Skip to main content

The Haustorium of Phytopathogenic Fungi: A Short Overview of a Specialized Cell of Obligate Biotrophic Plant Parasites

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Abstract

Among all biotic stresses to which plants are subjected, the biotrophic fungal pathogens of rust and powdery mildew are the most economically relevant. They are characterized by their ability to develop specialized infective structures called haustoria. The fungal haustorium has been recognized as a fungal structure with a key role in disease establishment and has been implicated in essential processes, such as nutrient uptake and effector delivery. However, despite the early description of this fungal structure, many details of its composition, development or effector functions remain unsolved. In this work, we provide an overview of the current knowledge of the fungal haustorium, including the most recent isolation techniques and expression studies. We can conclude that the fungal haustorium is a complex structure, with a high level of expression of genes associated with nutrient uptake and pathogenesis and with a high level of protein synthesis, which seems to be related to the release of secreted proteins. Although recent molecular studies have significantly advanced the knowledge of this structure, many questions remain unsolved. We hope that the development of novel techniques of genetic manipulation based on the capability of the fungal haustorium to uptake dsRNA, siRNA or T-DNA will allow us to answer these questions in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Article  Google Scholar 

  • Bhairi S, Staples RC (1992) Transient expression of the β-glucuronidase gene introduced into Uromyces appendiculatus uredospores by particle bombardment. Phytopathology 82:986–989

    Article  CAS  Google Scholar 

  • Braun U, Cook RTA (2012) Taxonomic manual of the Erysiphales (powdery mildews). CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Bushnell WR, Bergquist SE (1974) Aggregation of host cytoplasm and the formation of papillae and haustoria in powdery mildew of barley. Phytopathology 65:310–318

    Article  Google Scholar 

  • Chaudhari P, Ahmed B, Joly DL, Germain H (2014) Effector biology during biotrophic invasion of plant cells. Virulence 5:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Harder DE (1980) Ultrastructure of haustorium development in Puccinia coronata avenae. I. Cytochemistry and electron probe X-ray analysis of the haustorial neck ring. Can J Bot 58:2496–2505

    Article  CAS  Google Scholar 

  • Christiansen SK, Knudsen S, Giese H (1995) Biolistic transformation of the obligate plant pathogenic fungus, Erysiphe graminis f. sp. hordei. Curr Genet 29:100–102

    Article  CAS  PubMed  Google Scholar 

  • Cummins GB, Hiratsuka Y (2003) Illustrated genera of rust fungi, 3rd edn. American Phytopathological Society, St. Paul

    Google Scholar 

  • Djulic A, Schmid A, Lenz H, Sharma P, Koch C, Wirsel SGR, Voegele RT (2011) Transient transformation of the obligate biotrophic rust fungus Uromyces fabae using biolistics. Fungal Biol 115:633–642

    Article  PubMed  Google Scholar 

  • Duplessis S, Cuomo CA, Lin Y et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165:5–18

    Article  CAS  PubMed  Google Scholar 

  • Eichmann R, Schultheiss H, Kogel KH, Huckelhoven R (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol Plant Microbe Interact 17:484–490

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, AtBfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP (2013) Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS One 8:e67150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil F, Gay JL (1977) Ultrastructural and physiological properties of the host interfacial components of haustoria of Erysiphe pisi in vivo and in vitro. Physiol Plant Pathol 10:1–12

    Article  Google Scholar 

  • Godfrey D, Zhang Z, Saalbach G, Thordal-Christensen H (2009) A proteomics study of barley powdery mildew haustoria. Proteomics 9:3222–3232

    Article  CAS  PubMed  Google Scholar 

  • Godfrey D, Böhlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H (2010) Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 11:317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gold RE, Mendgen K (1991) Rust basidiospore germlings and disease initiation. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum Press, New York, pp 67–99

    Chapter  Google Scholar 

  • Grenville-Briggs LJ, van West P (2005) The biotrophic stages of oomycete–plant interactions. Academic Press, San Diego, pp 217–243

    Google Scholar 

  • Hacquard S, Joly DL, Lin Y-C et al (2012) A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol Plant Microbe Interact 25:279–293

    Article  CAS  PubMed  Google Scholar 

  • Hahn M (2000) The rust fungi. Cytology, physiology and molecular biology of infection. In: Kronstad JW (ed) Fungal pathology. Kluwer Academic Publishers, Dordrecht, pp 267–306

    Chapter  Google Scholar 

  • Hahn M, Mendgen K (1992) Isolation by ConA binding of haustoria from different rust fungi and comparison of their surface qualities. Protoplasma 170:95–103

    Article  CAS  Google Scholar 

  • Hahn M, Mendgen K (1997) Characterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant Microbe Interact 10:427–437

