Skip to main content

Tools Shape Paradigms of Plant-Environment Interactions

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

Abstract

The direction of science is often driven by contemporary theory, and theory emerges from consolidated empirical knowledge. What we know emerges from what we explore, and we explore what we have technical tools for. I feel that technical opportunities contributed strongly towards what is held as a contemporary, widely accepted theory. However, the presumed causality may become reverted, if one accounts for those less explored questions, for which tools are missing. Here, I will reflect on decades of research experience in empirical plant sciences, mainly plant water relations, plant carbon relations and biogeography, during which some mainstream paradigms became challenged. Scientific theory passes through waves and cycles and is even linked to fashion. Insight that seemed established at one time may become outdated by novel concepts facilitated by novel methods, and as time progresses, old concepts may find a revival. In the following chapter, I will illustrate such shifts in awareness and misleading paradigms that were driven by the contemporary availability of methods rather than stringent logics. Examples include plant responses to drought stress; the drivers of plant growth in general, as well as in the context of rising atmospheric CO2 concentrations; and how physiological plant ecology can contribute to resolving biogeographical questions such as range limits of plant species and plant life forms. My résumé is that explanations of plant responses to the environment are predominantly below ground and require an understanding of developmental and meristematic processes, whereas available tools often lead to attempts at above-ground answers based on primary metabolism (e.g. photosynthesis). Further, well-understood processes at the organ (leaf) level are losing relevance at the community or ecosystem level, where much less understood mechanisms come into action (e.g. stand density control). While the availability of certain convenient methods can open new research arenas, it may also narrow the scope and may direct theory development towards easily measurable parameters and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218

    Google Scholar 

  • Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci U S A 109:233–237

    CAS  PubMed  Google Scholar 

  • Aulitzky H (1961) Die Bodentemperaturen in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt forstl Versuchsw Österr 59:153–208

    Google Scholar 

  • Bachman S, Heisler-White JL, Pendall E, Williams DG, Morgan JA, Newcomb J (2010) Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 162:791–802

    PubMed  Google Scholar 

  • Bader MKF, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125

    CAS  PubMed  Google Scholar 

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519

    CAS  Google Scholar 

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45

    CAS  Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric For Meteorol 165:73–81

    Google Scholar 

  • Basler D, Körner C (2014) Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol 34:377–388

    PubMed  Google Scholar 

  • Beck E (2016) Torn between nature and lab: a dying breed of plant scientists? Prog Bot. https://doi.org/10.1007/124_2016_2

  • Boyer JS (2017) Plant water relations: a whirlwind of change. Prog Bot. https://doi.org/10.1007/124_2017_3

  • Braun S, Thomas VFD, Quiring R, Flückiger W (2010) Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut 158:2043–2052

    CAS  PubMed  Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348

    CAS  PubMed  Google Scholar 

  • Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat Commun 10:2171. https://doi.org/10.1038/s41467-019-10174-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caprez R, Niklaus PA, Körner C (2012) Forest soil respiration reflects plant productivity across a temperature gradient in the Alps. Oecologia 170:1143–1154

    PubMed  Google Scholar 

  • Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007) Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol 27:181–198

    PubMed  Google Scholar 

  • Cernusca A (1976) Energy exchange within individual layers of a meadow. Oecologia 23:141–149

    PubMed  Google Scholar 

  • Chapin FS III, Körner C (1994) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends Ecol Evol 9:45–47

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Cowan IR (1965) Transport of water in the soil-plant-atmosphere system. J Appl Ecol 2:221–239

    Google Scholar 

  • Cowan IR, Troughton JH (1971) The relative role of stomata in transpiration and assimilation. Planta 97:325–336

    CAS  PubMed  Google Scholar 

  • Darwin F (1898) Observations on stomata. Phil Trans R Soc London 190:531–621

    Google Scholar 

  • De Saussure T (1804) Recherches chimiques sur la vegetation. Nyon, Paris

    Google Scholar 

  • Dietrich L, Körner C (2014) Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alp Bot 124:27–35

    Google Scholar 

  • Dietrich L, Hoch G, Kahmen A, Körner C (2018) Losing half of the conductive area hardly impacts the water status of mature trees. Sci Rep 8:15006

    PubMed  PubMed Central  Google Scholar 

  • Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, Macdonald CA, Medlyn BE, Powell JR, Tjoelker MG, Reich PB (2017) Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat Clim Chang 7:279–283

    CAS  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    CAS  PubMed  Google Scholar 

  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22:1337–1349

    Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Meded Landbouwhogesch Wageningen 59(13):1–68

    Google Scholar 

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Chang Biol 8:1109–1117

    Google Scholar 

  • Grubb P, Whittaker J (2013) 100 influential papers published in 100 years of the British Ecological Society journals. Comment 25 by U Niinemets. British Ecological Society, London

    Google Scholar 

  • Grünzweig JM, Körner C (2001) Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO2. Oecologia 128:251–262. https://doi.org/10.1038/nature13281

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Arnone JA (2013) A tribute to Christian Körner for his 25 years of service on the Oecologia editorial board. Oecologia 171:605–611

    PubMed  Google Scholar 

  • Hättenschwiler S, Körner C (2000) Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Glob Chang Biol 6:213–226

    Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:436–471

    Google Scholar 

  • Hiltbrunner E, Körner C (2018) Hotspot Furka. Biologische Vielfalt im Gebirge. Alpine Forschungs- und Ausbildungsstation Furka and University of Basel, ISBN: 978-3-033-06701-1

    Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Google Scholar 

  • Holbrook NM, Zwieniecki MA (2005) Vascular transport in plants. Elsevier, Amsterdam

    Google Scholar 

  • Hovenden MJ, Newton PCD, Wills KE (2014) Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511:583–586

    CAS  PubMed  Google Scholar 

  • Hungate BA, Dijkstra P, Wu ZT, Duval BD, Day FP, Johnson DW, Megonigal JP, Brown ALP, Garland JL (2013) Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytol 200:753–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huntzinger DN, Michalak AM, Schwalm C et al (2017) Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci Rep 7:4765. https://doi.org/10.1038/s41598-017-03818-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inauen N, Körner C, Hiltbrunner E (2012) No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob Chang Biol 18:985–999

    Google Scholar 

  • Ingestad T (1982) Relative addition rate and external concentration driving variables used in plant nutrition research. Plant Cell Environ 5:443–453

    CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    CAS  PubMed  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    CAS  PubMed  Google Scholar 

  • Jarvis PG (1975) Water transfer in plants. In: De Vries DA (ed) Heat and mass transfer in the environment of vegetation. Scripta, Washington, pp 369–394

    Google Scholar 

  • Jiang M, Medlyn BE, Drake JE et al (2020) The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580:227–231

    Google Scholar 

  • Johnson DM, Domec JC, Berry ZC et al (2018) Co-occurring woody species have diverse hydraulic strategies and mortality rates during extreme drought. Plant Cell Environ 41:576–588

    CAS  PubMed  Google Scholar 

  • Keel SG, Siegwolf RTW, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329

    CAS  PubMed  Google Scholar 

  • Klein T, Bader MKF, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW, Körner C (2016a) Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J Ecol 104:1720–1733

    CAS  Google Scholar 

  • Klein T, Siegwolf RTW, Körner C (2016b) Belowground carbon trade among tall trees in a temperate forest. Science 352:342–344

    CAS  PubMed  Google Scholar 

  • Klimes L, Dolezal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography 33:590–596

    Google Scholar 

  • Kollas C, Vitasse Y, Randin CF, Hoch G, Körner C (2012) Unrestricted quality of seeds in Europesn borad-leaved tree species growing at the cold boundary of their distribution. Ann Bot 109:473–480

    CAS  PubMed  Google Scholar 

  • Kollas C, Körner C, Randin CF (2014a) Spring frost and growing season length co- control the cold range limits of broad-leaved trees. J Biogeogr 41:773–783

    Google Scholar 

  • Kollas C, Randin CF, Vitasse Y, Körner C (2014b) How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data? Agric For Meteorol 184:257–266

    Google Scholar 

  • Körner C (1982) CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53:98–104

    PubMed  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    PubMed  Google Scholar 

  • Körner C (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5:162–173

    Google Scholar 

  • Körner C (1992) Response of alpine vegetation to global climate change. Catena Suppl 22:85–96

    Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function, Ecological studies, vol 99. Springer, Berlin, pp 117–140

    Google Scholar 

  • Körner C (1994) Leaf diffusive conductances in the major vegetation types of the globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, Ecological studies, vol 100. Springer, Berlin, pp 463–490

    Google Scholar 

  • Körner C (1999a) Alpine plant life, 1st edn. Springer, Berlin

    Google Scholar 

  • Körner C (1999b) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology, The 39th symposium of the British Ecological Society held at the University of York 7–9 September 1998. Blackwell, Oxford, pp 297–311

    Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Google Scholar 

  • Körner C (2002) Alpine ecosystems. In: Encyclopedia of life sciences, vol 1. Nature, London, pp 392–393

    Google Scholar 

  • Körner C (2003a) Alpine plant life, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C (2003b) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Körner C (2003c) Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300:1242–1243

    PubMed  Google Scholar 

  • Körner C (2003d) Limitation and stress – always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Körner C (2004a) Mountain biodiversity, its causes and function. Ambio Spec Rep 13:11–17

    Google Scholar 

  • Körner C (2004b) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B Biol Sci 359:493–498

    Google Scholar 

  • Körner C (2006a) Significance of temperature in plant life. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell Publishing Ltd, Oxford, pp 48–69

    Google Scholar 

  • Körner C (2006b) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Körner C (2007a) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:315–324

    Google Scholar 

  • Körner C (2007b) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    PubMed  Google Scholar 

  • Körner C (2008) Alpine ecosystems and the high-elevation treeline. In: Jorgensen SE, Fath BD (eds) Ecosystems, Encyclopedia of ecology, vol 1. Elsevier, Oxford, pp 138–144

    Google Scholar 

  • Körner C (2009) Responses of humid tropical trees to rising CO2. Annu Rev Ecol Evol Syst 40:61–79

    Google Scholar 

  • Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Bot 121:11–22

    Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Basel

    Google Scholar 

  • Körner C (2013a) Plant-environment interactions. In: Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (eds) Strasburger’s plant sciences. Springer, Berlin

    Google Scholar 

  • Körner C (2013b) Growth controls photosynthesis – mostly. Nova Acta Leopold 391:273–283

    Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    PubMed  Google Scholar 

  • Körner C (2017) A matter of tree longevity. Science 355:130–131

    PubMed  Google Scholar 

  • Körner C (2018a) Concepts in empirical plant ecology. Plant Ecol Divers 11:405–428

    Google Scholar 

  • Körner C (2018b) Comparative, long-term ecosystem monitoring across the Alps: Austrian Hohe Tauern National Park, South-Tyrol and Swiss Central Alps. In: Bauch K (ed) Proceedings symposium for research in protected areas. Salzburger Nationalparkfonds/Austrian Academy of Sciences, Mittersill/Vienna, pp 331–337

    Google Scholar 

  • Körner C (2019) No need for pipes when the well is dry - a comment on hydraulic failure in trees. Tree Physiol 39:695–700

    PubMed  Google Scholar 

  • Körner C (2020a) Climatic controls of the global high elevation treelines. In: Encyclopedia of the world’s biomes. Elsevier, pp 275–281. https://doi.org/10.1016/B978-0-12-409548-9.11998-0

  • Körner C (2020b) Experiments by nature – strength in realism. In: Burt TP, Thompson DBA (eds) Curious about nature: a passion for fieldwork. Cambridge University Press, Cambridge. Chap. 27

    Google Scholar 

  • Körner C (2021) Alpine plant life, 3rd edn. Springer, Berlin

    Google Scholar 

  • Körner C, Arnone JA III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    PubMed  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    PubMed  Google Scholar 

  • Körner C, Cernusca A (1976) A semi-automatic diffusion porometer and its performance under alpine field conditions. Photosynthetica 10:172–181

    Google Scholar 

  • Körner C, Cochrane PM (1985) Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66:443–455

    PubMed  Google Scholar 

  • Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1:179–194

    Google Scholar 

  • Körner C, Diemer M (1994) Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2. Funct Ecol 8:58–68

    Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst 30:16–21

    Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human Well-being: current state and trends, vol 1. Island Press, Washington, pp 681–716

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Google Scholar 

  • Körner C, Spehn EM (2002) Mountain biodiversity, a global assessment. Parthenon, Boca Raton

    Google Scholar 

  • Körner C, Spehn E (2019) A Humboldtian view of mountains. Science 365(6458):1061–1061

    PubMed  Google Scholar 

  • Körner C, Würth M (1996) A simple method for testing leaf responses of tall tropical forest trees to elevated CO2. Oecologia 107:421–425

    PubMed  Google Scholar 

  • Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577–588

    PubMed  Google Scholar 

  • Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74:623–632

    PubMed  Google Scholar 

  • Körner C, Pelaez Menendez-Riedl S, John PCL (1989a) Why are Bonsai plants small? A consideration of cell size. Aust J Plant Physiol 16:443–448

    Google Scholar 

  • Körner C, Neumayer M, Pelaez Menendez-Riedl S, Smeets-Scheel A (1989b) Functional morphology of mountain plants. Flora 182:353–383

    Google Scholar 

  • Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    PubMed  Google Scholar 

  • Körner C, Diemer M, Schäppi B, Niklaus P, Arnone J (1997) The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol 18:165–175

    Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    PubMed  Google Scholar 

  • Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparison of biodiversity data. Alp Bot 121:73–78

    Google Scholar 

  • Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088

    Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15

    Google Scholar 

  • Körner C, Riedl S, Keplinger T, Richter A, Wiesenbauer J, Schweingruber F, Hiltbrunner E (2019) Life at 0°C: the biology of the alpine snowbed plant Soldanella pusilla. Alp Bot. https://doi.org/10.1007/s00035-019-00220-8

  • Ladinig U, Hacker J, Neuner G, Wagner J (2013) How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia 171:743–760

    PubMed  PubMed Central  Google Scholar 

  • Landsberg JJ, Beadle CL, Biscoe PV, Butler DR, Davidson B, Incoll LD, James GB, Jarvis PG, Martin PJ, Neilson RE, Powell DBB, Slack EM, Thorpe MR, Turner NC, Warrit B, Watts WR (1975) Diurnal energy, water and CO2 exchanges in an apple (Malus pumila) orchard. J Appl Ecol 12:659–684

    Google Scholar 

  • Lange OL, Lösch R, Schulze ED, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86

    CAS  PubMed  Google Scholar 

  • Larcher W (1975) Arthur Pisek 1894-1975. Ber Dt Bot Ges 88:497–502

    Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. In: Sitzungsber Oesterr Akad Wiss, Mathem-naturwiss Kl, Abt I, vol 186, pp 301–371

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Google Scholar 

  • Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200:1166–1175

    PubMed  Google Scholar 

  • Lenz A, Vitasse Y, Hoch G, Körner C (2014) Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. J Ecol 102:1537–1548

    Google Scholar 

  • Lenz A, Hoch G, Körner C, Vitasse Y (2016) Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct Ecol. https://doi.org/10.1111/1365-2435.12623

  • Leuzinger S, Hättenschwiler S (2013) Beyond global change: lessons from 25 years of CO2 research. Oecologia 171:639–651

    PubMed  Google Scholar 

  • Leuzinger S, Körner C (2010) Rainfall distribution is the main driver of runoff under future CO2 concentration in a temperate deciduous forest. Glob Chang Biol 16:246–254

    Google Scholar 

  • Leuzinger S, Fatichi S, Cusens J, Körner C, Niklaus PA (2015) The ‘island effect’ in terrestrial global change experiments: a problem with no solution? AoB Plants 7:plv092

    PubMed  PubMed Central  Google Scholar 

  • Lüttge U (1979) Otto Stocker zum 90.Gebuststag. Ber Dt Bot Ges 92:1–6

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants. Springer, Berlin

    Google Scholar 

  • Mackay JFG, Weatherley PE (1973) The effects of transverse cuts through the stems of transpiring woody plants on water transport and stress in the leaves. J Exp Bot 24:15–28

    Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the ‘thaw-expansion hypothesis’ but conflict with ultrasonic emission data. New Phytol 185:1016–1024

    PubMed  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999) Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Funct Ecol 13:273–282

    Google Scholar 

  • Mildner M, Bader MKF, Leuzinger S, Siegwolf RTW, Körner C (2014) Long-term C13 labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia 175:747–762

    PubMed  Google Scholar 

  • Möhl P, Hiltbrunner E, Körner C (2020) Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Glob Chang Biol. https://doi.org/10.1111/gcb.14949

  • Monteiro JAF, Körner C (2013) Leaf turnover and herbivory in the tall tussock grass Festuca orthophylla in the Andean Altiplano. Alp Bot 123:13–20

    Google Scholar 

  • Monteiro JAF, Hiltbrunner E, Körner C (2011) Functional morphology and microclimate of Festuca orthophylla, the dominant tall tussock grass in the Andean Altiplanto. Flora 206:387–396

    Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    CAS  PubMed  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    CAS  PubMed  Google Scholar 

  • Nagelmüller S, Hiltbrunner E, Körner C (2016) Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp Bot 126:11–21

    Google Scholar 

  • Nagelmüller S, Hiltbrunner E, Körner C (2017) Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9:plx054. https://doi.org/10.1093/aobpla/plx054

    Article  PubMed  PubMed Central  Google Scholar 

  • Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Google Scholar 

  • Niklaus PA, Spinnler D, Körner C (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117:201–208

    PubMed  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107:19368–19373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noroozi J, Körner C (2018) A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alp Bot 128:1–11

    PubMed  PubMed Central  Google Scholar 

  • O’Leary BM et al (2019) Core principles which explain variation in respiration across biological scales. New Phytol 222:670–686

    PubMed  Google Scholar 

  • Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for angiosperm plant life. Alp Bot 124:193–198

    Google Scholar 

  • Owensby CE, Auen LM, Coyne PI (1994) Biomass production in a nitrogen-fertilized, tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2. Plant Soil 165:105–113

    CAS  Google Scholar 

  • Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205:695–703

    Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Google Scholar 

  • Philipps OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF, Lewis SL, Lloyd J, Vinceti B et al (2004) Pattern and process in Amazon tree turnover 1976–2001. Phil Trans R Soc Lond B 359:381–407

    Google Scholar 

  • Phillips OL, Vasquez Martinez R, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Monteagudo Mendoza A, Neill D, Nunez Vargas P, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vincenti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    CAS  PubMed  Google Scholar 

  • Pisek A (1960) Pflanzen der Arktis und des Hochgebirges. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 5. Springer, Berlin, pp 377–413

    Google Scholar 

  • Pisek A, Cartellieri E (1934) Zur Kenntnis des Wasserhaushalts der Pflanzen. III Alpine Zwergsträucher. In: Fitting H (ed) Jahrbücher für Wissenschaftliche Botanik, vol 79. Gebr Bornträger, Leipzig, pp 131–190

    Google Scholar 

  • Pisek A, Knapp H, Ditterstorfer J (1970) Maximal opening width and morphology of stomata, with dates of their size and number. Flora 159:459–479

    Google Scholar 

  • Pisek A, Larcher W, Vegis A, Napp-Zinn K (1973) The normal temperature range. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, pp 102–194

    Google Scholar 

  • Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Google Scholar 

  • Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE, Körner C (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–923

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    PubMed  Google Scholar 

  • Rog I, Rosenstock NP, Körner C, Klein T (2020) Share the wealth trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol 29:2321–2333. https://doi.org/10.1111/mec.15351

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    PubMed  Google Scholar 

  • Sarris D, Siegwolf R, Körner C (2013) Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric For Meteorol 168:59–68

    Google Scholar 

  • Schäppi B, Körner C (1996) Growth responses of an alpine grassland to elevated CO2. Oecologia 105:43–52

    PubMed  Google Scholar 

  • Schenker G, Lenz A, Körner C, Hoch G (2014) Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol 34:302–313

    PubMed  Google Scholar 

  • Scherrer D, Körner C (2009) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Chang Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Chang Biol 18:757–768

    Google Scholar 

  • Schulze ED, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta 108:259–270

    CAS  PubMed  Google Scholar 

  • Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S (2013) Growth of mature boreal Norway spruce was not affected by elevated CO2 and/or air temperature unless nutrient availability was improved. Tree Physiol 33:1192–1205

    CAS  PubMed  Google Scholar 

  • Spehn EM, Liberman M, Körner C (2006) Land use change and mountain diversity. CRC Press, Boca Raton

    Google Scholar 

  • Spinnler D, Egli P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436

    CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Stocker O (1956) Die Dürreresistenz (Drought resistance). In: Encyclopedia of plant physiology, vol III. Springer, Berlin, pp 696–731

    Google Scholar 

  • Stocker O (1976) The water-photosynthesis syndrome and the geographical plant distribution in the Saharan Desert. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life, Ecological studies, vol 19. Springer, Berlin, pp 506–521

    Google Scholar 

  • Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF, Nagy J, Karnosky DF (2014) Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 20:2492–2504

    Google Scholar 

  • Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746

    Google Scholar 

  • Tyree MT (2003) The ascent of water. Nature 423:923

    CAS  PubMed  Google Scholar 

  • Urli M, Porte AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683

    CAS  PubMed  Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Scheepens JF, Körner C (2013) Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171:663–678

    PubMed  Google Scholar 

  • Vitasse Y, Lenz A, Kollas C, Randin CF, Hoch G, Körner C (2014) Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species. Funct Ecol 28:243–252

    Google Scholar 

  • Volk M, Niklaus PA, Körner C (2000) Soil moisture effects determine CO2 responses of grassland species. Oecologia 125:380–388

    PubMed  Google Scholar 

  • Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692–700

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Google Scholar 

  • Würth MKR, Winter K, Körner C (1998a) In situ responses to elevated CO2 in tropical forest understorey plants. Funct Ecol 12:886–895

    Google Scholar 

  • Würth MKR, Winter K, Körner C (1998b) Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia 116:18–25

    PubMed  Google Scholar 

  • Würth MKR, Pelaez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    PubMed  Google Scholar 

  • Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS One 7:e33710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sun H, Körner C (2020) Explaining the exceptional 4270 m high elevation limit of an evergreen oak in the south-eastern Himalayas. Tree Phys, in press. https://doi.org/10.1093/treephys/tpaa070

  • Zhu Y, Siegwolf RTW, Durka W, Körner C (2010) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863

    PubMed  Google Scholar 

  • Zotz G, Cueni N, Körner C (2006) In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct Ecol 20:763–769

    Google Scholar 

Download references

Acknowledgements

I thank Ulrich Lüttge for inviting me to write this chapter and commenting an earlier draft. I also gratefully acknowledge comments by Erika Hiltbrunner and Günter Hoch. Thanks to Susanna Riedl for helping with the artwork. What I summarized here could not have been achieved without the hard work and dedication by a large number of graduate students and academic staff at the University of Basel and in partner institutions. I heartily thank all of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2020). Tools Shape Paradigms of Plant-Environment Interactions. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_41

Download citation

Publish with us

Policies and ethics