Skip to main content

The Ecological Importance of Winter in Temperate, Boreal, and Arctic Ecosystems in Times of Climate Change

  • Chapter
  • First Online:
Progress in Botany Vol. 81

Part of the book series: Progress in Botany ((BOTANY,volume 81))

Abstract

Climate warming is strongest in winter and in northern ecosystems. Ecological and biogeochemical impacts, however, depend mainly on soil temperatures. Climate warming can contrastingly affect winter soil conditions across northern biomes due to the crucial importance of snow cover: Increasing winter precipitation results in soil warming in the arctic, while midwinter snowmelt events can induce more severe soil frost in arctic and boreal ecosystems. Cold-temperate ecosystems are projected to experience increased soil frost due to strongly reduced snow cover no longer insulating the soil against still cold air temperatures. In cool-temperate ecosystems, warming eventually causes the complete loss of soil frost. Both pathways, soil warming and soil cooling, have important implications for ecology and biosphere-atmosphere feedbacks: In arctic and boreal ecosystems, increased decomposition and mineralization allow for enhanced primary production, but midwinter melting followed by frost and/or rain-on-snow events might counteract this trend. More variable surface temperatures can damage primary production, and colder soil temperatures, due to reduced snow cover, can significantly decrease decomposition in cold-temperate ecosystems. For cool-temperate ecosystems, wetter winters could result in nutrient leaching, and altered dormancy patterns could cause increased frost damage despite air warming. In summary, winter processes are clearly relevant for the biosphere-atmosphere feedback, and even the sign of this feedback, i.e., ecosystems acting as carbon sink or as carbon source, depends on winter processes in temperate, boreal, and arctic ecosystems. This review concludes that current knowledge is not sufficient to quantify this feedback with satisfactory certainty. Important processes and the key uncertainties are identified, e.g., synchronicity in above- versus belowground growing season; temporal hierarchies in ecological processes such as the role of root damage and root activity for decomposition of soil organic matter (“priming”); or shifts in plant species composition due to winter climate change determining primary production as well as litter quantity and decomposability. Evidently, sound projections of future ecosystem functioning and biotic feedbacks to climate change require a comprehensive understanding of winter ecological processes, which have so far too often been neglected.

Communicated by Christoph Leuschner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allstadt AJ, Vavrus SJ, Heglund PJ, Pidgeon AM, Thogmartin WE, Radeloff VC (2015) Spring plant phenology and false springs in the conterminous US during the 21st century. Environ Res Lett 10:e104008. https://doi.org/10.1088/1748-9326/10/10/104008

    Article  Google Scholar 

  • Augspurger CK (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94:41–50. https://doi.org/10.1890/12-0200.1

    Article  PubMed  Google Scholar 

  • Bélanger G, Rochette P, Castonguay Y, Bootsma A, Mongrain D, Ryan DAJ (2002) Climate change and winter survival of perennial forage crops in Eastern Canada. Agron J 94:1120. https://doi.org/10.2134/agronj2002.1120

    Article  Google Scholar 

  • Bieniek PA, Bhatt US, Walsh JE, Lader R, Griffith B, Roach JK, Thoman RL (2018) Assessment of Alaska rain-on-snow events using dynamical downscaling. J Appl Meteorol Climatol 57:1847–1863. https://doi.org/10.1175/JAMC-D-17-0276.1

    Article  Google Scholar 

  • Bjerke JW, Elvebakk A, Tømmervik H (2017) Alpine garden plants from six continents show high vulnerability to ice encasement. Norsk Geografisk Tidsskrift 72:57–64. https://doi.org/10.1080/00291951.2017.1391876

    Article  Google Scholar 

  • Bjerke JW, Elverland E, Jaakola L, Lund L, Zagajewski B, Bochenek Z, Klos A, Tømmervik H (2018) High tolerance of a high-arctic willow and graminoidto simulated ice encasement. Boreal Environ Res 23:329–338

    Google Scholar 

  • Blanc-Betes E, Welker JM, Sturchio NC, Chanton JP, Gonzalez-Meler MA (2016) Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Glob Chang Biol 22:2818–2833. https://doi.org/10.1111/gcb.13242

    Article  PubMed  Google Scholar 

  • Blume-Werry G, Wilson SD, Kreyling J, Milbau A (2016) The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209:978–986. https://doi.org/10.1111/nph.13655

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst SF, Bjerke JW, Tømmervik H, Callaghan TV, Phoenix GK (2009) Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J Ecol 97:1408–1415

    Google Scholar 

  • Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010a) Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biol Biochem 42:611–617. https://doi.org/10.1016/j.soilbio.2009.12.011

    Article  CAS  Google Scholar 

  • Bokhorst S, Bjerke JW, Davey MP, Taulavuori K, Taulavuori E, Laine K, Callaghan TV, Phoenix GK (2010b) Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol Plant 140:128–140. https://doi.org/10.1111/j.1399-3054.2010.01386.x

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst S, Bjerke JW, Street LE, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Chang Biol 17:2817–2830. https://doi.org/10.1111/j.1365-2486.2011.02424.x

    Article  Google Scholar 

  • Bokhorst S, Jaakola L, Karppinen K, Edvinsen GK, Mæhre HK, Bjerke JW (2018) Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta 247:635–648. https://doi.org/10.1007/s00425-017-2813-6

    Article  CAS  PubMed  Google Scholar 

  • Bolter M, Soethe N, Horn R, Uhlig C (2005) Seasonal development of microbial activity in soils of northern Norway. Pedosphere 15:716–727

    Google Scholar 

  • Bowles TM, Atallah SS, Campbell EE, Gaudin ACM, Wieder WR, Grandy AS (2018) Addressing agricultural nitrogen losses in a changing climate. Nat Sustain 1:399–408. https://doi.org/10.1038/s41893-018-0106-0

    Article  Google Scholar 

  • Bret-Harte MS, Mack MC, Shaver GR, Huebner DC, Johnston M, Mojica CA, Pizano C, Reiskind JA (2013) The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos Trans R Soc Lond B Biol Sci 368:20120490. https://doi.org/10.1098/rstb.2012.0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PJ, DeGaetano AT (2011) A paradox of cooling winter soil surface temperatures in a warming northeastern United States. Agric For Meteorol 151:947–956. https://doi.org/10.1016/j.agrformet.2011.02.014

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2145. https://doi.org/10.1175/2008JCLI2665.1

    Article  Google Scholar 

  • Brutel-Vuilmet C, Ménégoz M, Krinner G (2013) An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 7:67–80. https://doi.org/10.5194/tc-7-67-2013

    Article  Google Scholar 

  • Bulygina ON, Groisman PY, Razuvaev VN, Radionov VF (2010) Snow cover basal ice layer changes over Northern Eurasia since 1966. Environ Res Lett 5:15004. https://doi.org/10.1088/1748-9326/5/1/015004

    Article  Google Scholar 

  • Buma B, Hennon PE, Harrington CA, Popkin JR, Krapek J, Lamb MS, Oakes LE, Saunders S, Zeglen S (2017) Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer. Glob Chang Biol 23:2903–2914. https://doi.org/10.1111/gcb.13555

    Article  PubMed  Google Scholar 

  • Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005) Winter in northeastern North America: a critical period for ecological processes. Front Ecol Environ 3:314–322

    Google Scholar 

  • Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS (2010) Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Process 19:2465–2480. https://doi.org/10.1002/hyp.7666

    Article  Google Scholar 

  • Campbell JL, Socci AM, Templer PH (2014) Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. Glob Chang Biol 20:2663–2673

    PubMed  Google Scholar 

  • Cheng CS, Auld H, Li G, Klaassen J, Li Q (2007) Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios. Nat Hazards Earth Syst Sci 7:71–87. https://doi.org/10.5194/nhess-7-71-2007

    Article  Google Scholar 

  • Chi Y, Zhou L, Li S, Zheng S, Yang Q, Yang X, Xu M (2018) Rainfall-dependent influence of snowfall on species loss. Environ Res Lett 13:94002. https://doi.org/10.1088/1748-9326/aad914

    Article  CAS  Google Scholar 

  • Choi G, Robinson DA, Kang S (2010) Changing Northern Hemisphere snow seasons. J Clim 23:5305–5310. https://doi.org/10.1175/2010JCLI3644.1

    Article  Google Scholar 

  • Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biol Biochem 27:1231–1234

    CAS  Google Scholar 

  • Comerford DP, Schaberg PG, Templer PH, Socci AM, Campbell JL, Wallin KF (2013) Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261–269. https://doi.org/10.1007/s00442-012-2393-x

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627. https://doi.org/10.1111/j.1461-0248.2007.01051.x

    Article  PubMed  Google Scholar 

  • Demaria EMC, Roundy JK, Wi S, Palmer RN (2016) The effects of climate change on seasonal snowpack and the hydrology of the Northeastern and upper Midwest United States. J Clim 29:6527–6541. https://doi.org/10.1175/JCLI-D-15-0632.1

    Article  Google Scholar 

  • Domisch T, Martz F, Repo T, Rautio P (2018) Winter survival of Scots pine seedlings under different snow conditions. Tree Physiol 38:602–616. https://doi.org/10.1093/treephys/tpx111

    Article  CAS  PubMed  Google Scholar 

  • Drescher M, Thomas SC (2013) Snow cover manipulations alter survival of early life stages of cold-temperate tree species. Oikos 122:541–554. https://doi.org/10.1111/j.1600-0706.2012.20642.x

    Article  Google Scholar 

  • Elliott AC, Henry HAL (2009) Freeze-thaw cycle amplitude and freezing rate effects on extractable nitrogen in a temperate old field soil. Biol Fert Soils 45:469–476

    CAS  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, JA M-D, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Martin Schmidt N, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C-H, Walker X, Webber PJ, Welker JM, Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2:453–457. https://doi.org/10.1038/nclimate1465

    Article  Google Scholar 

  • Estilow TW, Young AH, Robinson DA (2015) A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst Sci Data 7:137–142. https://doi.org/10.5194/essd-7-137-2015

    Article  Google Scholar 

  • Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001) Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 56:215–238

    CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C 4 MIP model intercomparison. J Clim 19:3337–3353. https://doi.org/10.1175/JCLI3800.1

    Article  Google Scholar 

  • Gaul D, Hertel D, Leuschner C (2008) Effects of experimental soil frost on the fine root system of mature Norway spruce. J Plant Nutr Soil Sci 171:690–698

    CAS  Google Scholar 

  • Göbel L, Coners H, Hertel D, Willinghöfer S, Leuschner C (2019) The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations. Front Plant Sci 10:330

    PubMed  PubMed Central  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150

    CAS  Google Scholar 

  • Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262

    Google Scholar 

  • Gudleifsson BE (1994) Metabolite accumulation during ice encasement of timothy grass (Phleum pratense L.). Proc Royal Soc Edinburgh Sect B Biol Sci 102:373–380. https://doi.org/10.1017/S0269727000014366

    Article  Google Scholar 

  • Gudleifsson BE (2010) Ice tolerance and metabolite accumulation of herbage crops in Iceland and impact of climate change. Icel Agric Sci 23:111–122

    Google Scholar 

  • Haei M, Oquist MG, Kreyling J, Ilstedt U, Laudon H (2013) Winter climate controls soil carbon dynamics during summer in boreal forests. Environ Res Lett 8:10

    Google Scholar 

  • Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytol 211:386–403. https://doi.org/10.1111/nph.13955

    Article  CAS  PubMed  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. https://doi.org/10.1038/nature06591

    Article  CAS  PubMed  Google Scholar 

  • Henry HAL (2008) Climate change and soil freezing dynamics: historical trends and projected changes. Clim Chang 87:421–434

    CAS  Google Scholar 

  • Henry HAL, Abedi M, Alados CL, Beard KH, Fraser LH, Jentsch A, Kreyling J, Kulmatiski A, Lamb EG, Sun W, Vankoughnett MR, Venn S, Werner C, Beil I, Blindow I, Dahlke S, Dubbert M, Effinger A, Garris HW, Gartzia M, Gebauer T, Arfin Khan MAS, Malyshev AV, Morgan J, Nock C, Paulson JP, Pueyo Y, Stover HJ, Yang X (2018) Increased soil frost versus summer drought as drivers of plant biomass responses to reduced precipitation: results from a globally coordinated field experiment. Ecosystems 21:1432–1444. https://doi.org/10.1007/s10021-018-0231-7

    Article  Google Scholar 

  • Hentschel K, Borken W, Matzner E (2008) Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil. J Plant Nutr Soil Sci 171:699–706

    CAS  Google Scholar 

  • Homma K, Akashi N, Abe T, Hasegawa M, Harada K, Hirabuki Y, Irie K, Kaji M, Miguchi H, Mizoguchi N, Mizunaga H, Nakashizuka T, Natume S, Niiyama K, Ohkubo T, Sawada S-i, Sugita H, Takatsuki S, Yamanaka N (1999) Geographical variation in the early regeneration process of Siebold’s Beech (Fagus crenata BLUME) in Japan. Plant Ecol 140:129–138. https://doi.org/10.1023/A:1009725007759

    Article  Google Scholar 

  • Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafrost Periglac Process 21:30–41. https://doi.org/10.1002/ppp.662

    Article  Google Scholar 

  • Isard SA, Schaetzl RJ (1998) Effects of winter weather conditions on soil freezing in southern Michigan. Phys Geogr 19:71–94

    Google Scholar 

  • Iwata Y, Hayashi M, Suzuki S, Hirota T, Hasegawa S (2010) Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment. Water Resour Res 46:W09504

    Google Scholar 

  • Jefferies RL, Walker NA, Edwards KA, Dainty J (2010) Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem 42:129–135

    CAS  Google Scholar 

  • Joseph G, Henry HAL (2009) Retention of surface nitrate additions in a temperate old field: implications for atmospheric nitrogen deposition over winter and plant nitrogen availability. Plant Soil 319:209–218

    CAS  Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93. https://doi.org/10.1038/nature07442

    Article  CAS  PubMed  Google Scholar 

  • Krab EJ, Roennefarth J, Becher M, Blume-Werry G, Keuper F, Klaminder J, Kreyling J, Makoto K, Milbau A, Dorrepaal E, Lau J (2018) Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J Ecol 106:599–612. https://doi.org/10.1111/1365-2745.12872

    Article  CAS  Google Scholar 

  • Kreyling J (2010) Winter climate change: a critical factor for temperate vegetation performance. Ecology 91:1939–1948

    PubMed  Google Scholar 

  • Kreyling J, Henry HAL (2011) Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications. Clim Res 46:269–276. https://doi.org/10.3354/cr00996

    Article  Google Scholar 

  • Kreyling J, Beierkuhnlein C, Jentsch A (2010) Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic Appl Ecol 11:65–75

    Google Scholar 

  • Kreyling J, Haei M, Laudon H (2012a) Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. Oecologia 168:577–587. https://doi.org/10.1007/s00442-011-2092-z

    Article  PubMed  Google Scholar 

  • Kreyling J, Persoh D, Werner S, Benzenberg M, Wöllecke J (2012b) Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. Plant Soil 353:19–31

    CAS  Google Scholar 

  • Kreyling J, Haei M, Laudon H (2013) Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Can J Soil Sci 93:427–433

    Google Scholar 

  • Kreyling J, Schmid S, Aas G (2015a) Cold tolerance of tree species is related to the climate of their native ranges. J Biogeogr 42:156–166

    Google Scholar 

  • Kreyling J, Schuerings J, Malyshev AV, Vogt L, Werner C, Jentsch A (2015b) Nitrogen leaching is enhanced after a winter warm spell but mainly controlled by vegetation composition in temperate zone mesocosms. Plant Soil 396:85–96. https://doi.org/10.1007/s11104-015-2587-1

    Article  CAS  Google Scholar 

  • Kunkel KE, Palecki M, Ensor L, Hubbard KG, Robinson D, Redmond K, Easterling D (2009) Trends in twentieth-century U.S. snowfall using a quality-controlled dataset. J Atmos Ocean Technol 26:33–44. https://doi.org/10.1175/2008JTECHA1138.1

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Larsen KS, Grogan P, Jonasson S, Michelsen A (2007) Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow cover. Arct Antarct Alp Res 39:268–276

    Google Scholar 

  • Laube J, Sparks TH, Estrella N, Höfler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Chang Biol 20:170–182. https://doi.org/10.1111/gcb.12360

    Article  PubMed  Google Scholar 

  • Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, Ciais P, Myneni RB, Peñuelas J, Wang T (2018) Extension of the growing season increases vegetation exposure to frost. Nat Commun 9:426. https://doi.org/10.1038/s41467-017-02690-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makoto K, Kajimoto T, Koyama L, Kudo G, Shibata H, Yanai Y, Cornelissen JHC (2014) Winter climate change in plant–soil systems: summary of recent findings and future perspectives. Ecol Res 29:593–606. https://doi.org/10.1007/s11284-013-1115-0

    Article  CAS  Google Scholar 

  • Malyshev AV, Henry HAL, Bolte A, Arfin Khan MAS, Kreyling J (2018) Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings. Agric For Meteorol 248:82–90. https://doi.org/10.1016/j.agrformet.2017.09.011

    Article  Google Scholar 

  • Martz F, Vuosku J, Ovaskainen A, Stark S, Rautio P (2016) The snow must go on: ground ice encasement, snow compaction and absence of snow differently cause soil hypoxia, CO2 accumulation and tree seedling damage in boreal forest. PLoS One 11:e0156620. https://doi.org/10.1371/journal.pone.0156620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems?: a review. Eur J Soil Sci 59:274–284

    Google Scholar 

  • McMahon SK, Wallenstein MD, Schimel JP (2009) Microbial growth in Arctic tundra soil at-2 degrees C. Environ Microbiol Rep 1:162–166

    CAS  PubMed  Google Scholar 

  • Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos Ocean 49:163–177. https://doi.org/10.1080/07055900.2011.583910

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    CAS  Google Scholar 

  • Montwé D, Isaac-Renton M, Hamann A, Spiecker H (2018) Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat Commun 9:1574. https://doi.org/10.1038/s41467-018-04039-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J (2016) Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities. Glob Chang Biol 22:3080–3096. https://doi.org/10.1111/gcb.13294

    Article  PubMed  Google Scholar 

  • Muffler L, Beierkuhnlein C, Aas G, Jentsch A, Schweiger AH, Zohner C, Kreyling J (2016) Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere. Glob Ecol Biogeogr 25:1061–1071. https://doi.org/10.1111/geb.12466

    Article  Google Scholar 

  • Muhr J, Borken W, Matzner E (2009) Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil. Glob Chang Biol 15:782–793. https://doi.org/10.1111/j.1365-2486.2008.01695.x

    Article  Google Scholar 

  • Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. For Ecol Manag 259:831–838. https://doi.org/10.1016/j.foreco.2009.07.034

    Article  Google Scholar 

  • Noshiro M, Sakai A (1979) Freezing resistance of herbaceous plants. Low Temp Sci Ser B Biol Sci 37:11–18

    Google Scholar 

  • Ogren E (1996) Premature dehardening in Vaccinium myrtillus during a mild winter: a cause for winter dieback? Funct Ecol 10:724. https://doi.org/10.2307/2390507

    Article  Google Scholar 

  • Öquist MG, Laudon H (2008) Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange. Glob Chang Biol 14:2839–2847

    Google Scholar 

  • Oztas T, Fayetorbay F (2003) Effect of freezing and thawing processes on soil aggregate stability. Catena 52:1–8

    CAS  Google Scholar 

  • Pachauri RK, Mayer L (eds) (2015) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Pauli JN, Zuckerberg B, Whiteman JP, Porter W (2013) The subnivium: a deteriorating seasonal refugium. Front Ecol Environ 11:260–267. https://doi.org/10.1890/120222

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res-Atmos 115:10. https://doi.org/10.1029/2009JD013568

    Article  Google Scholar 

  • Phoenix GK, Bjerke JW (2016) Arctic browning: extreme events and trends reversing arctic greening. Glob Chang Biol 22:2960–2962. https://doi.org/10.1111/gcb.13261

    Article  PubMed  Google Scholar 

  • Príncipe A, van der Maaten E, van der Maaten-Theunissen M, Struwe T, Wilmking M, Kreyling J (2017) Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany. Trees 31:743–751. https://doi.org/10.1007/s00468-016-1505-3

    Article  Google Scholar 

  • Raisanen J (2008) Warmer climate: less or more snow? Clim Dyn 30:307–319

    Google Scholar 

  • Rapacz M, Ergon A, Höglind M, Jørgensen M, Jurczyk B, Ostrem L, Rognli OA, Tronsmo AM (2014) Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Sci 225:34–44. https://doi.org/10.1016/j.plantsci.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  • Rasmus S, Lundell R, Saarinen T (2011) Interactions between snow, canopy, and vegetation in a boreal coniferous forest. Plant Ecol Divers 4:55–65. https://doi.org/10.1080/17550874.2011.558126

    Article  Google Scholar 

  • Reinmann AB, Templer PH (2018) Increased soil respiration in response to experimentally reduced snow cover and increased soil freezing in a temperate deciduous forest. Biogeochemistry 140:359–371. https://doi.org/10.1007/s10533-018-0497-z

    Article  Google Scholar 

  • Reinmann AB, Susser JR, Demaria EMC, Templer PH (2019) Declines in northern forest tree growth following snowpack decline and soil freezing. Glob Chang Biol 25:420–430. https://doi.org/10.1111/gcb.14420

    Article  PubMed  Google Scholar 

  • Rigby JR, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35:L12703

    Google Scholar 

  • Rixen C, Haeberli W, Stoeckli V (2004) Ground temperatures under ski pistes with artificial and natural snow. Arct Antarct Alp Res 36:419–427. https://doi.org/10.1657/1523-0430(2004)036[0419:GTUSPW]2.0.CO;2

    Article  Google Scholar 

  • Romero-Olivares AL, Allison SD, Treseder KK (2017) Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol Biochem 107:32–40. https://doi.org/10.1016/j.soilbio.2016.12.026

    Article  CAS  Google Scholar 

  • Rustad LE, Campbell JL (2012) A novel ice storm manipulation experiment in a northern hardwood forest. Can J For Res 42:1810–1818. https://doi.org/10.1139/x2012-120

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    CAS  PubMed  Google Scholar 

  • Sanders-DeMott R, Templer PH, McMahon S (2017) What about winter?: integrating the missing season into climate change experiments in seasonally snow covered ecosystems. Methods Ecol Evol 8:1183–1191. https://doi.org/10.1111/2041-210X.12780

    Article  Google Scholar 

  • Sanders-DeMott R, McNellis R, Jabouri M, Templer PH, Wurzburger N (2018) Snow depth, soil temperature and plant-herbivore interactions mediate plant response to climate change. J Ecol 106:1508–1519. https://doi.org/10.1111/1365-2745.12912

    Article  CAS  Google Scholar 

  • Schaberg PG, Hennon PE, D’Amore DV, Hawley GJ (2008) Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings. Glob Chang Biol 14:1282–1293

    Google Scholar 

  • Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199. https://doi.org/10.3354/cr032187

    Article  Google Scholar 

  • Schuerings J, Beierkuhnlein C, Grant K, Jentsch A, Malyshev A, Penuelas J, Sardans J, Kreyling J (2013) Absence of soil frost affects plant-soil interactions in temperate grasslands. Plant Soil 371:559–572. https://doi.org/10.1007/s11104-013-1724-y

    Article  CAS  Google Scholar 

  • Schuerings J, Jentsch A, Walter J, Kreyling J (2014) Winter warming pulses differently affect plant performance in temperate heathland and grassland communities. Ecol Res 29:561–570. https://doi.org/10.1007/s11284-014-1174-x

    Article  Google Scholar 

  • Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K (2013) Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116:69–82. https://doi.org/10.1007/s10533-013-9882-9

    Article  CAS  Google Scholar 

  • Slayback DA, Pinzon JE, Los SO, Tucker CJ (2003) Northern hemisphere photosynthetic trends 1982-99. Glob Chang Biol 9:1–15

    Google Scholar 

  • Song Y, Zou Y, Wang G, Yu X (2017) Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biol Biochem 109:35–49. https://doi.org/10.1016/j.soilbio.2017.01.020

    Article  CAS  Google Scholar 

  • Sorensen PO, Templer PH, Finzi AC (2016) Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochemistry 128:141–154. https://doi.org/10.1007/s10533-016-0199-3

    Article  CAS  Google Scholar 

  • Steinbauer MJ, Kreyling J, Stöhr C, Audorff V (2017) Positive sport-biosphere interactions? − cross-country skiing delays spring phenology of meadow vegetation. Basic Appl Ecol 27:30–40. https://doi.org/10.1016/j.baae.2017.10.003

    Article  Google Scholar 

  • Steinweg JM, Fisk MC, McAlexander B, Groffman PM, Hardy JP (2008) Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest. Biol Fert Soils 45:1–10. https://doi.org/10.1007/s00374-008-0305-3

    Article  CAS  Google Scholar 

  • Stocker T (ed) (2014) Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sturm M, Holmgren J, König M, Morris K (1997) The thermal conductivity of seasonal snow. J Glaciol 43:26–41

    Google Scholar 

  • Sulman BN, Moore JAM, Abramoff R, Averill C, Kivlin S, Georgiou K, Sridhar B, Hartman MD, Wang G, Wieder WR, Bradford MA, Luo Y, Mayes MA, Morrison E, Riley WJ, Salazar A, Schimel JP, Tang J, Classen AT (2018) Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141:109–123. https://doi.org/10.1007/s10533-018-0509-z

    Article  CAS  Google Scholar 

  • Takeuchi Y, Endo Y, Murakami S (2008) High correlation between winter precipitation and air temperature in heavy-snowfall areas in Japan. Ann Glaciol 49:7–10. https://doi.org/10.3189/172756408787814898

    Article  Google Scholar 

  • Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT (2001) Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry 56:175–190

    CAS  Google Scholar 

  • Tompkins DK, Ross JB, Moroz DL (2004) Effects of ice cover on annual bluegrass and creeping bentgrass putting greens. Crop Sci 44:2175–2179

    Google Scholar 

  • Tsunoda T, Makoto K, Suzuki J-I, Kaneko N (2018) Warming increased feeding of a root-chewing insect at the soil surface and enhanced its damage on a grass. Soil Biol Biochem 126:213–218. https://doi.org/10.1016/j.soilbio.2018.09.009

    Article  CAS  Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151. https://doi.org/10.1038/22087

    Article  CAS  Google Scholar 

  • Vankoughnett MR, Henry HAL (2014) Soil freezing and N deposition: transient vs multi-year effects on plant productivity and relative species abundance. New Phytol 202:1277–1285. https://doi.org/10.1111/nph.12734

    Article  CAS  PubMed  Google Scholar 

  • Vestgarden LS, Austnes K (2009) Effects of freeze-thaw on C and N release from soils below different vegetation in a montane system: a laboratory experiment. Glob Chang Biol 15:876–887

    Google Scholar 

  • Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic oscillation: past, present, and future. Proc Natl Acad Sci U S A 98:12876–12877. https://doi.org/10.1073/pnas.231391598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitra A, Lenz A, Vitasse Y (2017) Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytol 216:113–123. https://doi.org/10.1111/nph.14698s

    Article  PubMed  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x

    Article  Google Scholar 

  • Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schaedler M, Schuerings J, Kreyling J (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18. https://doi.org/10.1016/j.soilbio.2013.01.018

    Article  CAS  Google Scholar 

  • Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Gasche R, Kolar A, Schloter M, Kiese R, Butterbach-Bahl K, Dannenmann M (2016) Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob Chang Biol 22:2963–2978. https://doi.org/10.1111/gcb.13353

    Article  PubMed  Google Scholar 

  • Weih M, Karlsson PS (2002) Low winter soil temperature affects summertime nutrient uptake capacity and growth rate of mountain birch seedlings in the subarctic, Swedish Lapland. Arct Antarct Alp Res 34:434–439

    Google Scholar 

  • Xia J, Chen J, Piao S, Ciais P, Luo Y, Wan S (2014) Terrestrial carbon cycle affected by non-uniform climate warming. Nat Geosci 7:173–180. https://doi.org/10.1038/ngeo2093

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2004) Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Sci Plant Nutr 50:821–829

    Google Scholar 

  • Yang S, Christensen JH (2012) Arctic Sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys Res Lett 39:890. https://doi.org/10.1029/2012GL053338

    Article  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan plateau. Proc Natl Acad Sci U S A 107:22151–22156. https://doi.org/10.1073/pnas.1012490107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Wang J, Liu S, Piao S, Ciais P, Running SW, Poulter B, Rentch JS, Sun P (2016) Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Glob Ecol Biogeogr 25:586–595. https://doi.org/10.1111/geb.12441

    Article  Google Scholar 

  • Yun J, Jeong S-J, Ho C-H, Park C-E, Park H, Kim J (2018) Influence of winter precipitation on spring phenology in boreal forests. Glob Chang Biol 24:5176–5187. https://doi.org/10.1111/gcb.14414

    Article  PubMed  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003) Distribution of seasonally and perennially frozen ground in the northern hemisphere. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost: proceedings of the eighth international conference on permafrost, 21–25 July 2003. A.A. Balkema, Zurich, pp 1289–1294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kreyling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kreyling, J. (2019). The Ecological Importance of Winter in Temperate, Boreal, and Arctic Ecosystems in Times of Climate Change. In: Cánovas, F., Lüttge, U., Leuschner, C., Risueño, MC. (eds) Progress in Botany Vol. 81. Progress in Botany, vol 81. Springer, Cham. https://doi.org/10.1007/124_2019_35

Download citation

Publish with us

Policies and ethics