    Article  CAS  PubMed  Google Scholar 

  • Heath MC, Skalamera D (1997) Cellular interactions between plants and biotrophic fungal parasites (JH Andrews, IC Tommerup, and JABT-A in BR Callow, Eds.). Adv Bot Res 24:195–225

    Article  CAS  Google Scholar 

  • Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ (2013) The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog 9:e1003290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 14:738–746

    Article  PubMed  CAS  Google Scholar 

  • Jakupović M, Heintz M, Reichmann P, Mendgen K, Hahn M (2006) Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43:8–19

    Article  PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT (2005) Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Kemen E, Kemen A, Ehlers A, Voegele R, Mendgen K (2013) A novel structural effector from rust fungi is capable of fibril formation. Plant J 75:767–780

    Article  CAS  PubMed  Google Scholar 

  • Kim H, O’Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P (2014) The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J 79:835–847

    Article  CAS  PubMed  Google Scholar 

  • Kirigia D, Runo S, Alakonya A (2014) A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica. Plant Methods 10:1–8

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    Article  CAS  Google Scholar 

  • Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    Article  CAS  PubMed  Google Scholar 

  • Kwaaitaal M, Nielsen ME, Böhlenius H, Thordal-Christensen H (2017) The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane. J Exp Bot 68:5731–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambertucci S, Orman KM, Das Gupta S, Fisher JP, Gazal S, Williamson RJ, Cramer R, Bindschedler LV (2019) Analysis of barley leaf epidermis and extrahaustorial proteomes during powdery mildew infection reveals that the PR5 thaumatin-like protein TLP5 is required for susceptibility towards Blumeria graminis f. sp. hordei. Front Plant Sci 10:1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A, Altosaar I, Heath MC, Horgen PA (1993) Transient expression of the β-glucuronidase gene delivered into urediniospores of Uromyces appendiculatus by particle bombardment. Can J Plant Pathol 15:1–6

    Article  CAS  Google Scholar 

  • Link TI, Lang P, Scheffler BE et al (2014) The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol Plant Pathol 15:379–393

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  CAS  PubMed  Google Scholar 

  • Mackie AJ, Roberts AM, Callow JA, Green JR (1991) Molecular differentiation in pea powdery-mildew haustoria. Planta 183:399–408

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cruz J, Romero D, Dávila JC, Pérez-García A (2014) The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions. Fungal Genet Biol 71:21–31

    Article  PubMed  Google Scholar 

  • Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A (2017) Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. New Phytol 213(4):1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Cruz J, Romero D, de la Torre FN, Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A (2018a) The functional characterization of Podosphaera xanthii candidate effector genes reveals novel target functions for fungal pathogenicity. Mol Plant-Microbe Interact 31:914–931

    Article  PubMed  Google Scholar 

  • Martínez-Cruz J, Romero D, De Vicente A, Pérez-García A (2018b) Transformation by growth onto agro-infiltrated tissues (TGAT), a simple and efficient alternative for transient transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii. Mol Plant Pathol 19:2502–2515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendgen K, Struck C, Voegele RT, Hahn M (2000) Biotrophy and rust haustoria. Physiol Mol Plant Pathol 56:141–145

    Article  Google Scholar 

  • Micali C, Göllner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: A paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115

    Article  PubMed  PubMed Central  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki S, Saitoh K, Minami E, Nishizawa Y (2011) Localization of probe-accessible chitin and characterization of genes encoding chitin-binding domains during rice-Magnaporthe oryzae interactions. J Gen Plant Pathol 77:163–173

    Article  CAS  Google Scholar 

  • Murdoch LJ, Kobayashi I, Hardham AR (1998) Production and characterisation of monoclonal antibodies to cell wall components of the flax rust fungus. Eur J Plant Pathol 104:331–346

    Article  CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva R, Win J, Raffaele S et al (2010) Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol 12:705–715

    Article  CAS  PubMed  Google Scholar 

  • Pain NA, Green JR, Gammie F et al (1994) Immunomagnetic isolation of viable intracellular hyphae of Colletotrichum lindemuthianum (Sacc. & Magn.) Briosi & Cav. from infected bean leaves using a monoclonal antibody. New Phytol 127:223–232

    Article  PubMed  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the barley stripe mosaic virus. Plant Mol Biol 81:595–608

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Nowara D, Bonciani G et al (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact 26:633–642

    Article  CAS  PubMed  Google Scholar 

  • Polonio Á, Seoane P, Claros MG, Pérez-Garciá A (2019) The haustorial transcriptome of the cucurbit pathogen Podosphaera xanthii reveals new insights into the biotrophy and pathogenesis of powdery mildew fungi. BMC Genomics 20:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pretsch K, Kemen A, Kemen E, Geiger M, Mendgen K, Voegele R (2013) The rust transferred proteins−a new family of effector proteins exhibiting protease inhibitor function. Mol Plant Pathol 14:96–107

