Skip to main content

Scanning Ion Conductance Microscopy and Atomic Force Microscopy: A Comparison of Strengths and Limitations for Biological Investigations

  • Chapter
  • First Online:
Scanning Ion Conductance Microscopy

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 3))

Abstract

Knowledge of physical properties of cells is vital for many research areas in biology and medicine. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are two techniques to assess the three-dimensional topography and mechanical properties of cells. This chapter introduces the basic working principles and imaging modes of AFM and SICM and then focuses on their similarities and differences. Strengths and limitations in terms of image resolution, imaging speed, and biomechanical applications are discussed. Also, combined applications of SICM and AFM are highlighted. This chapter shows that SICM has emerged as a major addition to the field of biophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lemon WC, McDole K (2020) Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 66:34–42

    Article  CAS  PubMed  Google Scholar 

  2. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Springer Science + Business Media, pp 413–440

    Google Scholar 

  3. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61

    Article  Google Scholar 

  4. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  CAS  PubMed  Google Scholar 

  5. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589

    Article  CAS  PubMed  Google Scholar 

  6. Egger M, Ohnesorge F, Weisenhorn AL, Heyn SP, Drake B, Prater CB, Gould SAC, Hansma PK, Gaub HE (1990) Wet lipid protein membranes imaged at submolecular resolution by atomic force microscopy. J Struct Biol 103(1):89–94

    Article  CAS  Google Scholar 

  7. Butt HJ, Downing KH, Hansma PK (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J 58(6):1473–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257(5078):1900–1905

    Article  CAS  PubMed  Google Scholar 

  9. Fritz M, Radmacher M, Gaub HE (1993) In vitro activation of human platelets triggered and probed by atomic force microscopy. Exp Cell Res 205(1):187–190

    Article  CAS  PubMed  Google Scholar 

  10. Hansma HG, Hoh JH (1994) Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct 23(1):115–139

    Article  CAS  PubMed  Google Scholar 

  11. Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett (EPL) 3(12):1281–1286

    Article  CAS  Google Scholar 

  12. Weisenhorn AL, Drake B, Prater CB, Gould SAC, Hansma PK, Ohnesorge F, Egger M, Heyn SP, Gaub HE (1990) Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys J 58(5):1251–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansma HG, Weisenhorn AL, Edmundson AB, Gaub HE, Hansma PK (1991) Atomic force microscopy: seeing molecules of lipid and immunoglobulin. Clin Chem 37(9):1497–1501

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Keller DJ (1991) Atomic force microscopy of supported planar membrane bilayers. Biophys J 60(6):1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansma HG, Bezanilla M, Zenhausern F, Adrian M, Sinsheimer RL (1993) Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res 21(3):505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoh JH, Cleveland JP, Prater CB, Revel JP, Hansma PK (1992) Quantized adhesion detected with the atomic force microscope. J Am Chem Soc 114(12):4917–4918

    Article  CAS  Google Scholar 

  17. Weisenhorn AL, Maivald P, Butt H, Hansma PK (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B Condens Matter 45(19):11226–11232

    Article  CAS  PubMed  Google Scholar 

  18. Fang HHP, Chan KY, Xu LC (2000) Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Methods 40(1):89–97

    Article  CAS  PubMed  Google Scholar 

  19. Razatos A (2001) Application of atomic force microscopy to study initial events of bacterial adhesion. In: Doyle RJ (ed) Microbial growth in biofilms part B: special environments and physicochemical aspects. Academic Press, pp 276–285

    Chapter  Google Scholar 

  20. Nguyen TD, Gu Y (2016) Investigation of cell-substrate adhesion properties of living chondrocyte by measuring adhesive shear force and detachment using AFM and inverse FEA. Sci Rep 6:38059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishii S, Yoshimoto S, Hori K (2022) Single-cell adhesion force mapping of a highly sticky bacterium in liquid. J Colloid Interface Sci 606(Pt 1):628–634

    Article  CAS  PubMed  Google Scholar 

  22. Dufrêne YF, Pelling AE (2013) Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5(10):4094–4104

    Article  PubMed  Google Scholar 

  23. Putman CA, van der Werf KO, de Grooth BG, van Hulst NF, Greve J (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J 67(4):1749–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70(1):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lal R, John SA (1994) Biological applications of atomic force microscopy. Am J Physiol Cell Physiol 266(1):C1–C21

    Article  CAS  Google Scholar 

  26. Hofmann UG, Rotsch C, Parak WJ, Radmacher M (1997) Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol 119(2):84–91

    Article  CAS  PubMed  Google Scholar 

  27. Domke J, Parak WJ, George M, Gaub HE, Radmacher M (1999) Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur Biophys J 28(3):179–186

    Article  CAS  PubMed  Google Scholar 

  28. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):618–634

    Article  PubMed  Google Scholar 

  30. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76

    Article  CAS  PubMed  Google Scholar 

  31. Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5(3):208–212

    Article  CAS  PubMed  Google Scholar 

  32. Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Muller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4):295–307

    Article  PubMed  Google Scholar 

  33. Stylianou A, Kontomaris SV, Grant C, Alexandratou E (2019) Atomic force microscopy on biological materials related to pathological conditions. Scanning 2019:8452851

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uchihashi T, Ganser C (2020) Recent advances in bioimaging with high-speed atomic force microscopy. Biophys Rev 12(2):363–369

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dufrêne YF, Viljoen A, Mignolet J, Mathelie-Guinlet M (2021) AFM in cellular and molecular microbiology. Cell Microbiol 23(7):e13324

    Article  PubMed  Google Scholar 

  36. Eid J, Greige-Gerges H, Monticelli L, Jraij A (2021) Elastic moduli of lipid membranes: reproducibility of AFM measures. Chem Phys Lipids 234:105011

    Article  CAS  PubMed  Google Scholar 

  37. Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALB (2021) Atomic force microscopy-A tool for structural and translational DNA research. APL Bioeng 5(3):031504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pena B, Adbel-Hafiz M, Cavasin M, Mestroni L, Sbaizero O (2022) Atomic force microscopy (AFM) applications in arrhythmogenic cardiomyopathy. Int J Mol Sci 23(7):3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joshi J, Homburg SV, Ehrmann A (2022) Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications-possibilities and limits. Polymers 14(6):1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez D, Anand U, Gorelik J, Benham CD, Bountra C, Lab M, Klenerman D, Birch R, Anand P, Korchev Y (2007) Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 159(1):26–34

    Article  PubMed  Google Scholar 

  42. Li C, Johnson N, Ostanin V, Shevchuk A, Ying LM, Korchev Y, Klenerman D (2008) High resolution imaging using scanning ion conductance microscopy with improved distance feedback control. Prog Nat Sci 18(6):671–677

    Article  Google Scholar 

  43. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6(4):279–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ossola D, Dorwling-Carter L, Dermutz H, Behr P, Voros J, Zambelli T (2015) Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers. Phys Rev Lett 115(23):238103

    Article  PubMed  Google Scholar 

  45. Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9(8):1731–1740

    Article  Google Scholar 

  46. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73(2):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CRW (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys J 78(1):451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous measurement of Ca2+ and cellular dynamics: combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys J 81(3):1759–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy – a method to investigate cultured hippocampal cells. J Neurosci Methods 116(2):113–117

    Article  CAS  PubMed  Google Scholar 

  50. Gorelik J, Zhang Y, Shevchuk AI, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2004) The use of scanning ion conductance microscopy to image A6 cells. Mol Cell Endocrinol 217(1-2):101–108

    Article  CAS  PubMed  Google Scholar 

  51. Ying L, Bruckbauer A, Zhou D, Gorelik J, Shevchuk A, Lab M, Korchev Y, Klenerman D (2005) The scanned nanopipette: a new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys Chem Chem Phys 7(15):2859–2866

    Article  CAS  PubMed  Google Scholar 

  52. Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew Chem Int Ed Engl 45(14):2212–2216

    Article  CAS  PubMed  Google Scholar 

  53. Böcker M, Anczykowski B, Wegener J, Schäffer TE (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18(14):145505

    Article  Google Scholar 

  54. Böcker M, Muschter S, Schmitt E, Steinem C, Schäffer TE (2009) Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy. Langmuir 25(5):3022–3028

    Article  PubMed  Google Scholar 

  55. Zhang S, Cho SJ, Busuttil K, Wang C, Besenbacher F, Dong M (2012) Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale. Nanoscale 4(10):3105–3110

    Article  CAS  PubMed  Google Scholar 

  56. Rheinlaender J, Schäffer TE (2013) Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope. Soft Matter 9(12):3230–3236

    Article  CAS  Google Scholar 

  57. Schäffer TE (2013) Nanomechanics of molecules and living cells with scanning ion conductance microscopy. Anal Chem 85(15):6988–6994

    Article  PubMed  Google Scholar 

  58. Rheinlaender J, Vogel S, Seifert J, Schachtele M, Borst O, Lang F, Gawaz M, Schäffer TE (2015) Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy. Thromb Haemost 113(2):305–311

    Article  PubMed  Google Scholar 

  59. Scheenen WJ, Celikel T (2015) Nanophysiology: bridging synapse ultrastructure, biology, and physiology using scanning ion conductance microscopy. Synapse 69(5):233–241

    Article  CAS  PubMed  Google Scholar 

  60. Rheinlaender J, Schäffer TE (2019) Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity. Nanoscale 11(14):6982–6989

    Article  CAS  PubMed  Google Scholar 

  61. Simeonov S, Schäffer TE (2019) Ultrafast imaging of cardiomyocyte contractions by combining scanning ion conductance microscopy with a microelectrode array. Anal Chem 91(15):9648–9655

    Article  CAS  PubMed  Google Scholar 

  62. Swiatlowska P, Sanchez-Alonso JL, Mansfield C, Scaini D, Korchev Y, Novak P, Gorelik J (2020) Short-term angiotensin II treatment regulates cardiac nanomechanics via microtubule modifications. Nanoscale 12(30):16315–16329

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi Y, Zhou Y, Miyamoto T, Higashi H, Nakamichi N, Takeda Y, Kato Y, Korchev Y, Fukuma T (2020) High-speed SICM for the visualization of nanoscale dynamic structural changes in hippocampal neurons. Anal Chem 92(2):2159–2167

    Article  CAS  PubMed  Google Scholar 

  64. Tognoni E (2021) High-speed multifunctional scanning ion conductance microscopy: innovative strategies to study dynamic cellular processes. Curr Opin Electrochem 28:100738

    Article  CAS  Google Scholar 

  65. Zhu C, Huang K, Siepser NP, Baker LA (2021) Scanning ion conductance microscopy. Chem Rev 121(19):11726–11768

    Article  CAS  PubMed  Google Scholar 

  66. Wang D, Sun L, Okuda S, Yamamoto D, Nakayama M, Oshima H, Saito H, Kouyama Y, Mimori K, Ando T, Watanabe S, Oshima M (2022) Nano-scale physical properties characteristic to metastatic intestinal cancer cells identified by high-speed scanning ion conductance microscope. Biomaterials 280:121256

    Article  CAS  PubMed  Google Scholar 

  67. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047

    Article  Google Scholar 

  68. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical-lever. J Appl Phys 65(1):164–167

    Article  CAS  Google Scholar 

  69. Meyer G, Amer NM (1990) Optical-beam-deflection atomic force microscopy – the Nacl (001) surface. Appl Phys Lett 56(21):2100–2101

    Article  CAS  Google Scholar 

  70. Prater CB, Hansma PK, Tortonese M, Quate CF (1991) Improved scanning ion-conductance microscope using microfabricated probes. Rev Sci Instrum 62(11):2634–2638

    Article  CAS  Google Scholar 

  71. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  PubMed  Google Scholar 

  72. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46(1):455–472

    Article  CAS  PubMed  Google Scholar 

  73. Schierbaum N, Hack M, Betz O, Schäffer TE (2018) Macro-SICM: a scanning ion conductance microscope for large-range imaging. Anal Chem 90(8):5048–5054

    Article  CAS  PubMed  Google Scholar 

  74. Seifert J, Rheinlaender J, Novak P, Korchev YE, Schäffer TE (2015) Comparison of atomic force microscopy and scanning ion conductance microscopy for live cell imaging. Langmuir 31(24):6807–6813

    Article  CAS  PubMed  Google Scholar 

  75. Rheinlaender J, Schäffer TE (2017) An accurate model for the ion current-distance behavior in scanning ion conductance microscopy allows for calibration of pipet tip geometry and tip-sample distance. Anal Chem 89(21):11875–11880

    Article  CAS  PubMed  Google Scholar 

  76. Thatenhorst D, Rheinlaender J, Schäffer TE, Dietzel ID, Happel P (2014) Effect of sample slope on image formation in scanning ion conductance microscopy. Anal Chem 86(19):9838–9845

    Article  CAS  PubMed  Google Scholar 

  77. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-Å scale. J Appl Phys 61(10):4723–4729

    Article  CAS  Google Scholar 

  78. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673

    Article  Google Scholar 

  79. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf Sci 290(1-2):L688–L692

    Article  CAS  Google Scholar 

  80. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic-force microscopy in liquids. Appl Phys Lett 64(13):1738–1740

    Article  CAS  Google Scholar 

  81. Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys J 66(6):2159–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baselt DR, Baldeschwieler JD (1994) Imaging spectroscopy with the atomic-force microscope. J Appl Phys 76(1):33–38

    Article  Google Scholar 

  83. You HX, Lau JM, Zhang S, Yu L (2000) Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82(1-4):297–305

    Article  CAS  PubMed  Google Scholar 

  84. Hansma HG, Sinsheimer RL, Groppe J, Bruice TC, Elings V, Gurley G, Bezanilla M, Mastrangelo IA, Hough PV, Hansma PK (1993) Recent advances in atomic force microscopy of DNA. Scanning 15(5):296–299

    Article  CAS  PubMed  Google Scholar 

  85. Pi J, Cai J (2019) Cell topography and its quantitative imaging by AFM. In: Santos NC, Carvalho FA (eds) Atomic force microscopy: methods and protocols. Springer, New York, pp 99–113

    Chapter  Google Scholar 

  86. Cappella B, Baschieri P, Frediani C, Miccoli P, Ascoli C (1997) Improvements in AFM imaging of the spatial variation of force-distance curves: on-line images. Nanotechnology 8(2):82–87

    Article  CAS  Google Scholar 

  87. Jiao Y, Schäffer TE (2004) Accurate height and volume measurements on soft samples with the atomic force microscope. Langmuir 20(23):10038–10045

    Article  CAS  PubMed  Google Scholar 

  88. Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010–16015

    Article  CAS  Google Scholar 

  89. Abe M (2018) Frequency-modulation atomic force microscopy. In: Compendium of surface and Interface analysis. Springer, Singapore, pp 201–204

    Chapter  Google Scholar 

  90. Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, Mateu MG, Carrascosa JL, Kiracofe D, Melcher J, Raman A (2012) Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS One 7(1):e30204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Al-Rekabi Z, Contera S (2018) Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc Natl Acad Sci U S A 115(11):2658–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the internal and external pore structure of membranes in fluid: TappingMode scanning ion conductance microscopy. Biophys J 71(4):2155–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pastre D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90(1):13–19

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi Y, Murakami Y, Nagamine K, Shiku H, Aoyagi S, Yasukawa T, Kanzaki M, Matsue T (2010) Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. Phys Chem Chem Phys 12(34):10012–10017

    Article  CAS  PubMed  Google Scholar 

  95. Zhukov A, Richards O, Ostanin V, Korchev Y, Klenerman D (2012) A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging. Ultramicroscopy 121(11):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simeonov S, Schäffer TE (2019) High-speed scanning ion conductance microscopy for sub-second topography imaging of live cells. Nanoscale 11(17):8579–8587

    Article  CAS  PubMed  Google Scholar 

  97. Rheinlaender J, Schäffer TE (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J Appl Phys 105(9):094905

    Article  Google Scholar 

  98. McKelvey K, Perry D, Byers JC, Colburn AW, Unwin PR (2014) Bias modulated scanning ion conductance microscopy. Anal Chem 86(7):3639–3646

    Article  CAS  PubMed  Google Scholar 

  99. Li P, Liu LQ, Yang Y, Wang YC, Li GY (2015) In-phase bias modulation mode of scanning ion conductance microscopy with capacitance compensation. IEEE Trans Ind Electron 62(10):6508–6518

    Article  Google Scholar 

  100. Li P, Liu LQ, Wang YC, Yang Y, Zhang CL, Li GY (2014) Phase modulation mode of scanning ion conductance microscopy. Appl Phys Lett 105(5):053113

    Article  Google Scholar 

  101. Li P, Liu L, Yang Y, Zhou L, Wang D, Wang Y, Li G (2015) Amplitude modulation mode of scanning ion conductance microscopy. J Lab Autom 20(4):457–462

    Article  CAS  PubMed  Google Scholar 

  102. Rheinlaender J, Geisse NA, Proksch R, Schäffer TE (2011) Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 27(2):697–704

    Article  CAS  PubMed  Google Scholar 

  103. Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew Chem Int Ed Engl 44(42):6854–6859

    Article  CAS  PubMed  Google Scholar 

  104. Rodolfa KT, Bruckbauer A, Zhou D, Schevchuk AI, Korchev YE, Klenerman D (2006) Nanoscale pipetting for controlled chemistry in small arrayed water droplets using a double-barrel pipet. Nano Lett 6(2):252–257

    Article  CAS  PubMed  Google Scholar 

  105. Happel P, Thatenhorst D, Dietzel ID (2012) Scanning ion conductance microscopy for studying biological samples. Sensors (Basel) 12(11):14983–15008

    Article  CAS  Google Scholar 

  106. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    Article  CAS  PubMed  Google Scholar 

  107. Oyabu N, Custance O, Yi I, Sugawara Y, Morita S (2003) Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys Rev Lett 90(17):176102

    Article  PubMed  Google Scholar 

  108. Giessibl FJ (2005) AFM's path to atomic resolution. Mater Today 8(5):32–41

    Article  CAS  Google Scholar 

  109. Gan Y (2009) Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf Sci Rep 64(3):99–121

    Article  CAS  Google Scholar 

  110. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6(1):1–7

    Article  Google Scholar 

  111. Schäffer TE (2005) Calculation of thermal noise in an atomic force microscope with a finite optical spot size. Nanotechnology 16(6):664–670

    Article  Google Scholar 

  112. Bustamante C, Keller D (1995) Scanning force microscopy in biology. Phys Today 48(12):32–38

    Article  Google Scholar 

  113. Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86(5):3269–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dufrêne YF, Martinez-Martin D, Medalsy I, Alsteens D, Muller DJ (2013) Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 10(9):847–854

    Article  PubMed  Google Scholar 

  115. Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69(1):264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alonso JL, Goldmann WH (2003) Feeling the forces: atomic force microscopy in cell biology. Life Sci 72(23):2553–2560

    Article  CAS  PubMed  Google Scholar 

  117. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8):824–833

    Article  CAS  PubMed  Google Scholar 

  118. Braet F, Rotsch C, Wisse E, Radmacher M (1998) Comparison of fixed and living liver endothelial cells by atomic force microscopy. Appl Phys A 66(7):S575–S578

    Article  CAS  Google Scholar 

  119. Francis LW, Gonzalez D, Ryder T, Baer K, Rees M, White JO, Conlan RS, Wright CJ (2010) Optimized sample preparation for high-resolution AFM characterization of fixed human cells. J Microsc 240(2):111–121

    Article  CAS  PubMed  Google Scholar 

  120. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355

    Article  CAS  PubMed  Google Scholar 

  121. Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J 67(6):2454–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dubrovin EV, Schächtele M, Klinov DV, Schäffer TE (2017) Time-lapsed single biomolecule atomic force microscopy investigation on modified graphite in solution. Langmuir 33:10027–10034

    Article  CAS  PubMed  Google Scholar 

  123. Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Kashlev M, Hansma PK (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36(3):461–468

    Article  CAS  PubMed  Google Scholar 

  124. Jiao Y, Cherny DI, Heim G, Jovin TM, Schäffer TE (2001) Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J Mol Biol 314(2):233–243

    Article  CAS  PubMed  Google Scholar 

  125. Leung C, Bestembayeva A, Thorogate R, Stinson J, Pyne A, Marcovich C, Yang J, Drechsler U, Despont M, Jankowski T (2012) Atomic force microscopy with nanoscale cantilevers resolves different structural conformations of the DNA double helix. Nano Lett 12(7):3846–3850

    Article  CAS  PubMed  Google Scholar 

  126. Müller DJ, Sass HJ, Müller SA, Buldt G, Engel A (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J Mol Biol 285(5):1903–1909

    Article  PubMed  Google Scholar 

  127. Mulvihill E, van Pee K, Mari SA, Muller DJ, Yildiz O (2015) Directly observing the lipid-dependent self-assembly and pore-forming mechanism of the cytolytic toxin Listeriolysin O. Nano Lett 15(10):6965–6973

    Article  PubMed  Google Scholar 

  128. Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ (2006) Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 27(4):546–561

    Article  CAS  PubMed  Google Scholar 

  129. Pfreundschuh M, Alsteens D, Hilbert M, Steinmetz MO, Muller DJ (2014) Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. Nano Lett 14(5):2957–2964

    Article  CAS  PubMed  Google Scholar 

  130. Zhang L, Yang F, Cai JY, Yang PH, Liang ZH (2014) In-situ detection of resveratrol inhibition effect on epidermal growth factor receptor of living MCF-7 cells by Atomic Force Microscopy. Biosens Bioelectron 56:271–277

    Article  CAS  PubMed  Google Scholar 

  131. Dupres V, Alsteens D, Pauwels K, Dufrene YF (2009) In vivo imaging of S-layer nanoarrays on Corynebacterium glutamicum. Langmuir 25(17):9653–9655

    Article  CAS  PubMed  Google Scholar 

  132. Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, Hobbs JK (2020) The architecture of the gram-positive bacterial cell wall. Nature 582(7811):294–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hirvonen LM, Marsh RJ, Jones GE, Cox S (2020) Combined AFM and super-resolution localisation microscopy: investigating the structure and dynamics of podosomes. Eur J Cell Biol 99(7):151106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mondeja B, Valdes O, Resik S, Vizcaino A, Acosta E, Montalvan A, Paez A, Mune M, Rodriguez R, Valdes J, Gonzalez G, Sanchez D, Falcon V, Gonzalez Y, Kouri V, I.P.K.V.R. Group, Diaz A, Guzman M (2021) SARS-CoV-2: preliminary study of infected human nasopharyngeal tissue by high resolution microscopy. Virol J 18(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rheinlaender J, Schäffer TE (2015) Lateral resolution and image formation in scanning ion conductance microscopy. Anal Chem 87(14):7117–7124

    Article  CAS  PubMed  Google Scholar 

  136. Sun L, Shigyou K, Ando T, Watanabe S (2019) Thermally driven approach to fill sub-10-nm pipettes with batch production. Anal Chem 91(21):14080–14084

    Article  CAS  PubMed  Google Scholar 

  137. Navikas V, Leitao SM, Marion S, Davis SJ, Drake B, Fantner GE, Radenovic A (2020) High-throughput nanocapillary filling enabled by microwave radiation for scanning ion conductance microscopy Imaging. ACS Appl Nano Mater 3(8):7829–7834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shigyou K, Sun L, Yajima R, Takigaura S, Tajima M, Furusho H, Kikuchi Y, Miyazawa K, Fukuma T, Taoka A, Ando T, Watanabe S (2020) Geometrical characterization of glass nanopipettes with sub-10 nm pore diameter by transmission electron microscopy. Anal Chem 92(23):15388–15393

    Article  CAS  PubMed  Google Scholar 

  139. Korchev YE, Milovanovic M, Bashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J Microsc 188(1):17–23

    Article  CAS  PubMed  Google Scholar 

  140. Walker SC, Allen S, Bell G, Roberts CJ (2015) Analysis of leaf surfaces using scanning ion conductance microscopy. J Microsc 258(2):119–126

    Article  CAS  PubMed  Google Scholar 

  141. Ushiki T, Nakajima M, Choi M, Cho SJ, Iwata F (2012) Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy. Micron 43(12):1390–1398

    Article  CAS  PubMed  Google Scholar 

  142. Nakajima M, Mizutani Y, Iwata F, Ushiki T (2018) Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues. Semin Cell Dev Biol 73:125–131

    Article  PubMed  Google Scholar 

  143. Zhou Y, Saito M, Miyamoto T, Novak P, Shevchuk AI, Korchev YE, Fukuma T, Takahashi Y (2018) Nanoscale Imaging of primary cilia with scanning ion conductance microscopy. Anal Chem 90(4):2891–2895

    Article  CAS  PubMed  Google Scholar 

  144. Gorelik J, Yang LQ, Zhang Y, Lab M, Korchev Y, Harding SE (2006) A novel Z-groove index characterizing myocardial surface structure. Cardiovasc Res 72(3):422–429

    Article  CAS  PubMed  Google Scholar 

  145. Voelkner C, Wendt M, Lange R, Ulbrich M, Gruening M, Staehlke S, Nebe B, Barke I, Speller S (2021) The nanomorphology of cell surfaces of adhered osteoblasts. Beilstein J Nanotechnol 12:242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Müller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21(8):461–469

    Article  PubMed  Google Scholar 

  147. Braet F, de Zanger R, Seynaeve C, Baekeland M, Wisse E (2001) A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J Electron Microsc (Tokyo) 50(4):283–290

    Article  CAS  Google Scholar 

  148. Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc Natl Acad Sci U S A 100(10):5819–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394(6693):581–585

    Article  CAS  PubMed  Google Scholar 

  150. Shibata M, Uchihashi T, Ando T, Yasuda R (2015) Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 5(1):8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guo Y, Li D, Zhang S, Yang Y, Liu JJ, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5):1430–1442.e17

    Article  CAS  PubMed  Google Scholar 

  152. Fuller PWW (2009) An introduction to high speed photography and photonics. Imaging Sci J 57(6):293–302

    Article  Google Scholar 

  153. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  154. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176

    Article  CAS  PubMed  Google Scholar 

  155. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C (2020) The cell biologist's guide to super-resolution microscopy. J Cell Sci 133(11):jcs240713

    Article  CAS  PubMed  Google Scholar 

  157. Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67(10):3583–3590

    Article  CAS  Google Scholar 

  158. Schäffer T, Cleveland J, Ohnesorge F, Walters D, Hansma P (1996) Studies of vibrating atomic force microscope cantilevers in liquid. J Appl Phys 80(7):3622–3627

    Article  Google Scholar 

  159. Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Instrum 70(11):4300–4303

    Article  CAS  Google Scholar 

  160. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K, Toyoshima YY (2003) A high-speed atomic force microscope for studying biological macromolecules in action. ChemPhysChem 4(11):1196–1202

    Article  CAS  PubMed  Google Scholar 

  162. Ando T, Uchihashi T, Kodera N, Miyagi A, Nakakita R, Yamashita H, Sakashita M (2006) High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn J Appl Phys Pt 1 45(3b):1897–1903

    Article  CAS  Google Scholar 

  163. Yamashita H, Kodera N, Miyagi A, Uchihashi T, Yamamoto D, Ando T (2007) Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Rev Sci Instrum 78(8):083702

    Article  PubMed  Google Scholar 

  164. Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456(1):211–225

    Article  CAS  PubMed  Google Scholar 

  165. Miyagi A, Chipot C, Rangl M, Scheuring S (2016) High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. Nat Nanotechnol 11(9):783–790

    Article  CAS  PubMed  Google Scholar 

  166. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S (2019) Force-induced conformational changes in PIEZO1. Nature 573(7773):230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lim K, Kodera N, Wang H, Mohamed MS, Hazawa M, Kobayashi A, Yoshida T, Hanayama R, Yano S, Ando T, Wong RW (2020) High-speed AFM reveals molecular dynamics of human influenza A hemagglutinin and its interaction with exosomes. Nano Lett 20(9):6320–6328

    Article  CAS  PubMed  Google Scholar 

  168. Kodera N, Noshiro D, Dora SK, Mori T, Habchi J, Blocquel D, Gruet A, Dosnon M, Salladini E, Bignon C, Fujioka Y, Oda T, Noda NN, Sato M, Lotti M, Mizuguchi M, Longhi S, Ando T (2021) Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nat Nanotechnol 16(2):181–189

    Article  CAS  PubMed  Google Scholar 

  169. Braunsmann C, Schäffer TE (2010) High-speed atomic force microscopy for large scan sizes using small cantilevers. Nanotechnology 21(22):225705

    Article  PubMed  Google Scholar 

  170. Braunsmann C, Seifert J, Rheinlaender J, Schäffer TE (2014) High-speed force mapping on living cells with a small cantilever atomic force microscope. Rev Sci Instrum 85(7):073703

    Article  PubMed  Google Scholar 

  171. Casuso I, Redondo-Morata L, Rico F (2020) Biological physics by high-speed atomic force microscopy. Philos Trans A Math Phys Eng Sci 378(2186):20190604

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kodera N, Ando T (2022) Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Curr Opin Struct Biol 72:260–266

    Article  CAS  PubMed  Google Scholar 

  173. Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J Microsc 212(Pt 2):144–151

    Article  CAS  PubMed  Google Scholar 

  174. Shevchuk AI, Novak P, Taylor M, Diakonov IA, Ziyadeh-Isleem A, Bitoun M, Guicheney P, Lab MJ, Gorelik J, Merrifield CJ, Klenerman D, Korchev YE (2012) An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy. J Cell Biol 197(4):499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhuang J, Jiao Y, Li Z, Lang J, Li F (2018) A continuous control mode with improved imaging rate for scanning ion conductance microscope (SICM). Ultramicroscopy 190:66–76

    Article  CAS  PubMed  Google Scholar 

  176. Zhuang J, Wang Z, Li Z, Liang P, Vincent M (2018) Smart scanning ion-conductance microscopy Imaging technique using horizontal fast scanning method. Microsc Microanal 24(3):264–276

    Article  CAS  PubMed  Google Scholar 

  177. Ida H, Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) High speed scanning ion conductance microscopy for quantitative analysis of nanoscale dynamics of microvilli. Anal Chem 89(11):6015–6020

    Article  CAS  PubMed  Google Scholar 

  178. Jung GE, Noh H, Shin YK, Kahng SJ, Baik KY, Kim HB, Cho NJ, Cho SJ (2015) Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications. Nanoscale 7(25):10989–10997

    Article  CAS  PubMed  Google Scholar 

  179. Watanabe S, Ando T (2017) High-speed XYZ-nanopositioner for scanning ion conductance microscopy. Appl Phys Lett 111(11):113106

    Article  Google Scholar 

  180. Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T (2019) Development of high-speed ion conductance microscopy. Rev Sci Instrum 90(12):123704

    Article  PubMed  Google Scholar 

  181. Leitao SM, Drake B, Pinjusic K, Pierrat X, Navikas V, Nievergelt AP, Brillard C, Djekic D, Radenovic A, Persat A (2021) Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics. ACS Nano 15(11):17613–17622

    Article  CAS  PubMed Central  Google Scholar 

  182. Seifert J, Rheinlaender J, Lang F, Gawaz M, Schäffer TE (2017) Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep 7:4810

    Article  PubMed  PubMed Central  Google Scholar 

  183. Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12(104):20140970

    Article  PubMed  PubMed Central  Google Scholar 

  184. Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and cells. Cold Spring Harb Perspect Biol 9(11):a022038

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sanyour HJ, Li N, Rickel AP, Childs JD, Kinser CN, Hong Z (2019) Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells. Cardiovasc Res 115(8):1369–1380

    Article  CAS  PubMed  Google Scholar 

  186. Ketene AN, Roberts PC, Shea AA, Schmelz EM, Agah M (2012) Actin filaments play a primary role for structural integrity and viscoelastic response in cells. Integr Biol (Camb) 4(5):540–549

    Article  CAS  Google Scholar 

  187. Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, Han Y, Burnette DT, Jensen MH, Kasza KE, Moore JR, Mackintosh FC, Fredberg JJ, Mooney DJ, Lippincott-Schwartz J, Weitz DA (2017) Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc Natl Acad Sci U S A 114(41):E8618–E8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Roan E, Wilhelm KR, Waters CM (2015) Kymographic Imaging of the elastic modulus of epithelial cells during the onset of migration. Biophys J 109(10):2051–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schächtele M, Kemmler J, Rheinlaender J, Schäffer TE (2021) Combined high-speed atomic force and optical microscopy shows that viscoelastic properties of melanoma cancer cells change during the cell cycle. Adv Mater Technol:2101000

    Google Scholar 

  190. Taubenberger AV, Baum B, Matthews HK (2020) The mechanics of mitotic cell rounding. Front Cell Dev Biol 8:687

    Article  PubMed  PubMed Central  Google Scholar 

  191. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    Article  PubMed  PubMed Central  Google Scholar 

  192. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  CAS  PubMed  Google Scholar 

  193. Quan FS, Kim KS (2016) Medical applications of the intrinsic mechanical properties of single cells. Acta Biochim Biophys Sin Shanghai 48(10):865–871

    Article  CAS  PubMed  Google Scholar 

  194. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765

    Article  CAS  PubMed  Google Scholar 

  195. Ozkan AD, Topal AE, Dana A, Guler MO, Tekinay AB (2016) Atomic force microscopy for the investigation of molecular and cellular behavior. Micron 89:60–76

    Article  CAS  PubMed  Google Scholar 

  196. Wu PH, Aroush DR, Asnacios A, Chen WC, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh YC, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15(7):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63(4):1165–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4(2):106–113

    Article  CAS  Google Scholar 

  199. Radmacher M, Tillmann RW, Gaub HE (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64(3):735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1-6):1–152

    Article  CAS  Google Scholar 

  201. Heredia A, Bui CC, Suter U, Young P, Schäffer TE (2007) AFM combines functional and morphological analysis of peripheral myelinated and demyelinated nerve fibers. Neuroimage 37(4):1218–1226

    Article  PubMed  Google Scholar 

  202. Kasas S, Stupar P, Dietler G (2018) AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 73:177–187

    Article  CAS  PubMed  Google Scholar 

  203. Schillers H (2019) Measuring the elastic properties of living cells. Springer, New York, pp 291–313

    Google Scholar 

  204. Liang W, Shi H, Yang X, Wang J, Yang W, Zhang H, Liu L (2020) Recent advances in AFM-based biological characterization and applications at multiple levels. Soft Matter 16(39):8962–8984

    Article  CAS  Google Scholar 

  205. Hertz H (1882) Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik (Crelles Journal) 1882(92):156–171

    Article  Google Scholar 

  206. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  Google Scholar 

  207. Kilpatrick JI, Revenko I, Rodriguez BJ (2015) Nanomechanics of cells and biomaterials studied by atomic force microscopy. Adv Healthc Mater 4(16):2456–2474

    Article  CAS  PubMed  Google Scholar 

  208. Targosz-Korecka M, Malek-Zietek KE, Brzezinka GD, Jaglarz M (2016) Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes. Scanning 38(6):654–664

    Article  CAS  PubMed  Google Scholar 

  209. Cook SM, Schäffer TE, Chynoweth KM, Wigton M, Simmonds RW, Lang KM (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17(9):2135–2145

    Article  CAS  Google Scholar 

  210. Zemla J, Bobrowska J, Kubiak A, Zielinski T, Pabijan J, Pogoda K, Bobrowski P, Lekka M (2020) Indenting soft samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip. Eur Biophys J 49(6):485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sanchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Anand P, Gorelik J, Frolenkov GI, Benham C, Lab M, Ostanin VP, Schäffer TE, Klenerman D, Korchev YE (2008) Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys J 95(6):3017–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pellegrino M, Orsini P, Pellegrini M, Baschieri P, Dinelli F, Petracchi D, Tognoni E, Ascoli C (2011) Weak hydrostatic forces in far-scanning ion conductance microscopy used to guide neuronal growth cones. Neurosci Res 69(3):234–240

    Article  PubMed  Google Scholar 

  213. Pellegrino M, Orsini P, De Gregorio F (2009) Use of scanning ion conductance microscopy to guide and redirect neuronal growth cones. Neurosci Res 64(3):290–296

    Article  PubMed  Google Scholar 

  214. Pellegrino M, Orsini P, Pellegrini M, Baschieri P, Dinelli F, Petracchi D, Tognoni E, Ascoli C (2012) Integrated SICM-AFM-optical microscope to measure forces due to hydrostatic pressure applied to a pipette. Micro Nano Lett 7(4):317–320

    Article  Google Scholar 

  215. Pellegrino M, Pellegrini M, Orsini P, Tognoni E, Ascoli C, Baschieri P, Dinelli F (2012) Measuring the elastic properties of living cells through the analysis of current-displacement curves in scanning ion conductance microscopy. Pflugers Arch 464(3):307–316

    Article  CAS  PubMed  Google Scholar 

  216. Baumann J, Sachs L, Otto O, Schoen I, Nestler P, Zaninetti C, Kenny M, Kranz R, von Eysmondt H, Rodriguez J, Schäffer TE, Nagy Z, Greinacher A, Palankar R, Bender M (2022) Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease. Sci Adv 8(20):eabn2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Rheinlaender J, Wirbel H, Schäffer TE (2021) Spatial correlation of cell stiffness and traction forces in cancer cells measured with combined SICM and TFM. RSC Adv 11:13951–13956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Rheinlaender J, Schäffer TE (2020) The effect of finite sample thickness in scanning ion conductance microscopy stiffness measurements. Appl Phys Lett 117(11):113701

    Article  CAS  Google Scholar 

  219. Clarke RW, Novak P, Zhukov A, Tyler EJ, Cano-Jaimez M, Drews A, Richards O, Volynski K, Bishop C, Klenerman D (2016) Low stress ion conductance microscopy of sub-cellular stiffness. Soft Matter 12(38):7953–7958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kolmogorov VS, Erofeev AS, Woodcock E, Efremov YM, Iakovlev AP, Savin NA, Alova AV, Lavrushkina SV, Kireev II AO, Prelovskaya EV, Sviderskaya D, Scaini NL, Klyachko PS, Timashev Y, Takahashi SV, Salikhov YN, Parkhomenko AG, Majouga CRW, Edwards P, Novak YEK, Gorelkin PV (2021) Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette-sample force interactions. Nanoscale 13(13):6558–6568

    Article  CAS  PubMed  Google Scholar 

  221. Loftus JC, Choate J, Albrecht RM (1984) Platelet activation and cytoskeletal reorganization: high voltage electron microscopic examination of intact and triton-extracted whole mounts. J Cell Biol 98(6):2019–2025

    Article  CAS  PubMed  Google Scholar 

  222. Shin EK, Park H, Noh JY, Lim KM, Chung JH (2017) Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol Ther (Seoul) 25(3):223–230

    Article  CAS  Google Scholar 

  223. Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A (2002) Platelet shape changes and adhesion under high shear flow. Arterioscler Thromb Vasc Biol 22(2):329–334

    Article  CAS  PubMed  Google Scholar 

  224. Lee D, Fong KP, King MR, Brass LF, Hammer DA (2012) Differential dynamics of platelet contact and spreading. Biophys J 102(3):472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Watson SP (2009) Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des 15(12):1358–1372

    Article  CAS  PubMed  Google Scholar 

  226. Harmon JT, Jamieson GA (1986) Platelet activation by alpha-thrombin is a receptor-mediated event. Ann N Y Acad Sci 485(1):387–395

    Article  CAS  PubMed  Google Scholar 

  227. Casella JF, Flanagan MD, Lin S (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293(5830):302–305

    Article  CAS  PubMed  Google Scholar 

  228. Verdier C (2003) Rheological properties of living materials. From cells to tissues. J Theor Med 5(2):67–91

    Article  Google Scholar 

  229. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mat Res 41(1):75–97

    Article  CAS  Google Scholar 

  230. Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11(1):259–288

    Article  CAS  PubMed  Google Scholar 

  231. Mahaffy R, Shih C, MacKintosh F, Käs J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4):880

    Article  CAS  PubMed  Google Scholar 

  232. Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84(3):2071–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hiratsuka S, Mizutani Y, Toda A, Fukushima N, Kawahara K, Tokumoto H, Okajima T (2009) Power-law stress and creep relaxations of single cells measured by colloidal probe atomic force microscopy. Jpn J Appl Phys 48(8S2):08JB17

    Google Scholar 

  234. Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6(5):371–388

    Article  PubMed  PubMed Central  Google Scholar 

  235. Efremov YM, Okajima T, Raman A (2020) Measuring viscoelasticity of soft biological samples using atomic force microscopy. Soft Matter 16(1):64–81

    Article  CAS  PubMed  Google Scholar 

  236. Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE (2015) Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter 11(23):4584–4591

    Article  CAS  PubMed  Google Scholar 

  237. Schierbaum N, Rheinlaender J, Schäffer TE (2017) Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells. Acta Biomater 55:239–248

    Article  CAS  PubMed  Google Scholar 

  238. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102

    Article  CAS  PubMed  Google Scholar 

  239. Cai P, Mizutani Y, Tsuchiya M, Maloney JM, Fabry B, Van Vliet KJ, Okajima T (2013) Quantifying cell-to-cell variation in power-law rheology. Biophys J 105(5):1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Geiger B (1979) A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18(1):193–205

    Article  CAS  PubMed  Google Scholar 

  241. Burridge K, Feramisco JR (1980) Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19(3):587–595

    Article  CAS  PubMed  Google Scholar 

  242. Schierbaum N, Rheinlaender J, Schäffer TE (2019) Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Soft Matter 15:1721–1729

    Article  CAS  PubMed  Google Scholar 

  243. Moreno-Flores S, Benitez R, Vivanco MD, Toca-Herrera JL (2010) Stress relaxation microscopy: imaging local stress in cells. J Biomech 43(2):349–354

    Article  PubMed  Google Scholar 

  244. Takahashi R, Okajima T (2015) Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy. Appl Phys Lett 107(17):173702

    Article  Google Scholar 

  245. Schächtele M, Hänel E, Schäffer TE (2018) Resonance compensating chirp mode for mapping the rheology of live cells by high-speed atomic force microscopy. Appl Phys Lett 113:093701

    Article  Google Scholar 

  246. Efremov YM, Cartagena-Rivera AX, Athamneh AIM, Suter DM, Raman A (2018) Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nat Protoc 13(10):2200–2216

    Article  CAS  PubMed  Google Scholar 

  247. Liu X, Li Y, Zhu H, Zhao Z, Zhou Y, Zaske AM, Liu L, Li M, Lu H, Liu W, Dong JF, Zhang J, Zhang Y (2015) Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets 26(5):480–485

    Article  CAS  PubMed  Google Scholar 

  248. Seifert J, Rheinlaender J, von Eysmondt H, Schäffer TE (2022) Mechanics of migrating platelets investigated with scanning ion conductance microscopy. Nanoscale 14:8192–8199

    Article  CAS  PubMed  Google Scholar 

  249. Barnard H, Drake B, Randall C, Hansma PK (2013) Deep atomic force microscopy. Rev Sci Instrum 84(12):123701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Drake B, Randall C, Bridges D, Hansma PK (2014) A new ion sensing deep atomic force microscope. Rev Sci Instrum 85(8):083706

    Article  PubMed  PubMed Central  Google Scholar 

  251. Meister A, Gabi M, Behr P, Studer P, Voros J, Niedermann P, Bitterli J, Polesel-Maris J, Liley M, Heinzelmann H, Zambelli T (2009) FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9(6):2501–2507

    Article  CAS  PubMed  Google Scholar 

  252. Dorwling-Carter L, Aramesh M, Forro C, Tiefenauer RF, Shorubalko I, Voros J, Zambelli T (2018) Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: effect of the aperture edge on the ion current images. J Appl Phys 124(17):174902

    Article  Google Scholar 

  253. Ossola D, Amarouch M-Y, Behr P, Vörös JN, Abriel H, Zambelli T (2015) Force-controlled patch clamp of beating cardiac cells. Nano Lett 15(3):1743–1750

    Article  CAS  PubMed  Google Scholar 

  254. Li M, Liu LQ, Zambelli T (2022) FluidFM for single-cell biophysics. Nano Res 15(2):773–786

    Article  CAS  Google Scholar 

  255. Alesutan I, Seifert J, Pakladok T, Rheinlaender J, Lebedeva A, Towhid ST, Stournaras C, Voelkl J, Schäffer TE, Lang F (2013) Chorein sensitivity of actin polymerization, cell shape and mechanical stiffness of vascular endothelial cells. Cell Physiol Biochem 32(3):728–742

    Article  CAS  PubMed  Google Scholar 

  256. Mizutani Y, Choi M-H, Cho S-J, Okajima T (2013) Nanoscale fluctuations on epithelial cell surfaces investigated by scanning ion conductance microscopy. Appl Phys Lett 102(17):173703

    Article  Google Scholar 

  257. Kim SO, Kim J, Okajima T, Cho NJ (2017) Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. Nano Converg 4(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang K, Zhou L, Li J, Liu W, Wei Y, Guo Z, Fan C, Hu J, Li B, Wang L (2020) Label-free and three-dimensional visualization reveals the dynamics of plasma membrane-derived extracellular vesicles. Nano Lett 20(9):6313–6319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman E. Schäffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Eysmondt, H., Schäffer, T.E. (2022). Scanning Ion Conductance Microscopy and Atomic Force Microscopy: A Comparison of Strengths and Limitations for Biological Investigations. In: Schäffer, T.E. (eds) Scanning Ion Conductance Microscopy. Bioanalytical Reviews, vol 3. Springer, Cham. https://doi.org/10.1007/11663_2022_15

Download citation

Publish with us

Policies and ethics