Skip to main content

Physio-Metabolic Monitoring via Breath Employing Real-Time Mass Spectrometry: Importance, Challenges, Potentials, and Pitfalls

  • Chapter
  • First Online:
Breath Analysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 4))

Abstract

A tiny fraction of our breath contains trace volatile organics of various chemical classes. Due to their endogenous and/or exogenous origins, these volatiles can denominate many intrinsic and extrinsic effects. Exhaled volatile profiles are super dynamic in nature and their expressions may change from seconds to years. Exhaled volatile concentrations largely depend on normal or abnormal fluctuations in physiological and metabolic attributes. Minute or pronounced alterations in cardiorespiratory and other bronchopulmonary gas-exchange parameters due to simple changes in respiratory patterns, routes, and rhythms, posture, expiratory/inspiratory flow, and upper-airway resistance can immediately affect volatile profiles. Similarly, the subject’s age, gender, sexual orientation, metabolic state or status, diet, nutrition, therapy, lifestyle habits and habitats, menstrual phases, contraception, pregnancy, menopause, as well as any acute or chronic condition and comorbidities may cause transient or long-lasting differences in breath compositions. Applications of real-time mass spectrometric techniques along with alveolar sampling enabled us to frame fast occurring and continuous changes under diverse physio-metabolic conditions. Physio-metabolic conditions affected breath components more pronouncedly than the differential expression proposed as disease biomarkers in the literature. Investigations of such regulating factors helped us to develop the present state of the art for clinical breath sampling and analysis. Besides, assessments of ventilation and hemodynamics driven changes in exhaled volatiles have depicted potential for physio-metabolic monitoring. Longitudinal personalized analysis of breath profiles may offer unconventional path toward pathophysiological and therapeutic monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COVID-19:

Coronavirus disease 2019

FeNO:

Fractioned exhaled nitric oxide

IMS:

Ion mobility spectrometry

ppbV:

Parts per billion by volume

pptV:

Parts per trillion by volume

PTR-ToF-MS:

Proton transfer reaction–time of flight–mass spectrometry

SARS-CoV-2:

Severe acute respiratory distress syndrome – coronavirus 2

SESI-MS:

Secondary electrospray ionization–mass spectrometry

SIFT-MS:

Selected ion flow-tube–mass spectrometry

VOCs:

Volatile organic compounds

References

  1. de Lacy CB, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T et al (2014) A review of the volatiles from the healthy human body. J Breath Res 8:014001

    Article  Google Scholar 

  2. McKee HC, Rhoades JW, Campbell J, Gross AL (1962) Acetonitrile in body fluids related to smoking. Public Health Rep 77:553–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papaefstathiou E, Stylianou M, Andreou C, Agapiou A (2020) Breath analysis of smokers, non-smokers, and e-cigarette users. J Chromatogr B 1160:122349

    Article  CAS  Google Scholar 

  4. Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C et al (2012) Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res. [zitiert 29. January 2016];6. Verfügbar unter: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863686/

  5. Sukul P, Grzegorzewski S, Broderius C, Trefz P, Mittlmeier T, Fischer D-C et al (2022) Physiological and metabolic effects of healthy female aging on exhaled breath biomarkers. iScience 25:103739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  7. Kalapos MP (2003) On the mammalian acetone metabolism: from chemistry to clinical implications. Biochim Biophys Acta 1621:122–139

    Article  CAS  PubMed  Google Scholar 

  8. Pugliese G, Trefz P, Brock B, Schubert JK, Miekisch W (2019) Extending PTR based breath analysis to real-time monitoring of reactive volatile organic compounds. Anal R Soc Chem 144:7359–7367

    CAS  Google Scholar 

  9. Spacek LA, Strzepka A, Saha S, Kotula J, Gelb J, Guilmain S et al (2018) Repeated measures of blood and breath ammonia in response to control, moderate and high protein dose in healthy men. Sci Rep 8:2554

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tangerman A (2009) Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. J Chromatogr B 877:3366–3377

    Article  CAS  Google Scholar 

  11. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin Chim Acta 347:25–39

    Article  CAS  PubMed  Google Scholar 

  12. Alving K, Weitzberg E, Lundberg JM (1993) Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 6:1368–1370

    Article  CAS  PubMed  Google Scholar 

  13. Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84:731–765

    Article  CAS  PubMed  Google Scholar 

  14. American Thoracic Society, European Respiratory Society (2005) ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 171:912–930

    Article  Google Scholar 

  15. Barnes PJ, Dweik RA, Gelb AF, Gibson PG, George SC, Grasemann H et al (2010) Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest 138:682–692

    Article  CAS  PubMed  Google Scholar 

  16. Nakhleh MK, Amal H, Jeries R, Broza YY, Aboud M, Gharra A et al (2017) Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11:112–125

    Article  CAS  PubMed  Google Scholar 

  17. Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T et al (2014) Analysis of exhaled breath for disease detection. Annu Rev Anal Chem (Palo Alto, Calif) 7:455–482

    Article  CAS  Google Scholar 

  18. Amann A, de Lacy Costello B, Miekisch W, Schubert J, Buszewski B, Pleil J et al (2014) The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8:034001

    Article  CAS  PubMed  Google Scholar 

  19. Miekisch W, Schubert JK, Vagts DA, Geiger K (2001) Analysis of volatile disease markers in blood. Clin Chem 47:1053–1060

    Article  CAS  PubMed  Google Scholar 

  20. Miekisch W, Herbig J, Schubert JK (2012) Data interpretation in breath biomarker research: pitfalls and directions. J Breath Res 6:036007

    Article  PubMed  Google Scholar 

  21. Sukul P, Trefz P, Schubert JK, Miekisch W (2014) Immediate effects of breath holding maneuvers onto composition of exhaled breath. J Breath Res 8:037102

    Article  CAS  PubMed  Google Scholar 

  22. Sukul P, Trefz P, Kamysek S, Schubert JK, Miekisch W (2015) Instant effects of changing body positions on compositions of exhaled breath. J Breath Res 9:047105

    Article  PubMed  Google Scholar 

  23. Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B, Kamysek S et al (2013) Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal Chem 85:10321–10329

    Article  CAS  PubMed  Google Scholar 

  24. Sukul P, Schubert JK, Oertel P, Kamysek S, Taunk K, Trefz P et al (2016) FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests. Sci Rep 6:28029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sukul P, Oertel P, Kamysek S, Trefz P (2017) Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations. J Breath Res 11:027101

    Article  PubMed  Google Scholar 

  26. Kamysek S, Fuchs P, Schwoebel H, Roesner JP, Kischkel S, Wolter K et al (2011) Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal Bioanal Chem 401:2093–2102

    Article  CAS  PubMed  Google Scholar 

  27. Trefz P, Kamysek S, Fuchs P, Sukul P, Schubert JK, Miekisch W (2017) Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs. J Breath Res 11:024001

    Article  PubMed  Google Scholar 

  28. Lärstad MAE, Torén K, Bake B, Olin A-C (2007) Determination of ethane, pentane and isoprene in exhaled air – effects of breath-holding, flow rate and purified air. Acta Physiol (Oxf) 189:87–98

    Article  Google Scholar 

  29. Trefz P, Schmidt SC, Sukul P, Schubert JK, Miekisch W, Fischer D-C (2019) Non-invasive assessment of metabolic adaptation in paediatric patients suffering from type 1 diabetes mellitus. J Clin Med. [zitiert 18. Juli 2020];8. Verfügbar unter: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912469/

  30. Fink H, Maihöfer T, Bender J, Schulat J (2022) Indole as a new tentative marker in exhaled breath for non-invasive blood glucose monitoring of diabetic subjects. J Breath Res 16

    Google Scholar 

  31. Sukul P, Schubert JK, Trefz P, Miekisch W (2018) Natural menstrual rhythm and oral contraception diversely affect exhaled breath compositions. Sci Rep 8:10838

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hawkins SM, Matzuk MM (2008) Menstrual cycle: basic biology. Ann N Y Acad Sci 1135:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mumford SL, Dasharathy S, Pollack AZ, Schisterman EF (2011) Variations in lipid levels according to menstrual cycle phase: clinical implications. Clin Lipidol 6:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilcox AJ, Dunson D, Baird DD (2000) The timing of the “fertile window” in the menstrual cycle: day specific estimates from a prospective study. BMJ 321:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. National Institutes of Health (NIH) (2015) Women’s cholesterol levels vary with phase of menstrual cycle. [zitiert 11. April 2018]. Verfügbar unter: https://www.nih.gov/news-events/news-releases/womens-cholesterol-levels-vary-phase-menstrual-cycle

  36. Sukul P, Richter A, Schubert JK, Miekisch W (2021) Deficiency and absence of endogenous isoprene in adults, disqualified its putative origin. Heliyon 7:e05922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. LoMauro A, Aliverti A (2015) Respiratory physiology of pregnancy. Breathe (Sheff) 11:297–301

    Article  Google Scholar 

  38. Bartels Ä, O’Donoghue K (2011) Cholesterol in pregnancy: a review of knowns and unknowns. Obstet Med 4:147–151

    Article  PubMed  PubMed Central  Google Scholar 

  39. Soma-Pillay P, Catherine N-P, Tolppanen H, Mebazaa A, Tolppanen H, Mebazaa A (2016) Physiological changes in pregnancy. Cardiovasc J Afr 27:89–94

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lain KY, Catalano PM (2007) Metabolic changes in pregnancy. Clin Obstet Gynecol 50:938–948

    Article  PubMed  Google Scholar 

  41. Ragonnaud E, Biragyn A (2021) Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18:2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes & Immunity Nature Publishing Group, pp 1–15

    Google Scholar 

  43. Pataky MW, Young WF, Nair KS (2021) Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin Proc 96:788–814

    Article  CAS  PubMed  Google Scholar 

  44. Boss GR, Seegmiller JE (1981) Age-related physiological changes and their clinical significance. West J Med 135:434–440

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G (2010) Oxidative stress and aging. J Nephrol 23(Suppl 15):S29–S36

    PubMed  Google Scholar 

  46. Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane. Anal Chem. [zitiert 17. August 2022]. Verfügbar unter: https://pubs.acs.org/doi/10.1021/ac702282q

  47. Miekisch W, Fuchs P, Kamysek S, Neumann C, Schubert JK (2008) Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clin Chim Acta 395:32–37

    Article  CAS  PubMed  Google Scholar 

  48. Miekisch W, Trefz P, Bergmann A, Schubert JK (2014) Microextraction techniques in breath biomarker analysis. Bioanalysis 6:1275–1291

    Article  CAS  PubMed  Google Scholar 

  49. Trefz P, Rösner L, Hein D, Schubert JK, Miekisch W (2013) Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis. Anal Bioanal Chem 405:3105–3115

    Article  CAS  PubMed  Google Scholar 

  50. Smith D, Španěl P, Herbig J, Beauchamp J (2014) Mass spectrometry for real-time quantitative breath analysis. J Breath Res 8:027101

    Article  CAS  PubMed  Google Scholar 

  51. Smith D, Spanel P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24:661–700

    Article  CAS  PubMed  Google Scholar 

  52. Herbig J, Müller M, Schallhart S, Titzmann T, Graus M, Hansel A (2009) On-line breath analysis with PTR-TOF. J Breath Res 3:027004

    Article  PubMed  Google Scholar 

  53. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  54. Schwoebel H, Schubert R, Sklorz M, Kischkel S, Zimmermann R, Schubert JK et al (2011) Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Anal Bioanal Chem 401:2079–2091

    Article  CAS  PubMed  Google Scholar 

  55. Romano A, Hanna GB (2018) Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: an experimental workflow for the optimization of specificity, sensitivity, and accuracy. J Mass Spectrom 53:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pugliese G, Piel F, Trefz P, Sulzer P, Schubert JK, Miekisch W (2020) Effects of modular ion-funnel technology onto analysis of breath VOCs by means of real-time mass spectrometry. Anal Bioanal Chem 412:7131–7140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Löser B, Grabenschröer A, Pugliese G, Sukul P, Trefz P, Schubert JK et al (2020) Changes of exhaled volatile organic compounds in postoperative patients undergoing analgesic treatment: a prospective observational study. Metabolites 10:321

    Article  PubMed Central  Google Scholar 

  58. Brock B, Kamysek S, Silz J, Trefz P, Schubert JK, Miekisch W (2017) Monitoring of breath VOCs and electrical impedance tomography under pulmonary recruitment in mechanically ventilated patients. J Breath Res 11:016005

    Article  PubMed  Google Scholar 

  59. Singh KD, del Miguel GV, Gaugg MT, Ibañez AJ, Zenobi R, Kohler M et al (2018) Translating secondary electrospray ionization–high-resolution mass spectrometry to the clinical environment. J Breath Res 12:027113

    Article  PubMed  Google Scholar 

  60. Osswald M, Kohlbrenner D, Nowak N, Spörri J, Sinues P, Nieman D et al (2021) Real-time monitoring of metabolism during exercise by exhaled breath. Metabolites 11:856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh KD, Tancev G, Decrue F, Usemann J, Appenzeller R, Barreiro P et al (2019) Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry. Anal Bioanal Chem 411:4883–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS (2020) Unravelling the potential of salivary volatile metabolites in oral diseases. Rev Mol 25:E3098

    Article  Google Scholar 

  63. Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors (Basel) 9:5099–5148

    Article  CAS  Google Scholar 

  64. Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert JK (2008) Impact of sampling procedures on the results of breath analysis. J Breath Res 2:026007

    Article  PubMed  Google Scholar 

  65. Lumb AB (2016) Nunn’s Appl Respir Physiol 8. Aufl. Italy: Elsevier Ltd.; Verfügbar unter: https://www.eu.elsevierhealth.com/nunns-applied-respiratory-physiology-9780702062940.html?dmnum=12449#panel1

  66. Anderson JC, Babb AL, Hlastala MP (2003) Modeling soluble gas exchange in the airways and alveoli. Ann Biomed Eng 31:1402–1422

    Article  PubMed  Google Scholar 

  67. Anderson JC, Hlastala MP (2007) Breath tests and airway gas exchange. Pulm Pharmacol Ther 20:112–117

    Article  CAS  PubMed  Google Scholar 

  68. King J, Kupferthaler A, Frauscher B, Hackner H, Unterkofler K, Teschl G et al (2012) Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas 33:413–428

    Article  PubMed  Google Scholar 

  69. King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H, Filipiak W et al (2010) Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas 31:1169–1184

    Article  CAS  PubMed  Google Scholar 

  70. Pugliese G, Trefz P, Weippert M, Pollex J, Bruhn S, Schubert JK et al (2022) Real-time metabolic monitoring under exhaustive exercise and evaluation of ventilatory threshold by breathomics: independent validation of evidence and advances. Front Physiol. [zitiert 18. August 2022];13. Verfügbar unter: https://www.frontiersin.org/articles/10.3389/fphys.2022.946401

  71. Schubert R, Schwoebel H, Mau-Moeller A, Behrens M, Fuchs P, Sklorz M et al (2012) Metabolic monitoring and assessment of anaerobic threshold by means of breath biomarkers. Metabolomics 8:1069–1080

    Article  CAS  Google Scholar 

  72. Sukul P, Schubert JK, Kamysek S, Trefz P, Miekisch W (2017) Applied upper-airway resistance instantly affects breath components: a unique insight into pulmonary medicine. J Breath Res 11:047108

    Article  PubMed  Google Scholar 

  73. Holsbeke CV, Vos W, Hamilton M, Claes R, Prime D, Vanhevel F et al (2014) Assessment of the effect of mouthpiece design on upper airway geometry using functional respiratory imaging. Eur Respir J 44:P553

    Google Scholar 

  74. Cope KA, Watson MT, Foster WM, Sehnert SS, Risby TH (2004) Effects of ventilation on the collection of exhaled breath in humans. J Appl Physiol 96:1371–1379

    Article  PubMed  Google Scholar 

  75. Sukul P, Schubert JK, Zanaty K, Trefz P, Sinha A, Kamysek S et al (2020) Exhaled breath compositions under varying respiratory rhythms reflects ventilatory variations: translating breathomics towards respiratory medicine. Sci Rep 10:14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bikov A, Paschalaki K, Kharitonov S, Sinclair RL, Horvath I, Usmani O et al (2012) Expiratory flow rate and breath hold affect exhaled volatile organic compounds (VOC) in healthy subjects. Eur Respir J 40:4305

    Google Scholar 

  77. Kushch I, Arendacká B, Stolc S, Mochalski P, Filipiak W, Schwarz K et al (2008) Breath isoprene – aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med 46:1011–1018

    Article  CAS  PubMed  Google Scholar 

  78. Schwarz K, Pizzini A, Arendacká B, Zerlauth K, Filipiak W, Schmid A et al (2009) Breath acetone – aspects of normal physiology related to age and gender as determined in a PTR-MS study. J Breath Res 3:027003

    Article  CAS  PubMed  Google Scholar 

  79. Beauchamp J (2015) Current sampling and analysis techniques in breath research – results of a task force poll. J Breath Res 9:047107

    Article  PubMed  Google Scholar 

  80. Birken T, Schubert J, Miekisch W, Nöldge-Schomburg G (2006) A novel visually CO2 controlled alveolar breath sampling technique. Technol Health Care 14:499–506

    Article  PubMed  Google Scholar 

  81. Arbus GS, Hebert LA, Levesque PR, Etsten BE, Schwartz WB (1969) Characterization and clinical application of the significance band for acute respiratory alkalosis. N Engl J Med 280:117–123

    Article  CAS  PubMed  Google Scholar 

  82. Cavaliere F, Volpe C, Gargaruti R, Poscia A, Di Donato M, Grieco G et al (2009) Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers. BMC Pulm Med 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  83. Moreno F, Lyons HA (1961) Effect of body posture on lung volumes. J Appl Physiol 16:27–29

    Article  CAS  PubMed  Google Scholar 

  84. Sukul P, Trefz P, Schubert J, Miekisch W (2022) Advanced setup for safe breath sampling and patient monitoring under highly infectious conditions in the clinical environment. [zitiert 6. Juli 2022]. Verfügbar unter: https://www.researchsquare.com/article/rs-1791972/v1

  85. Sukul P, Bartels J, Fuchs P, Trefz P, Remy R, Rührmund L et al (2022) Effects of COVID-19 protective face-masks and wearing durations onto respiratory-haemodynamic physiology and exhaled breath constituents. Eur Respir Soc 60:2200009

    Article  Google Scholar 

  86. De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S et al (2020) Diet influences the functions of the human intestinal microbiome. Sci Rep 10:4247

    Article  PubMed  PubMed Central  Google Scholar 

  87. Biagini D, Fusi J, Vezzosi A, Oliveri P, Ghimenti S, Lenzi A et al (2022) Effects of long-term vegan diet on breath composition. J Breath Res 16

    Google Scholar 

  88. Ajibola OA, Smith D, Španěl P, Ferns GAA (2013) Effects of dietary nutrients on volatile breath metabolites. J Nutr Sci 2:e34

    Article  PubMed  PubMed Central  Google Scholar 

  89. Remy R, Kemnitz N, Trefz P, Fuchs P, Bartels J, Klemenz A-C et al (2022) Profiling of exhaled volatile organics in the screening scenario of a COVID-19 test center. Rochester, NY [zitiert 20. Juni 2022]. Verfügbar unter: https://papers.ssrn.com/abstract=4055638

  90. Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer D-C (2019) Exhaled volatile substances in children suffering from type 1 diabetes mellitus: results from a cross-sectional study. Sci Rep 9:15707

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ghimenti S, Di Francesco F, Onor M, Stiegel MA, Trivella MG, Comite C et al (2013) Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: pharmacokinetic models for assessing liver function. J Breath Res 7:036001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Sukul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sukul, P., Trefz, P. (2022). Physio-Metabolic Monitoring via Breath Employing Real-Time Mass Spectrometry: Importance, Challenges, Potentials, and Pitfalls. In: Weigl, S. (eds) Breath Analysis . Bioanalytical Reviews, vol 4. Springer, Cham. https://doi.org/10.1007/11663_2022_19

Download citation

Publish with us

Policies and ethics