    Article  CAS  PubMed  Google Scholar 

  • Rafiqi M, Gan PHP, Ravensdale M, Lawrence GJ, Ellis JG, Jones DA, Hardham AR, Dodds PN (2010) Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell 22:2017–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg D-J, Thomma BP, Mesters JR (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2:e00790

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant-microbe interactions. Physiol Mol Plant Pathol 71:135–148

    Article  CAS  Google Scholar 

  • Schmidt SM, Panstruga R (2011) Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Curr Opin Plant Biol 14:392–399

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319:689–693

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Aminedi R, Saxena D, Gupta A, Banerjee P, Jain D, Chandran D (2019) Effector mining from the Erysiphe pisi haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis. Mol Plant Pathol 20:1506–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgreen M (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer-Phillips PTN, Gay JL (1981) Domains of ATPase in plasma membranes and transport through infected plant cells. New Phytol 89:393–400

    Article  CAS  Google Scholar 

  • Struck C, Hahn M, Mendgen K (1996) Plasma membrane H+-ATPase activity in spores, germ tubes, and haustoria of the rust fungus Uromyces viciae-fabae. Fungal Genet Biol 20:30–35

    Article  CAS  PubMed  Google Scholar 

  • Struck C, Siebels C, Rommel O, Wernitz M, Hahn M (1998) The plasma membrane H + -ATPase from the biotrophic rust fungus Uromyces fabae: molecular characterization of the gene PMA1 and functional expression of the enzyme in yeast. Mol Plant-Microbe Interact 11:458–465

    Article  CAS  PubMed  Google Scholar 

  • Struck C, Ernst M, Hahn M (2002) Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae. Mol Plant Pathol 3:23–30

    Article  CAS  PubMed  Google Scholar 

  • Struck C, Mueller E, Martin H, Lohaus G (2004) The Uromyces fabae UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. Mol Plant Pathol 5:183–189

    Article  CAS  PubMed  Google Scholar 

  • Stumpf M, Gay J (1990) The composition of Erysiphe pisi haustorial complexes with special reference to the neckbands. Physiol Mol Plant Pathol 37:125–143

    Article  CAS  Google Scholar 

  • Sutton PN, Henry MJ, Hall JL (1999) Glucose, and not sucrose, is transported from wheat to wheat powdery mildew. Planta 208:426–430

    Article  CAS  Google Scholar 

  • Swann EC, Frieders EM, McLaughlin DJ (2011) Urediniomycetes. In: McLaughlin DJ, Blackwell M, Spatafora JW (eds) Systematics and evolution. Springer, Berlin, pp 37–56

    Google Scholar 

  • Szabo LJ, Bushnell WR (2001) Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc Natl Acad Sci U S A 98:7654–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI–ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiburzy R, Martins E, Reisener H (1992) Isolation of haustoria of Puccinia graminis f. sp. tritici from wheat leaves. Exp Mycol 328:324–328

    Article  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 2009:198680

    PubMed  PubMed Central  Google Scholar 

  • van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Vela-Corcía D, Romero D, De Vicente A, Pérez-García A (2018) Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci Rep 8:7161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velásquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292

    Google Scholar 

  • Voegele RT, Mendgen K (2003) Rust haustoria : uptake and beyond. New Phytol 159:93–100

    Article  CAS  PubMed  Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K (2002) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A 98:8133–8138

    Article  Google Scholar 

  • von Mohl H (1853) Ueber die Traubenkrankheit. Bot Z 11:585–590

    Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse PM, Wang M, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Webb CA, Szabo LJ, Bakkeren G, Garry C, Staples RC, Eversmeyer M, Fellers JP (2006) Transient expression and insertional mutagenesis of Puccinia triticina using biolistics. Funct Integr Genomics 6:250–260

    Article  CAS  PubMed  Google Scholar 

  • Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, Ver Loren van Themaat E, Panstruga R (2012) Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genet Biol 49:470–482

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Chen X, Wang X, Han Q, Kang Z, Hulbert SH (2009) Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f sp tritici. BMC Genomics 10:626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2010) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24:554–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the “Agencia Estatal de Investigación (AEI)” (AGL2016-76216-C2-1-R), cofinanced by FEDER funds (European Union). A.P. was supported by a PhD fellowship (BES-2014-068602) from the former “Ministerio de Economía y Competitividad (MINECO)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio de Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polonio, Á., Pérez-García, A., Martínez-Cruz, J., Fernández-Ortuño, D., de Vicente, A. (2020). The Haustorium of Phytopathogenic Fungi: A Short Overview of a Specialized Cell of Obligate Biotrophic Plant Parasites. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_45

Download citation

Publish with us

Policies and ethics