fibers and secondary xylem fibers within the stem of Coleus. II. An electron microscope study. Can J Bot 53:1672–1697

    Google Scholar 

  • Priestley JH, Scott LI (1936) A note upon summer wood production in the tree. Proc Leeds Phil Soc 3:235–248

    Google Scholar 

  • Puchałka R, Koprowski M, Gričar J, Przybylak R (2017) Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur J Forest Res 136:259–268

    Google Scholar 

  • Ramalho JJ, Jones VAS, Mutte S, Weijers D (2022) Pole position: how plant cells polarize along the axes. Plant Cell 34:174–192. https://doi.org/10.1093/plcell/koab203

    Article  Google Scholar 

  • Raven JA (2003) Long-distance transport in non-vascular plants. Plant Cell Environ 26:73–85

    Google Scholar 

  • Ravichandran SJ, Linh NM, Scarpella E (2020) The canalization hypothesis – challenges and alternatives. New Phytol 227:1051–1059

    Google Scholar 

  • Regnault T, Davière JM, Wild M, Sakvarelidze-Achard L, Heintz D, Carrera Bergua E, Lopez Diaz I, Gong F, Hedden P, Achard P (2015) The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat Plants 1:15073

    Google Scholar 

  • Reines M (1959) The initiation of cambial activity in black cherry. For Sci 5:70–73

    Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Google Scholar 

  • Riedl H (1937) Bau und Leistungen des Wurzelholzes. Jb Wiss Bot 85:1–75. English translation available from: National Translations Center, 35 West 33rd St, Chicago, IL 60616

    Google Scholar 

  • Rier JP, Beslow DT (1967) Sucrose concentration and the differentiation of xylem in callus. Bot Gaz 128:73–77

    Google Scholar 

  • Robert HS, Crhak Khaitova L, Mroue S, Benková E (2015) The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J Exp Bot 66:5029–5042

    Google Scholar 

  • Roberts LW, Gahan BP, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin

    Google Scholar 

  • Rodriguez-Zaccaro FD, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL (2019) Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current-year growth. Plant Cell Environ 42:1816–1831

    Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Rohfritsch O, Shorthouse JD (1982) Insect galls. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic Press, New York, pp 131–152

    Google Scholar 

  • Rosell JA, Olson ME, Anfodillo T (2017) Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr Forestry Rep 3:46–59

    Google Scholar 

  • Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65:1984–1993

    Google Scholar 

  • Russow EI (1883) Ueber Tüpfelbidung und Inhalt der Bastparenchym-und Baststrahlzellen der Dikotylen und Gymnospermen. 2. Ueber den Inhalt der parenchymastrischen Elemente der Rinde vor und während des Knospenaustriebes und Beginns der Cambiumthätigkeit in Stamm und Wurzel der einheimischen Lignosen. Bot Centralblatt 13:271–275

    Google Scholar 

  • Sachs T (1969) Regeneration experiments on the determination of the form of leaves. Isr J Bot 18:21–30

    Google Scholar 

  • Sachs T (1972) The induction of fibre differentiation in peas. Ann Bot 36:189–197

    Google Scholar 

  • Sachs T (1975) The control of the differentiation of vascular networks. Ann Bot 39:197–207

    Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Sachs T (1989) The development of vascular networks during leaf development. Curr Top Plant Biochem Physiol 8:168–183

    Google Scholar 

  • Sachs T (1991) The canalization of vascular differentiation. In: Sachs T (ed) Pattern formation in plant tissues. Cambridge University Press, Cambridge, pp 52–69

    Google Scholar 

  • Sachs T (2000) Integrating cellular and organismal aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    Google Scholar 

  • Sachs T (2002) Consequences of the inherent developmental plasticity of organ and tissue relations. Evol Ecol 16:243–265

    Google Scholar 

  • Saks Y, Aloni R (1985) Polar gradients of tracheid number and diameter during primary and secondary xylem development in young seedlings of Pinus pinea L. Ann Bot 56:771–778

    Google Scholar 

  • Saks Y, Feigenbaum P, Aloni R (1984) Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol 76:638–642

    Google Scholar 

  • Sanio K (1872) Über die Grősse der Holzzellen bei der gemeinen Kiefer (Pinus sylvestris). Jahrb Wiss Bot 8:401–420

    Google Scholar 

  • Sass-Klaassen U, Sabajo CR, den Ouden J (2011) Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29:171–175

    Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    Google Scholar 

  • Savidge RA (1988) Auxin and ethylene regulation of diameter growth in trees. Tree Physiol 4:401–414

    Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17:269–310

    Google Scholar 

  • Sawchuk MG, Head P, Donner TJ, Scarpella E (2007) Time-lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. New Phytol 176:560–571

    Google Scholar 

  • Scarpella E (2017) The logic of plant vascular patterning. Polarity, continuity and plasticity in the formation of the veins and of their networks. Curr Opin Genet Dev 45:34–43

    Google Scholar 

  • Scarpella E (2023) Axes and polarities in leaf vein formation. Plant Physiol:kiad321. https://doi.org/10.1093/plphys/kiad321

  • Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. Curr Top Dev Biol 91:221–265

    Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Google Scholar 

  • Scheres B, Xu J (2006) Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–926

    Google Scholar 

  • Schurr U, Schuberth B, Aloni R, Pradel KS, Schmundt D, Jähne B, Ullrich CI (1996) Structural and functional evidence for xylem-mediated water transport and high transpiration in Agrobacterium tumefaciens-induced tumors of Ricinus communis. Bot Acta 109:405–411

    Google Scholar 

  • Shimizu K, Hozumi A, Aoki K (2018) Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant Cell Physiol 59:715–723

    Google Scholar 

  • Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects – nature’s most sophisticated herbivores. Basic Appl Ecol 6:407–411

    Google Scholar 

  • Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190

    Google Scholar 

  • Sircar SM, Chakraverty R (1960) The effect of gibberellic acid on jute (Corchorus capsularis Linn). Sci Cult 26:141–143

    Google Scholar 

  • Smyth DR (2005) Morphogenesis of flowers – our evolving view. Plant Cell 17:330–341

    Google Scholar 

  • Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34:347–360

    Google Scholar 

  • Spicer R, Tisdale-Orr T, Talavera C (2013) Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. PloS One 8:e72499

    Google Scholar 

  • Stant MY (1961) The effect of gibberellic acid on fibre-cell length. Ann Bot 25:453–462

    Google Scholar 

  • Stant MY (1963) The effect of gibberellic acid on cell width and the cell wall of some phloem fibres. Ann Bot 27:185–196

    Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 169–188

    Google Scholar 

  • Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444

    Google Scholar 

  • Suzuki H, Yokokura J, Ito T, Arai R, Yokoyama C, Toshima H, Nagata S, Asami T, Suzuki Y (2014) Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem Mol Biol 53:66–72

    Google Scholar 

  • Swarup R, Péret B (2012) AUX/LAX family of auxin influx carriers-an overview. Front Plant Sci 3:225

    Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Google Scholar 

  • Taiz L, Møller IM, Murphy A, Zeiger E (2022) Plant physiology and development, 7th edn. Sinauer Associates, Oxford University Press, New York

    Google Scholar 

  • Takahashi S, Okada N, Nobuchi T (2013) Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species. Ecol Res 28:615–624

    Google Scholar 

  • Takei M, Kogure S, Yokoyama C, Kouzuma Y, Suzuki Y (2019) Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland. Biosci Biotechnol Biochem 83:129–136

    Google Scholar 

  • Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa IC, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, Schwechheimer C, Halkier BA, Nour-Eldin HH, Estelle M, Shani E (2016) The Arabidopsis NPF3 protein is a GA transporter. Nat Commun 7:11486

    Google Scholar 

  • Tanaka Y, Okada K, Asami T, Suzuki Y (2013) Phytohormones in Japanese mugwort gall induction by a gallinducing gall midge. Biosci Biotechnol Biochem 77:1942–1948

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Google Scholar 

  • Telfer A, Poething RS (1994) Leaf development in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 379–401

    Google Scholar 

  • Thimann KV, Sachs T (1966) The role of cytokinins in the ‘fasciation’ disease caused by Corynebacterium fascians. Am J Bot 53:731–739

    Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants. III. The inhibiting action of growth substance on bud development. Proc Natl Acad Sci 19:714–716

    Google Scholar 

  • Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618

    Google Scholar 

  • Thompson NP, Jacobs WP (1966) Polarity of IAA effect on sieve-tube and xylem regeneration in Coleus and tomato stems. Plant Physiol 41:673–682

    Google Scholar 

  • Tomlinson PB, Zimmermann MH (1967) The ‘wood’ of monocotyledons. IAWA Bull 2:4–24

    Google Scholar 

  • Trewavas AJ (1983) Is plant development regulated by changes in concentration of growth substances or by changes in the sensitivity to growth substances? TIBS 8:354–357

    Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol 40:19–36

    Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of Sap, 2nd edn. Springer, Berlin

    Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Nat Acad Sci USA 93:9282–9286

    Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Google Scholar 

  • Ullrich CI, Aloni R (2000) Vascularization is a general requirement for growth of plant and animal tumours. J Exp Bot 51:1951–1960

    Google Scholar 

  • Ullrich CI, von Eitzen-Ritter M, Jockel A, Efferth T (2009) Prevention of plant crown gall tumor development by the anti-malarial artesunate of Artemisia annua. J Cultiv Plants 61:31–36

    Google Scholar 

  • Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T (2019) Comparison between tumors in plants and human beings: mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine 64:153081

    Google Scholar 

  • Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP (2022) Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 609:605–610. https://doi.org/10.1038/s41586-022-04883-y

    Article  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zenen I, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing activity. Nature 252:255–264

    Google Scholar 

  • Vereecke D, Burssens S, Simón-Mateo C, Inzé D, Van Montagu M, Goethals K, Jaziri M (2000) The Rhodococcus fascians– plant interaction: morphological traits and biotechnological applications. Planta 210:241–251

    Google Scholar 

  • Verna C, Sawchuk MG, Linh M, Scarpella E (2015) Control of vein network topology by auxin transport. BMC Biol 13:94

    Google Scholar 

  • Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E (2019) Coordination of tissue cell polarity by auxin transport and signaling. Elife 8:e51061

    Google Scholar 

  • Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, Götz C, Veselova S, Schlomski S, Dickler C, Bächmann K, Ullrich CI (2003) Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade in production of jasmonic acid, auxin, cytokinin, ethylene, and abscisic acid. Planta 216:512–522

    Google Scholar 

  • von Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären. (Gotha: Carl Wilhelm Ettinger). [English translation: Arber A (1946). Goethe’s botany. Chronica Botanica 10:63–126]

    Google Scholar 

  • Wächter R, Fischer K, Gäbler R, Kühnemann F, Urban W, Bögemann GM, Voesenek LACJ, Blom CWPM, Ullrich CI (1999) Ethylene production and ACC-accumulation in Agrobacterium tumefaciens-induced plant tumours and their impact on tumour and host stem structure and function. Plant Cell Environ 22:1263–1273

    Google Scholar 

  • Wang J, Wu D, Wang Y, Xie D (2019) Jasmonate action in plant defense against insects. J Exp Bot 70:3391–3400

    Google Scholar 

  • Wang X, Mäkilä R, Mähönen AP (2023) From procambium patterning to cambium activation and maintenance in the Arabidopsis root. Curr Opin Plant Biol 75:102404. https://doi.org/10.1016/j.pbi.2023.102404

    Article  Google Scholar 

  • Wareing PF (1951) Growth studies in woody species. 4. The initiation of cambial activity in ring-porous species. Physiol Plant 4:546–562

    Google Scholar 

  • Wareing PF (1958) The physiology of cambial activity. J Inst Wood Sci 1:34–42

    Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Google Scholar 

  • Weiler EW, Schröder J (1987) Hormone genes and crown gall disease. Trends Biochem Sci 12:271–275

    Google Scholar 

  • Weiler EW, Spanier K (1981) Phytohormones in the formation of crown gall tumors. Planta 153:326–337

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398

    Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    Google Scholar 

  • Wetmore RH, Rier JP (1963) Experimental induction of vascular tissue in callus of angiosperms. Am J Bot 50:418–430

    Google Scholar 

  • Wetmore RH, De Maggio AE, Rier JP (1964) Contemporary outlook on the differentiation of vascular tissue. Phytomorphology 14:203–217

    Google Scholar 

  • Wheeler EA, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull NS 12:275–332

    Google Scholar 

  • Wheeler E, Baas P (2019) Wood evolution: Baileyan trends and functional traits in the fossil record. IAWA J 40:488–529

    Google Scholar 

  • Wheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the insidewood database. IAWA J 28:229–258

    Google Scholar 

  • Wicke S, Müller KF, dePamphilis CW, Quandt D, Bellot S, Schneeweiss GM (2016) Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc Natl Acad Sci USA 113:9045–9050

    Google Scholar 

  • Williams CB, Anfodillo T, Crivellaro A, Lazzarin M, Dawson TE, Koch GW (2019) Axial variation of xylem conduits in the Earth’s tallest trees. Trees 33:1299–1311

    Google Scholar 

  • Wool D (2004) Galling aphids: specialization, biological complexity, and variation. Annu Rev Entomol 49:175–192

    Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T (2014) Contribution of NAC transcription factors to plant adaptation to land. Science 343:1505–1508

    Google Scholar 

  • Yagi H, Tamura K, Matsushita T, Shimada T (2021) Spatiotemporal relationship between auxin dynamics and hydathode development in Arabidopsis leaf teeth. Plant Signal Behav 16:1989216

    Google Scholar 

  • Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82:6522–6526

    Google Scholar 

  • Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–595

    Google Scholar 

  • Yamamoto F, Angeles G, Kozlowski TT (1987) Effect of ethrel on stem anatomy of Ulmus americana seedlings. IAWA Bull NS 8:3–9

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plant. Annu Rev Plant Physiol 35:155–189

    Google Scholar 

  • Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L (2022) Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 609:611–615. https://doi.org/10.1038/s41586-022-05143-9

    Article  Google Scholar 

  • Yin XH, Hao GY, Sterck F (2023) Ring-and diffuse-porous tree species from a cold temperate forest diverge in stem hydraulic traits, leaf photosynthetic traits, growth rate and altitudinal distribution. Tree Physiol 43:722–736

    Google Scholar 

  • Yoda K, Wagatsuma H, Suzuki M, Suzuki H (2003) Stem diameter changes before bud opening in Zelkova serrata saplings. J Plant Res 116:13–18

    Google Scholar 

  • Zambryski P, Tempé J, Schell J (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201

    Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    Google Scholar 

  • Zhang J, Nieminen K, Serra JA, Helariutta Y (2014) The formation of wood and its control. Curr Opin Plant Biol 17:56–63

    Google Scholar 

  • Zhao Y (2018) Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol 69:417–435

    Google Scholar 

  • Zhu L, Cooper DJ, Yuan D, Li Z, Zhang Y, Liang H, Wang X (2020) Regional scale temperature rather than precipitation determines vessel features in earlywood of Manchurian ash in temperate forests. JGR Biogeosci 125:e2020JG005955

    Google Scholar 

  • Ziegler H (1964) Storage, mobilization and distribution of reserve material in trees. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 303–320

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of Sap. Springer, Berlin

    Google Scholar 

  • Zimmermann MH, Jeje AA (1981) Vessel-length distribution in stems of some American woody plants. Can J Bot 59:1882–1892

    Google Scholar 

  • Zimmermann MH, Potter D (1982) Vessel-length distribution in branches, stem and roots of Acer rubrum L. IAWA Bull 3:103–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Aloni .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aloni, R. (2023). How Moving Hormonal Signals Regulate Plant Vascular Differentiation, Adaptation, and Evolution: Hypotheses and Evidence. In: Progress in Botany. Springer, Berlin, Heidelberg. https://doi.org/10.1007/124_2023_77

Download citation

  • DOI: https://doi.org/10.1007/124_2023_77

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics