Skip to main content

Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Abstract

Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]c :

Cytosolic Ca2+ concentration

AC:

Adenylyl cyclase

ACBD3:

Acyl CoA binding domain protein-3

AKAP:

A-kinase anchoring protein

ARC:

Arachidonic acid-regulated Ca2+

CAD:

CRAC activation domain

CaM:

Calmodulin

CaMK:

Calmodulin-dependent kinase

CaN:

Calcineurin

CAP1:

Adenylyl cyclase-associated protein 1

CC:

Coiled-coil domain

CDI:

Ca2+-dependent inactivation

CRAC:

Ca2+ release-activated Ca2+

CTPD:

C-terminal polybasic domain

DRG:

Dorsal root ganglion

Epac:

Exchange factor directly activated by cAMP

ER:

Endoplasmic reticulum

FCDI:

Fast Ca2+-dependent inactivation

FRET:

Förster resonance energy transfer

GRK:

G-protein coupled receptor kinase

I CRAC :

Ca2+ released-activated Ca2+ current

IP3:

Inositol 1,4,5-trisphosphate

I SOC :

Store-operated Ca2+ currents

NCX:

Na+-Ca2+ exchanger

NFAT:

Nuclear factor of activated T-cells

OASF:

ORAI1-activating small fragment

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PKA:

cAMP-dependent protein kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

PM:

Plasma membrane

PMCA:

Plasma membrane Ca2+ ATPase

PTH:

Parathyroid hormone

RGS:

Regulator of G protein signaling

SAM :

Sterile alpha motif

SCDI:

Slow Ca2+-dependent inactivation

SERCA:

Sarco/endoplasmic reticulum Ca2+ ATPase

SOAR:

STIM1 Orai-activating region

SOC:

Store-operated channels

SOCE:

Store-operated Ca2+ entry

STIM1:

Stromal interaction molecule 1

TRP:

Transient receptor potential channels

TRPC:

Transient receptor potential-canonical

References

  • Akin BL, Hurley TD, Chen Z, Jones LR (2013) The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J Biol Chem 288(42):30181–30191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albarran L, Berna-Erro A, Dionisio N, Redondo PC, Lopez E, Lopez JJ, Salido GM, Brull Sabate JM, Rosado JA (2014) TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. Biochim Biophys Acta 1843(4):789–796

    CAS  PubMed  Google Scholar 

  • Albarran L, Lopez JJ, Ben Amor N, Martín-Cano FE, Berna-Erro A, Smani T, Salido GM, Rosado JA (2016a) Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Sci Rep 6:24452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albarran L, Lopez JJ, Salido GM, Rosado JA (2016b) Historical overview of store-operated Ca(2+) entry. Adv Exp Med Biol 898:3–24

    CAS  PubMed  Google Scholar 

  • Ambudkar IS, de Souza LB, Ong HL (2017) TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 63:33–39

    CAS  PubMed  Google Scholar 

  • Antoni FA, Palkovits M, Simpson J, Smith SM, Leitch AL, Rosie R, Fink G, Paterson JM (1998) Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J Neurosci 18(23):9650–9661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Averaimo S, Assali A, Ros O, Couvet S, Zagar Y, Genescu I, Rebsam A, Nicol X (2016) A plasma membrane microdomain compartmentalizes ephrin-generated cAMP signals to prune developing retinal axon arbors. Nat Commun 7:12896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Axelband F, Dias J, Miranda F, Ferrao FM, Reis RI, Costa-Neto CM, Lara LS, Vieyra A (2012) Angiotensin-(3-4) counteracts the angiotensin II inhibitory action on renal Ca2+-ATPase through a cAMP/PKA pathway. Regul Pept 177(1–3):27–34

    CAS  PubMed  Google Scholar 

  • Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JI (2007) Differential regulation of the apical plasma membrane Ca(2+) -ATPase by protein kinase A in parotid acinar cells. J Biol Chem 282(52):37678–37693

    CAS  PubMed  Google Scholar 

  • Baldwin TA, Dessauer CW (2018) Function of adenylyl cyclase in heart: the AKAP connection. J Cardiovasc Dev Dis 5(1)

    Google Scholar 

  • Baldwin TA, Li Y, Brand CS, Watts VJ, Dessauer CW (2019) Insights into the regulatory properties of human adenylyl cyclase type 9. Mol Pharmacol 95(4):349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler J, Schultz JE, Lupas AN (2018) Adenylate cyclases: receivers, transducers, and generators of signals. Cell Signal 46:135–144

    CAS  PubMed  Google Scholar 

  • Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK, Wong W, Hoshi N, Langeberg LK, Cooper DM, Dessauer CW, Scott JD (2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell 23(6):925–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayewitch ML, Avidor-Reiss T, Levy R, Pfeuffer T, Nevo I, Simonds WF, Vogel Z (1998) Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits. FASEB J 12(11):1019–1025

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    CAS  PubMed  Google Scholar 

  • Betzenhauser MJ, Yule DI (2010) Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. Curr Top Membr 66:273–298

    CAS  PubMed  Google Scholar 

  • Bhardwaj R, Augustynek BS, Ercan-Herbst E, Kandasamy P, Seedorf M, Peinelt C, Hediger MA (2020) Ca(2+)/Calmodulin binding to STIM1 hydrophobic residues facilitates slow Ca(2+)-dependent inactivation of the Orai1 channel. Cell Physiol Biochem 54(2):252–270

    CAS  PubMed  Google Scholar 

  • Bogard AS, Adris P, Ostrom RS (2012) Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle. J Pharmacol Exp Ther 342(2):586–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogard AS, Birg AV, Ostrom RS (2014) Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms. Naunyn Schmiedeberg’s Arch Pharmacol 387(4):329–339

    CAS  Google Scholar 

  • Bol GF, Hulster A, Pfeuffer T (1997) Adenylyl cyclase type II is stimulated by PKC via C-terminal phosphorylation. Biochim Biophys Acta 1358(3):307–313

    CAS  PubMed  Google Scholar 

  • Bouron A, Chauvet S, Dryer S, Rosado JA (2016) Second messenger-operated calcium entry through TRPC6. Adv Exp Med Biol 898:201–249

    CAS  PubMed  Google Scholar 

  • Boutin B, Tajeddine N, Monaco G, Molgo J, Vertommen D, Rider M, Parys JB, Bultynck G, Gailly P (2015) Endoplasmic reticulum Ca(2+) content decrease by PKA-dependent hyperphosphorylation of type 1 IP3 receptor contributes to prostate cancer cell resistance to androgen deprivation. Cell Calcium 57(4):312–320

    CAS  PubMed  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broertjes J, Klarenbeek J, Habani Y, Langeslag M, Jalink K (2019) TRPM7 residue S1269 mediates cAMP dependence of Ca2+ influx. PLoS One 14(1):e0209563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DA, Yule DI (2010) Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus. Biochim Biophys Acta 1803(2):275–287

    CAS  PubMed  Google Scholar 

  • Bruce JI, Yule DI, Shuttleworth TJ (2002) Ca2+-dependent protein kinase--a modulation of the plasma membrane Ca2+-ATPase in parotid acinar cells. J Biol Chem 277(50):48172–48181

    CAS  PubMed  Google Scholar 

  • Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 96(1):79–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunemann M, Gerhardstein BL, Gao T, Hosey MM (1999) Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J Biol Chem 274(48):33851–33854

    CAS  PubMed  Google Scholar 

  • Burgess GM, Bird GS, Obie JF, Putney JW Jr (1991) The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem 266(8):4772–4781

    CAS  PubMed  Google Scholar 

  • Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J (1994) Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 269(16):12190–12195

    CAS  PubMed  Google Scholar 

  • Calloway N, Vig M, Kinet JP, Holowka D, Baird B (2009) Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 20(1):389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calloway N, Holowka D, Baird B (2010) A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 49(6):1067–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calloway N, Owens T, Corwith K, Rodgers W, Holowka D, Baird B (2011) Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P(2) between distinct membrane pools. J Cell Sci 124(Pt 15):2602–2610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantero Mdel R, Velazquez IF, Streets AJ, Ong AC, Cantiello HF (2015) The cAMP signaling pathway and direct protein kinase A phosphorylation regulate Polycystin-2 (TRPP2) channel function. J Biol Chem 290(39):23888–23896

    PubMed  Google Scholar 

  • Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P (2017) cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C activity. J Immunol 198(3):1285–1296

    CAS  PubMed  Google Scholar 

  • Chase A, Orchard CH (2011) Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. J Mol Cell Cardiol 50(1):187–193

    CAS  PubMed  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628

    CAS  PubMed  Google Scholar 

  • Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108(37):15225–15230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Levin LR, Buck J (2012) Role of soluble adenylyl cyclase in the heart. Am J Physiol Heart Circ Physiol 302(3):H538–H543

    CAS  PubMed  Google Scholar 

  • Chen J, Wu F, Shi Y, Yang D, Xu M, Lai Y, Liu Y (2019) Identification of key candidate genes involved in melanoma metastasis. Mol Med Rep 20(2):903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol 9(3):e1001025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen-Goodspeed M, Lukan AN, Dessauer CW (2005) Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase. J Biol Chem 280(3):1808–1816

    CAS  PubMed  Google Scholar 

  • Choi EJ, Xia Z, Storm DR (1992) Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31(28):6492–6498. https://doi.org/10.1021/bi00143a019

    Article  CAS  PubMed  Google Scholar 

  • Chow YW, Wang HL (1998) Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase. J Neurochem 70(6):2606–2612

    CAS  PubMed  Google Scholar 

  • Cooper DM (2015) Store-operated Ca(2)(+)-entry and adenylyl cyclase. Cell Calcium 58(4):368–375

    CAS  PubMed  Google Scholar 

  • Cooper DM, Tabbasum VG (2014) Adenylate cyclase-centred microdomains. Biochem J 462(2):199–213

    CAS  PubMed  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374(6521):421–424

    CAS  PubMed  Google Scholar 

  • Cosson MV, Hiis HG, Moltzau LR, Levy FO, Krobert KA (2019) Knockout of adenylyl cyclase isoform 5 or 6 differentially modifies the beta1-adrenoceptor-mediated inotropic response. J Mol Cell Cardiol 131:132–145

    CAS  PubMed  Google Scholar 

  • Crossthwaite AJ, Seebacher T, Masada N, Ciruela A, Dufraux K, Schultz JE, Cooper DM (2005) The cytosolic domains of Ca2+-sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts. J Biol Chem 280(8):6380–6391

    CAS  PubMed  Google Scholar 

  • Cuinas A, Garcia-Morales V, Vina D, Gil-Longo J, Campos-Toimil M (2016) Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 155:102–109

    CAS  PubMed  Google Scholar 

  • Cumbay MG, Watts VJ (2004) Novel regulatory properties of human type 9 adenylate cyclase. J Pharmacol Exp Ther 310(1):108–115

    CAS  PubMed  Google Scholar 

  • Cumbay MG, Watts VJ (2005) Galphaq potentiation of adenylate cyclase type 9 activity through a Ca2+/calmodulin-dependent pathway. Biochem Pharmacol 69(8):1247–1256

    CAS  PubMed  Google Scholar 

  • Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J Cell Biol 194(2):335–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, Braha O, Braun M, Ramracheya R, Amisten S, Habib AM, Moritoh Y, Zhang E, Reimann F, Rosengren A, Shibasaki T, Gribble F, Renstrom E, Seino S, Eliasson L, Rorsman P (2010) GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab 11(6):543–553

    PubMed  PubMed Central  Google Scholar 

  • Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 279(3):F400–F416

    CAS  PubMed  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282(24):17548–17556

    CAS  PubMed  Google Scholar 

  • Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M (2015) Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8(387):ra74

    PubMed  PubMed Central  Google Scholar 

  • Dessauer CW (2009) Adenylyl cyclase--A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessauer CW, Gilman AG (1997) The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 272(44):27787–27795

    CAS  PubMed  Google Scholar 

  • Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG (1998) Identification of a Gialpha binding site on type V adenylyl cyclase. J Biol Chem 273(40):25831–25839

    CAS  PubMed  Google Scholar 

  • Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R (2017) International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol Rev 69(2):93–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diel S, Klass K, Wittig B, Kleuss C (2006) Gbetagamma activation site in adenylyl cyclase type II. Adenylyl cyclase type III is inhibited by Gbetagamma. J Biol Chem 281(1):288–294

    CAS  PubMed  Google Scholar 

  • Diez-Bello R, Jardin I, Salido GM, Rosado JA (2017) Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta 1864(6):1064–1070

    CAS  Google Scholar 

  • Dionisio N, Galan C, Jardin I, Salido GM, Rosado JA (2011) Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochim Biophys Acta 1813(3):431–437

    CAS  PubMed  Google Scholar 

  • Dionisio N, Smani T, Woodard GE, Castellano A, Salido GM, Rosado JA (2015) Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. Biochim Biophys Acta 1853(5):1145–1153

    CAS  PubMed  Google Scholar 

  • Doyle TB, Muntean BS, Ejendal KF, Hayes MP, Soto-Velasquez M, Martemyanov KA, Dessauer CW, Hu CD, Watts VJ (2019) Identification of novel adenylyl Cyclase 5 (AC5) signaling networks in D1 and D2 medium spiny neurons using bimolecular fluorescence complementation screening. Cell 8(11)

    Google Scholar 

  • Duan B, Davis R, Sadat EL, Collins J, Sternweis PC, Yuan D, Jiang LI (2010) Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. J Immunol 185(1):335–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois C, Vanden Abeele F, Lehen'kyi V, Gkika D, Guarmit B, Lepage G, Slomianny C, Borowiec AS, Bidaux G, Benahmed M, Shuba Y, Prevarskaya N (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26(1):19–32

    CAS  PubMed  Google Scholar 

  • Duerr EM, Mizukami Y, Ng A, Xavier RJ, Kikuchi H, Deshpande V, Warshaw AL, Glickman J, Kulke MH, Chung DC (2008) Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr Relat Cancer 15(1):243–256

    CAS  PubMed  Google Scholar 

  • Dunn TA, Storm DR, Feller MB (2009) Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLoS One 4(11):e7877

    PubMed  PubMed Central  Google Scholar 

  • Dutta K, Carmody MW, Cala SE, Davidoff AJ (2002) Depressed PKA activity contributes to impaired SERCA function and is linked to the pathogenesis of glucose-induced cardiomyopathy. J Mol Cell Cardiol 34(8):985–996

    CAS  PubMed  Google Scholar 

  • Efendiev R, Samelson BK, Nguyen BT, Phatarpekar PV, Baameur F, Scott JD, Dessauer CW (2010) AKAP79 interacts with multiple adenylyl cyclase (AC) isoforms and scaffolds AC5 and -6 to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors. J Biol Chem 285(19):14450–14458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH, Gringhuis M, Minett MS, Hong GS, Lee E, Oh U, Ishikawa Y, Zwartkuis FJ, Cox JJ, Wood JN (2013) A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 4:1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everett KL, Cooper DM (2013) An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels. PLoS One 8(9):e75942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagan KA, Mahey R, Cooper DM (1996) Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem 271(21):12438–12444

    CAS  PubMed  Google Scholar 

  • Fagan KA, Graf RA, Tolman S, Schaack J, Cooper DM (2000) Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem 275(51):40187–40194

    CAS  PubMed  Google Scholar 

  • Fan Y, Mu J, Huang M, Imani S, Wang Y, Lin S, Fan J, Wen Q (2019) Epigenetic identification of ADCY4 as a biomarker for breast cancer: an integrated analysis of adenylate cyclases. Epigenomics 11(14):1561–1579

    CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    CAS  PubMed  Google Scholar 

  • Fierro L, Parekh AB (1999) Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol 168(1):9–17

    CAS  PubMed  Google Scholar 

  • Flacke JP, Flacke H, Appukuttan A, Palisaar RJ, Noldus J, Robinson BD, Reusch HP, Zippin JH, Ladilov Y (2013) