Skip to main content

Orient in the World with a Single Eye: The Green Algal Eyespot and Phototaxis

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

Abstract

Motile algae exhibit well-defined movement responses toward or away from a light source, known as positive and negative phototaxis, respectively. To optimize this essential behavior, algae often possess a complex directional optical device, the eyespot. Interest in eyespots has increased considerably during the last decade due to their elaborate ultrastructure and the presence of unique photoreceptors. The latter form an important basis for ongoing developments of optogenetic tools in the field of neurobiology and cell biology. Green algal eyespots, especially that of Chlamydomonas reinhardtii P. A. Dangeard, are the best studied with respect to their biophysical function, assembly, positioning, and signaling cascade(s) finally leading to the oriented movement. Here we give a short general introduction to the eyespot and the phototactic orientation of this algal group and summarize recent progress in the diverse eyespot-related areas. We also address emerging novel insights in the homeostatic feedback regulation of phototactic sensitivity by the cells’ physiological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC1:

Activity of BC1 complex

aCRY:

Animal-like cryptochrome

ChR:

Channelrhodopsin

CHX:

Cycloheximide

CK1:

Casein kinase 1

CRY:

Cryptochrome

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

IFT:

Intraflagellar transport

PC:

Photoreceptor current

pCRY:

Plant-type cryptochrome

PHOT:

Phototropin

PM:

Plasma membrane

PP2C:

Protein phosphatase 2C

TRP:

Transient receptor potential

UV:

Ultraviolet

UVR8:

UV resistance locus 8

References

  • Al-Hijab L, Gregg A, Davies R, Macdonald H, Ladomery M, Wilson I (2019) Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii. Sci Rep 9:12063. https://doi.org/10.1038/s41598-019-48632-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allmer J, Naumann B, Markert C, Zhang M, Hippler M (2006) Mass spectrometric genomic data mining: novel insights into bioenergetics pathways in Chlamydomonas reinhardtii. Proteomics 6:6207–6220

    CAS  PubMed  Google Scholar 

  • Allorent G, Petroutsos D (2017) Photoreceptor-dependent regulation of photoprotection. Curr Opin Plant Biol 37:102–108

    CAS  PubMed  Google Scholar 

  • Andres J, Blomeier T, Zurbriggen MD (2019) Synthetic switches and regulatory circuits in plants. Plant Physiol 179:862–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arakaki Y, Kawai-Toyooka H, Hamamura Y, Higashiyama T, Noga A, Hirono M, Olson BJSC, Nozaki H (2013) The simplest integrated multicellular organism unveiled. PLoS One 8:e81641. https://doi.org/10.1371/journal.pone.0081641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Darraz L, Cabezas D, Colenso CK, Alegrí-Acros M, Bravo-Moraga F, Varas-Concha I, Almonacid DE, Madrid R, Brauchi S (2015a) A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals. Plant Cell 27:177–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Darraz L, Colenso CK, Veliz LA, Vivar JP, Cardenas S, Brauchi S (2015b) A TRP conductance modulates repolarization after sensory depolarization in Chlamydomonas reinhardtii. Plant Sign Behav 10(8):e1052924. https://doi.org/10.1080/15592324.2015.1052924

    Article  CAS  Google Scholar 

  • Arrieta J, Chioccioli M, Polin M, Tuval I (2017) Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii. Sci Rep 7:3447. https://doi.org/10.1038/s41598-017-03618-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshavsky VY (2002) Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation. Trends Neurosci 25:124–126

    CAS  PubMed  Google Scholar 

  • Asmail SR, Smith DR (2016) Retention, erosion, and loss of the carotenoid biosynthetic pathway in the nonphotosynthetic green algal genus Polytomella. New Phytol 209:899–903

    PubMed  Google Scholar 

  • Austin JR 2nd, Frost E, Vidi P-A, Kessler F, Staehlin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi M, Ranjan P, Sharma K, Veetil SK, Kateriya S (2016) The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 6:34646. https://doi.org/10.1038/srep34646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi M, Ranjan P, Kateriya S (2018) Cytoplasmic extensions of the channelrhodopsins 1 and 2 interacts in Chlamydomonas reinhardtii. J Appl Biotechnol Bioeng 5:84–90

    Google Scholar 

  • Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M (2012) A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell 24:2992–3008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beel B, Müller N, Kottke T, Mittag M (2013) News about cryptochrome photoreceptors in algae. Plant Signal Behav 8(2):e22870

    PubMed  Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bessen M, Fay RB, Witman GB (1980) Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol 86:446–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bickerton P, Sello S, Brownlee C, Pittman JK, Wheeler GL (2016) Spatial and temporal specificity of Ca2+ signaling in Chlamydomonas reinhardtii in response to osmotic stress. New Phytol 212:920–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2019) Comparative and functional algal genomics. Annu Rev Plant Biol 70:605–638

    CAS  PubMed  Google Scholar 

  • Böhm M, Boness D, Fantisch E, Erhard H, Frauenholz J, Kowalzyk Z, Marcinkowski N, Kateriya S, Hegemann P, Kreimer G (2019) Channelrhodopsin-1 phosphorylation changes with the phototactic behavior and responds to physiological stimuli in Chlamydomonas. Plant Cell 31:886–910

    PubMed  PubMed Central  Google Scholar 

  • Boonyareth M, Saranak J, Pinthong D, Sanvarinda Y, Foster KW (2009) Roles of cyclic AMP in regulation of phototaxis in Chlamydomonas reinhardtii. Biologia 64:1058–1065

    CAS  Google Scholar 

  • Boyd JS, Gray MM, Thompson MD, Horst CI, Dieckmann C (2011a) The daughter four-membered microtubule rootlet determines anterior-posterior positioning of the eyespot in Chlamydomonas. Cytoskeleton 68:459–469

    PubMed  Google Scholar 

  • Boyd JS, Mittelmeier TM, Lamb MR, Dieckmann CL (2011b) Thioredoxin-family protein EYE2 and Ser/Thr kinase EYE3 play interdependent roles in eyespot assembly. Mol Biol Cell 22:1421–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond- timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    CAS  PubMed  Google Scholar 

  • Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Poretsky E, Belnap TF, Waadt R, Alemán F, Schroeder JI (2015) Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. elife 4:e03599

    PubMed Central  Google Scholar 

  • Braun FJ, Hegemann P (1999) Two light-activated conductances in the eye of the green alga Volvox carteri. Biophys J 76:1668–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M, Diehl A, Geiger MA, Woodmansee D, Trauner D, Hegemann P, Oschkinat H, Hildebrandt P, Stehfest K (2015) Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomer. Biochemistry 54:5389–5400

    CAS  PubMed  Google Scholar 

  • Buder J (1917) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb Wiss Bot 58:105–220

    Google Scholar 

  • Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    CAS  PubMed  Google Scholar 

  • Cheng X, Liu G, Ke W, Zhao L, Lv B, Ma X, Xu N, Xia X, Deng X, Zheng C, Huang K (2017) Building a multipurpose insertional mutant library for forward and reverse genetics in Chlamydomonas. Plant Methods 13:36. https://doi.org/10.1186/s13007-017-0183-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HI, Kim JYH, Kwak HS, Sung YJ, Sim SJ (2016) Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. Biomicrofluidics 10:014121. https://doi.org/10.1063/1.4942756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    CAS  PubMed  Google Scholar 

  • Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10:655–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AE (2016) Optogenetics: tuning the microscope on its head. Biophys J 110:997–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge P, Brownlee C, Wheeler GL (2013) Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr Biol 23:2311–2318

    CAS  PubMed  Google Scholar 

  • Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of ß-carotene- rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79

    CAS  PubMed  Google Scholar 

  • Deininger W, Kröger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    CAS  PubMed  Google Scholar 

  • Deisseroth K, Hegemann P (2017) The form and function of channelrhodopsin. Science 357:eaan5544. https://doi.org/10.1126/science.aan5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J 82:337–351

    CAS  PubMed  Google Scholar 

  • Drescher K, Goldstein RE, Tuval I (2010) Fidelity of adaptive phototaxis. Proc Natl Acad Sci U S A 107:11171–11176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eguez L, Chung YS, Kuchibhatla A, Paidhungat M, Garrett S (2004) Yeast Mn2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting. Genetics 167:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlenbeck S, Gradmann D, Braun F-J, Hegemann P (2002) Evidence for a light- induced H+ conductance in the eye of the green alga Chlamydomonas reinhardtii. Biophys J 82:740–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eitzinger N, Wagner V, Weisheit W, Geimer S, Boness D, Kreimer G, Mittag M (2015) Proteomic analysis of a fraction with intact eyespots of Chlamydomonas reinhardtii and assignment of protein methylation. Front Plant Sci 6:1085. https://doi.org/10.3389/fpls.2015.01085

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo- electron tomography. elife 4:e04889

    PubMed  PubMed Central  Google Scholar 

  • Engelhard C, Chizhov I, Siebert F, Engelhard M (2018) Microbial halorhodopsins: light-driven chloride pumps. Chem Rev 118:10629–10645

    CAS  PubMed  Google Scholar 

  • Ermilova E, Zalutskaya Z (2014) Regulation by light of chemotaxis to nitrite during the sexual life cycle in Chlamydomonas reinhardtii. Plan Theory 3:113–127

    Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Gromov BV (1993) Chemotaxis towards sugars in Chlamydomonas reinhardtii. Curr Microbiol 27:47–50

    CAS  Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Huang K, Beck CF (2004) Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420–427

    CAS  PubMed  Google Scholar 

  • Faminzin A (1866) Die Wirkung des Lichtes auf die Bewegung der Chlamidomonas pulvisculus Ehr., Euglena viridis Ehr. und Oscillatoria insignis Tw. Melanges Biologiques tires du Bulletin de l’Ácademie Imperial des Sciences de St-Petersbourg, pp 73–93

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  PubMed  Google Scholar 

  • Foot N, Henshall T, Kumar S (2017) Ubiquitination and the regulation of membrane proteins. Physiol Rev 97:253–281

    PubMed  Google Scholar 

  • Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S (2014) Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Physiol Biochem 75:14–23

    CAS  PubMed  Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbio Rev 44:572–630

    CAS  Google Scholar 

  • Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen L-O (2018) Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acid Res 46:8010–8022

    CAS  PubMed  Google Scholar 

  • Franz-Badur S, Penner A, Straß S, von Horsten S, Linne U, Essen L-O (2019) Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation. Sci Rep 9:9896. https://doi.org/10.1038/s41598-019-45885-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    CAS  PubMed  Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schödl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    CAS  PubMed  Google Scholar 

  • Fuji Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, Tamura S, Hasegawa S, Hayasaki Y, Okajima K, Kodamaa Y (2017) Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc Natl Acad Sci U S A 114:9206–9211

    Google Scholar 

  • Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K (2009) Chlamydomonas CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr Biol 19:133–139

    CAS  PubMed  Google Scholar 

  • Fujiu K, Nakayama Y, Iida H, Sokabe M, Yoshimura K (2011) Mechanoreception in motile flagella of Chlamydomonas. Nat Cell Biol 13:630–632

    CAS  PubMed  Google Scholar 

  • Gavelis G, Hayakawa S, White R III, Gojobori T, Suttle CA, Keeling PJ, Leander BS (2015) Eye-like ocelloids are built from different endosymbiotically acquired components. Nature 523:204–207

    CAS  PubMed  Google Scholar 

  • Gavelis GS, Keeling PJ, Leander BS (2017) How exaptations facilitated photosensory evolution: seeing the light by accident. BioEssays 39:1600266. https://doi.org/10.1002/bies.201600266

    Article  Google Scholar 

  • Gehring WJ (2014) The evolution of vision. WIREs Dev Biol 3:1–40. https://doi.org/10.1002/wdev.96

    Article  CAS  Google Scholar 

  • Goldstein RE (2015) Green algae as model organisms for biological fluid dynamics. Annu Rev Fluid Mech 47:343–375

    PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA (2003) Integration of photo- and chemosensory signaling pathways in Chlamydomonas. Planta 216:535–540

    CAS  PubMed  Google Scholar 

  • Govorunova EG, Sineshchekov OA (2007) Chemotaxis in the green flagellate alga Chlamydomonas. Biochem Mosc 70:717–725

    Google Scholar 

  • Govorunova EG, Sineshchekov OA, Hegemann P (1997) Desensitization and dark recovery of the photoreceptor current in Chlamydomonas reinhardtii. Plant Physiol 115:633–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Jung K-H, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EA, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) Natural light- gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017a) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu Rev Biochem 86:845–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Rodarte EM, Janz R, Morelle O, Melkonian M, Wong GK-S, Spudich JL (2017b) The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci Rep 7:43358. https://doi.org/10.1038/srep43358

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes via zinc-finger nucleases and CRISPR/Cas9 in Chlamydomonas reinhardtii. Plant Cell 29:2498–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grung M, Kreimer G, Calenberg M, Melkonian M, Liaaen-Jensen S (1994) Carotenoids in the eyespot apparatus of the flagellate green alga Spermatozopsis similis: adaptation to the retinal-based photoreceptor. Planta 193:38–43

    CAS  Google Scholar 

  • Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489–491

    CAS  Google Scholar 

  • Harz H, Nonnengäßer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Phil Trans R Soc London Ser B 338:39–52

    Google Scholar 

  • Hayakawa S, Takaku Y, Hwang JS, Horiguchi T, Suga H, Gehring W, Ikeo K, Gojobori T (2015) Function and evolutionary origin of unicellular camera-type eye structure. PLoS One 10:e0118415. https://doi.org/10.1371/journal.pone.0118415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    CAS  PubMed  Google Scholar 

  • Hegemann P, Berthold P (2009) Sensory photoreceptors and light control of flagellar activity. In: Witman GB (ed) The Chlamydomonas source-book, vol 3, 2nd edn. Academic Press, Cambridge, pp 395–429

    Google Scholar 

  • Hegemann P, Harz H (1998) How microalgae see the light. In: Caddick MX, Baumberg S, Hodgson DA, Phillip-Jones MK (eds) Society for general microbiology symposium, vol 56. Cambridge University Press, London, pp 95–105

    Google Scholar 

  • Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89:3911–3918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget F-Y, Bowler C (2010) Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ 33:1614–1626

    CAS  PubMed  Google Scholar 

  • Höhner R, Aboukila A, Kunz H-H, Venema K (2016) Proton gradients and proton- dependent transport processes in the chloroplast. Front Plant Sci 7:218. https://doi.org/10.3389/fpls.2016.00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland EM, Braun FJ, Nonnengässer C, Harz H, Hegemann P (1996) Nature of rhodopsin-triggered photocurrents in Chlamydomonas. 1. Kinetics and influence of divalent ions. Biophys J 70:924–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland EM, Harz H, Uhl R, Hegemann P (1997) Control of phobic behavioral responses by rhodopsin-induce photocurrents in Chlamydomonas. Biophys J 73:1395–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285

    PubMed  Google Scholar 

  • Hoops HJ, Brighton MC, Stickles SM, Clement PR (1999) A test of two possible mechanisms for phototactic steering in Volvox carteri (Chlorophyceae). J Phycol 35:539–547

    Google Scholar 

  • Hou S-Y, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88:119–128

    CAS  PubMed  Google Scholar 

  • Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 100:6269–6274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Kunkel T, Beck CF (2004) Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. Mol Biol Cell 15:3605–3614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyams JS, Borisy GG (1978) Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci 33:235–253

    CAS  PubMed  Google Scholar 

  • Im CS, Eberhard S, Huang K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16

    CAS  PubMed  Google Scholar 

  • Inwood W, Yoshihara C, Zalpuri R, Kim K-S, Kustu S (2008) The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. Mol Plant 1:925–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai N, Kamiya R, Yoshimura K (2000) Dominance between the two flagella during phototactic turning in Chlamydomonas. Zool Sci 17:1261–1266

    Google Scholar 

  • Jékely G (2009) Evolution of phototaxis. Philos Trans R Soc B 364:2795–2808

    Google Scholar 

  • Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strains of Chlamydomonas. II. Illuminated cells. Plant Physiol 97:1122–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Josef K, Saranak J, Foster KW (2005) An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia. Cell Motil Cytoskeleton 61:83–96

    PubMed  Google Scholar 

  • Josef K, Saranak J, Foster KW (2006) Linear systems analysis of the ciliary steering behavior associated with negative phototaxis in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 63:758–777

    PubMed  Google Scholar 

  • Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    CAS  PubMed  Google Scholar 

  • Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107

    CAS  PubMed  Google Scholar 

  • Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deiseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation- channel. Nature 482:369–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Hallmann A (2015) Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light- signaling pathways. Curr Genet 61:3–18

    CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Stehfest K, Nematollahi G, Hegemann P, Hallmann A (2009) Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. Plant Physiol 151:347–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JYH, Kwak HS, Sung YJ, Choi HI, Hong ME, Lim HS, Lee J-H, Lee SY, Sim SJ (2016) Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep 6:21155. https://doi.org/10.1038/srep21155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, Matsuo T (2017) CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas. PLoS Genet 13(3):e1006645. https://doi.org/10.1371/journal.pgen.1006645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Kivic PA, Walne PL (1983) Algal photosensory apparatus probably represent multiple parallel evolutions. Biosystems 16:31–38

    CAS  PubMed  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. https://doi.org/10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein B, Wibberg D, Hallmann A (2017) Whole transcriptome RNA-Seq analysis reveals extensive cell type-specific compartmentalization in Volvox carteri. BMC Biol 15:111. https://doi.org/10.1186/s12915-017-0450-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the cw 15 strains of Chlamydomonas. I. Cells in darkness. Plant Physiol 95:197–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M (2017) Cryptochrome photoreceptors in green algae: unexpected versatility of mechanisms and functions. J Plant Physiol 217:4–14

    CAS  PubMed  Google Scholar 

  • Krause N, Engelhard C, Heberele J, Schlesinger R, Bittl R (2013) Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 587:3309–3313

    CAS  PubMed  Google Scholar 

  • Kreimer G (1994) Cell biology of phototaxis in flagellated algae. Int Rev Cytol 148:229–310

    Google Scholar 

  • Kreimer G (1999) Reflective properties of different eyespot types in dinoflagellates. Protist 150:311–323

    CAS  PubMed  Google Scholar 

  • Kreimer G (2001) Light reception and signal modulation during photoorientation of flagellate algae. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, Amsterdam, pp 193–227

    Google Scholar 

  • Kreimer G (2009) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43

    CAS  PubMed  Google Scholar 

  • Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellate green alga. Eur J Cell Biol 53:101–111

    CAS  PubMed  Google Scholar 

  • Kreimer G, Brohsonn U, Melkonian M (1991) Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga. Eur J Cell Biol 55:318–327

    CAS  PubMed  Google Scholar 

  • Kreimer G, Overländer C, Sineshchekov OA, Stolzis H, Nultsch W, Melkonian M (1992) Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt. Planta 188:513–521

    CAS  PubMed  Google Scholar 

  • Kreis CT, Le Blay M, Linne C, Makowski MM, Bäumchen O (2017) Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nat Phys 14:45–49

    Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytol 218:414–431

    PubMed  Google Scholar 

  • Kuhlmann H-W (1998) Photomovements in ciliated protozoa. Naturwissenschaften 85:143–154

    CAS  Google Scholar 

  • Kuhne J, Vierock J, Tennigkeit SA, Dreier M-A, Wietek J, Petersen D, Gavriljuk K, El-Mashtoly SF, Hegemann P, Gerwert K (2019) Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc Natl Acad Sci U S A 116:9380–9389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb MR, Dutcher SK, Worley CK, Dieckmann CL (1999) Eyespot assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF, Reize IB, Melkonian M (1997) The cytoskeleton of the naked green fagellate Spermatozopsis similis (Chlorophyta): flagellar and basal body developmental cycle. J Phycol 33:254–265

    Google Scholar 

  • Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB (2009) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187:1117–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J, Xu H, Montell C (2004) Rhodopsin kinase activity modulates the amplitude of the visual response in Drosophila. Proc Natl Acad Sci U S A 101:11874–11879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    CAS  PubMed  Google Scholar 

  • Li F-W, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Mathews S, Pryer KM (2015) The origin and evolution of phototropins. Front Plant Sci 6:637. https://doi.org/10.3389/fpls.2015.00637

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre P, Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S, Meyer MT, Ivanova N, Robertson JM, Yue R, Zhang R, Vilarrasa-Blasi J, Wittkopp TM, Ramundo S, Blum SR, Goh A, Laudon M, Srikumar T, Lefebvre PA, Grossman AR, Jonikas MC (2019) A genome-wide algal mutant library reveals a global view of genes required for eukaryotic photosynthesis. Nat Genet. https://doi.org/10.1038/s41588-019-0370-6

  • Liu P, Lechtreck KF (2018) The Bardet–Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc Natl Acad Sci U S A 115. https://doi.org/10.1073/pnas.1713226115

  • Lohscheider JN, Friso G, van Wijk KJ (2016) Phosphorylation of plastoglobular proteins in Arabidopsis thaliana. J Exp Bot 67:3975–3984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Nguyen TMT, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundquist PA, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, van Wijk KJ (2013) Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. Plant Cell 25:1818–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinis J, Glauser G, Valimareanu S, Stettler M, Zeeman SC, Yamamoto H, Shikanai T, Kessler F (2014) ABC1K1/PGR6 kinase: a regulatory link between photosynthetic activity and chloroplast metabolism. Plant J 77:269–283

    CAS  PubMed  Google Scholar 

  • Matsuda A, Yoshimura K, Sineshchekov OA, Hirono M, Kamiya R (1998) Isolation and characterization of novel Chlamydomonas mutants that display phototaxis but not photophobic response. Cell Motil Cytoskeleton 41:353–362

    CAS  PubMed  Google Scholar 

  • Matsunaga S, Watanabe S, Sakaushi S, Miyamura S, Hori T (2003) Screening effect diverts the swimming directions from diaphototactic to positive phototactic in a disk-shaped green flagellate Mesostigma viride. Photochem Photobiol 77:324–332

    CAS  PubMed  Google Scholar 

  • Matsuo T, Ishiura M (2010) New Insights into the circadian clock in Chlamydomonas. Int Rev Cell Mol Biol 280:281–314

    CAS  PubMed  Google Scholar 

  • Matsuo T, Ishiura M (2011) Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Lett 585:1495–1502

    CAS  PubMed  Google Scholar 

  • McGoldrick LL, Singh AK, Demirkhanyan L, Lin T-Y, Casner RG, Zakharian E, Sobolevsky AI (2019) Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-12121-9

    Article  CAS  Google Scholar 

  • Melkonian M, Robenek H (1984) The eyespot apparatus of flagellated green alga: a critical review. Prog Phycol Res 3:193–268

    Google Scholar 

  • Meng D, Cao M, Oda T, Pan J (2014) The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. J Cell Sci 127:281–287

    CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Ferris P, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood M, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Mornoney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Gregoriev IV, Rokhsar DS, Grossman AR (2007) The evolution of key animal and plant functions is revealed by analysis of the Chlamydomonas genome. Science 318:245–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mergenhagen D, Mergenhagen E (1987) The biological clock of Chlamydomonas reinhardtii in space. Eur J Cell Biol 43:203–207

    CAS  PubMed  Google Scholar 

  • Mittelmeier TM, Berthold P, Danon A, Lamb MR, Levitan A, Rice ME, Dieckmann CL (2008) The C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas. Eukaryot Cell 7:2100–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Dieckmann C, Boyd JS, Lamb MR (2011) Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization. J Cell Biol 193:741–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Thompson MD, Lamb MR, Lin H, Dieckmann CL (2015) MLT1 links cytoskeletal asymmetry to organelle placement in Chlamydomonas. Cytoskeleton 72:113–123

    CAS  PubMed  Google Scholar 

  • Moldrup M, Moestrup Ø, Hansen PJ (2013) Loss of phototaxis and degeneration of an eyespot in long-term algal cultures: evidence from ultrastructure and behaviour in the dinoflagellate Kryptoperidinium foliaceum. J Euk Microbiol 60:327–334

    PubMed  Google Scholar 

  • Müller M, Bamann C, Bamberg E, Kühlbrandt W (2011) Projection structure of Channelrhodopsin-2 at 6 Å resolution by electron crystallography. J Mol Biol 414:86–95

    PubMed  Google Scholar 

  • Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M (2017) A plant cryptochrome controls key features of the Chlamydomonas circadian clock and its life cycle. Plant Physiol 174:185–201

    PubMed  PubMed Central  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation- selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    CAS  PubMed  PubMed Central  Google Scholar 

  • News Staff (2010) Insights of the decade: stepping away from the trees for a look at the forest. Science 330:1612–1613

    Google Scholar 

  • Niwa Y, Matsuo T, Onai K, Kato D, Tachikawa M, Ishiura M (2013) Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 110:13666–13671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noordally ZB, Millar AJ (2015) Clocks in algae. Biochemistry 54:171–183

    CAS  PubMed  Google Scholar 

  • Nultsch W, Throm G, von Rimscha I (1971) Phototaktische untersuchungen an Chlamydomonas reinhardtii dangeard in homokontinuierlicher Kultur. Arch Mikrobiol 80:351–369

    CAS  Google Scholar 

  • Oldemeyer S, Franz S, Wenzel S, Essen L-O, Mittag M, Kottke T (2016) Essential role of an unusually long-lived tyrosyl radical in the response to red light of the animal-like cryptochrome aCRY. J Biol Chem 291:14062–14071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Escalante JA, Jasper R, Miller SM (2019) CRISPR/Cas9 mutagenesis in Volvox carteri. Plant J 97:661–672

    CAS  PubMed  Google Scholar 

  • Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix J-D, Takahashi Y (2009) Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. Plant Cell 21:2424–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastrana E (2010) Optogenetics: controlling cell function with light. Nat Methods 8:24–25

    Google Scholar 

  • Pazour GJ, Sineshchekov OA, Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131:427–440

    CAS  PubMed  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cerezales S, Boryshpolets S, Afanzar O, Brandis A, Nevo R, Kiss V, Eisenbach M (2015) Involvement of opsins in mammalian sperm thermotaxis. Sci Rep 5:16146. https://doi.org/10.1038/srep16146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter E, Dick B, Stambolic I, Baeurle SA (2014) Exploring the multiscale signaling behavior of phototropin1 from Chlamydomonas reinhardtii using a full-residue space kinetic Monte Carlo molecular dynamics technique. Proteins 82:2018–2040

    CAS  PubMed  Google Scholar 

  • Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23:2950–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke T, Mittag M, Hegemann P, Finazzi G, Minagawa J (2016) A blue- light photoreceptor mediates the feedback regulation of photosynthesis. Nature 537:563–566

    CAS  PubMed  Google Scholar 

  • Pick U, Zarka A, Boussiba S, Davidi L (2019) A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus. Planta 249:31. https://doi.org/10.1007/s00425-018-3050-3

    Article  CAS  PubMed  Google Scholar 

  • Plazzo AP, de Franceschi N, da Broi F, Zonta F, Sanasi MF, Filippini F, Mongillo M (2012) Bioinformatic and mutational analysis of channelrhodopsin-2 protein cation-conducting pathway. J Biol Chem 287:4818–4825

    CAS  PubMed  Google Scholar 

  • Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE (2009) Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325:487–490

    CAS  PubMed  Google Scholar 

  • Pootakham W, Gonzalez-Ballester D, Grossman AR (2010) Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol 153:1653–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Li M, Kim RJ-A, Moore CM, Chen M (2019) Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10(1):1–13. https://doi.org/10.1038/s41467-018-08059-z

    Article  CAS  Google Scholar 

  • Rapf RJ, Vaida V (2016) Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys 18:20067–20084

    CAS  PubMed  Google Scholar 

  • Reisdorph NA, Small GD (2004) The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light- induced proteolysis. Plant Physiol 134:1546–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renninger S, Backendorf E, Kreimer G (2001) Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules. Planta 213:51–63

    CAS  PubMed  Google Scholar 

  • Roberts DGW, Lamb MR, Dieckmann CL (2001) Characterization of the eye2 gene required for eyespot assembly in Chlamydomonas reinhardtii. Genetics 158:1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC, Bhattacharya D, Worden AZ, Lagarias JC (2014) Eukaryotic algal phytochromes span the visible spectrum. Proc Natl Acad Sci U S A 111:3871–3876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic tools for subcellular applications in neuroscience. Neuron 96:572–603

    CAS  PubMed  Google Scholar 

  • Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil 5:251–263

    Google Scholar 

  • Rüffer U, Nultsch W (1987) Comparison of the beating of cis-flagella and trans- flagella of Chlamydomonas cells held on micropipettes. Cell Motil Cytoskeleton 7:87–93

    Google Scholar 

  • Rüffer U, Nultsch W (1991) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern. Cell Motil Cytoskeleton 18:269–278

    Google Scholar 

  • Rüffer U, Nultsch W (1997) Flagellar photoresponses of ptx1, an nonphototactic mutant of Chlamydomonas. Cell Motil Cytoskeleton 37:111–119

    PubMed  Google Scholar 

  • Rüffer U, Nultsch W (1998) Flagellar coordination in Chlamydomonas cells held on micropipettes. Cell Motil Cytoskeleton 41:297–307

    PubMed  Google Scholar 

  • Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S (2016) Diversity of plant circadian clocks: insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. Plant Signal Behav 11:e1116661. https://doi.org/10.1080/15592324.2015.1116661

    Article  CAS  PubMed  Google Scholar 

  • Saegusa Y, Yoshimura K (2015) cAMP controls the balance of the propulsive forces generated by the two flagella of Chlamydomonas. Cytoskeleton 72:412–421

    CAS  PubMed  Google Scholar 

  • Satoh M, Hori T, Tsujimoto K, Sasa T (1995) Isolation of eyespots of green algae and analyses of pigments. Bot Mar 38:467–474

    CAS  Google Scholar 

  • Schaller K, Uhl R (1997) A microspectrometric study of the shielding properties of eyespot and cell body in Chlamydomonas. Biophys J 73:1573–1578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reißenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G (2007) Evidence for a specialized localization of the chloroplast ATP-synthase subunits α, β and γ in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 43:284–294

    CAS  Google Scholar 

  • Schneider F, Grimm C, Hegemann P (2015) Biophysics of channelrhodopsin. Annu Rev Biophys 44:167–186

    CAS  PubMed  Google Scholar 

  • Schuergers N, Lenn T, Kampmann R, Meissner MV, Esteves T, Temerinac-Ott M, Korvink JG, Lowe AR, Mullineaux CW, Wilde A (2016) Cyanobacteria use micro-optics to sense light direction. elife 5:e12620

    PubMed  PubMed Central  Google Scholar 

  • Schulze T, Prager K, Dathe H, Kelm J, Kießling P, Mittag M (2010) How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma 244:3–14

    CAS  PubMed  Google Scholar 

  • Schulze T, Schreiber S, Iliev D, Boesger J, Trippens J, Kreimer G, Mittag M (2013) The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot. Mol Plant 6:931–944

    CAS  PubMed  Google Scholar 

  • Sekiguchi M, Kameda S, Kurosawa S, Yoshida M, Yoshimura K (2018) Thermotaxis in Chlamydomonas is brought about by membrane excitation and controlled by redox conditions. Sci Rep 8:16114. https://doi.org/10.1038/s41598-018-34487-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A (2013) Intraflagellar transport drives flagellar surface motility. elife 2:e00744

    PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA (1991) Photoreception in unicellular flagellates: bioelectric phenomena in phototaxis. In: Douglas RH (ed) Light in biology and medicine, vol 2. Plenum, New York, pp 523–532

    Google Scholar 

  • Sineshchekov OA, Spudich JL (2005) Sensory rhodopsin signaling in green flagellate algae. In: Briggs WR, Spudich JL (eds) Handbook of photosensory receptors. Wiley, Weinheim, pp 25–42

    Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Spudich JL (2009) Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol 85:556–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solari CA, Drescher K, Goldstein RE (2011) The flagellar photoresponse in Volvox species (Volvocaceae, Chlorophyceae). J Phycol 47:580–583

    PubMed  Google Scholar 

  • Spexard M, Thöing C, Beel B, Mittag M, Kottke T (2014) Response of the sensory animal-like cryptochrome aCRY to blue and red light as revealed by infrared difference spectroscopy. Biochemistry 53:1041–1050

    CAS  PubMed  Google Scholar 

  • Strenkert D, Schmollinger S, Gallaher SD, Salomé PA, Purvine SO, Nicora CD, Mettler-Altmann T, Soubeyrand E, Weber APM, Lipton MS, Basset GJ, Merchant SS (2019) Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci U S A 116:2374–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suda S (2003) Light microscopy and electron microscopy of Nephroselmis spinosa sp nov (Prasinophyceae, Chlorophyta). J Phycol 39:590–599

    Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    CAS  PubMed  Google Scholar 

  • Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. Effects of red background illumination and 3-(39,49-dichlorophenyl)-1,1-dimethylurea. FEBS Lett 336:516–520

    CAS  PubMed  Google Scholar 

  • Terashima M, Petroutsos D, Hudig M, Tolstygina I, Trompelt K, Gabelein P, Fufezan C, Kudla J, Weinl S, Finazzi G, Hippler M (2012) Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci U S A 109:17717–17722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson MD, Mittelmeier TM, Dieckmann CL (2017) Chlamydomonas: the eyespot. In: Hippler M (ed) Chlamydomonas: molecular genetics and physiology. Microbiology monographs, vol 30. Springer, Berlin, pp 257–281

    Google Scholar 

  • Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G (2018) Two-component cyclase opsin of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 16:144–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm T (2016) UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell 28:966–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G (2012) Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. Plant Cell 24:4687–4702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trippens J, Reißenweber T, Kreimer G (2017) The chloroplast calcium sensor protein CAS affects phototactic behaviour in Chlamydomonas reinhardtii (Chlorophyceae) at low light intensities. Phycologia 56:261–270

    CAS  Google Scholar 

  • Ueki N, Wakabayashi KI (2018) Detergent-extracted Volvox model exhibits an anterior-posterior gradient in flagellar Ca2+ sensitivity. Proc Natl Acad Sci U S A 115:E1061–E1068. https://doi.org/10.1073/PNAS.1715489115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103

    PubMed  PubMed Central  Google Scholar 

  • Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S, Tanaka K, Minagawa J, Hisabori T, Hirono M, Wakabayashi KI (2016) Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113:5299–5304

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68:253–289

    PubMed  Google Scholar 

  • VanderWaal KE, Yamamoto R, Wakabayashi K-I, Fox L, Kamiya R, Dutcher SK, Bayly PV, Sale WS, Porter ME (2011) Bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms. Mol Biol Cell 22:2862–2874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol 187:23–43

    CAS  PubMed  Google Scholar 

  • Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Wilbold D, Büldt G, Bamberg E, Gordeliy V (2017) Structural insights into ion conduction by channelrhodopsin 2. Science 358:eaan8862. https://doi.org/10.1126/science.aan8862

    Article  CAS  PubMed  Google Scholar 

  • Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G (2008) 1182 the phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146:772–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi KI, Misawa Y, Mochiji S, Kamiya R (2011) Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 108:11280–11284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan KY, Leptos KC, Goldstein RE (2017) Lag, lock, sync, slip: the many ‘phases’ of coupled flagella. J R Soc Interface 11:20131160

    Google Scholar 

  • Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM (2014) The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 13:2337–2353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang L, Li S-S, Han G-Z (2015) Insights into the origin and evolution of the plant hormone signalling machinery. Plant Physiol 167:872–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa S, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H (2016) Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113:12586–12591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler GL (2017) Calcium-dependent signalling processes in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: molecular genetics and physiology. Microbiology monographs, vol 30. Springer, Berlin, pp 257–281

    Google Scholar 

  • Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae - changing channels. Trends Plant Sci 13:506–514

    CAS  PubMed  Google Scholar 

  • Wheeler GL, Joint I, Brownlee C (2008) Rapid spatiotemporal pattering of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. Plant J 53:401–413

    CAS  PubMed  Google Scholar 

  • Wickstrand C, Nogly P, Nago E, Iwata S, Standfuss J, Neutze R (2019) Bacteriorhodopsin: structural insights revealed using x-ray lasers and synchrotron radiation. Annu Rev Biochem 88:59–83

    CAS  PubMed  Google Scholar 

  • Wilde A, Mullineaux CW (2017) Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 41:900–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CR, Wang Z, Diener D, Zones JM, Rosenbaum J, Umen JG (2012) IFT proteins accumulate during cell division and localize to the cleavage furrow in Chlamydomonas. PLoS One 7:e30729. https://doi.org/10.1371/journal.pone.0030729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CR, Huang K, Diener DR, Rosenbaum JL (2013) The cilium secretes bioactive ectosomes. Curr Biol 23:906–911

    CAS  PubMed  Google Scholar 

  • Yamano T, Toyokawa C, Fukuzawa H (2018) High-resolution suborganellar localization of Ca2+-binding protein CAS, a novel regulator of CO2- concentrating mechanism. Protoplasma 255:1015–1022

    CAS  PubMed  Google Scholar 

  • Yoshimura K (1994) Chromophore orientation in the photoreceptor of Chlamydomonas as probed by stimulation with polarized light. Photochem Photobiol 60:594–597

    CAS  Google Scholar 

  • Yoshimura K (2011) Stimulus perception and membrane excitation in unicellular alga Chlamydomonas. In: Luan S (ed) Coding and decoding of calcium signals in plants, vol 10. Springer, Berlin, pp 79–92

    Google Scholar 

  • Yoshimura K, Kamiya R (2001) The sensitivity of Chlamydomonas photoreceptor is optimized for the frequency of cell body rotation. Plant Cell Physiol 42:665–672

    CAS  PubMed  Google Scholar 

  • Yoshimura K, Matsuo Y, Kamiya R (2003) Gravitaxis in Chlamydomonas reinhardtii studied with novel mutants. Plant Cell Physiol 44:1112–1118

    CAS  PubMed  Google Scholar 

  • Zones JM, Blaby IK, Merchant SS, Umen JG (2015) High-resolution profiling of a synchronized diurnal transcriptome from Chlamydomonas reinhardtii reveals continuous cell and metabolic differentiation. Plant Cell 27:2743–2769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y (2016) The role of cryptochromes in the sexual life cycle of Chlamydomonas reinhardtii. PhD thesis, Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Germany

    Google Scholar 

  • Zou Y, Wenzel S, Müller N, Prager K, Jung E-M, Kothe E, Kottke T, Mittag M (2017) An animal-like cryptochrome controls the Chlamydomonas sexual cycle. Plant Physiol 174:1334–1347

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G.K. wants to thank all colleagues and especially the members of his laboratory, past and present, who share his fascination for unicellular algae and their eyes during the last three decades. Without their stimulating discussions, help, patience, and engagement, a lot of the work in the group would have never been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Kreimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böhm, M., Kreimer, G. (2020). Orient in the World with a Single Eye: The Green Algal Eyespot and Phototaxis. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_38

Download citation

Publish with us

Policies and ethics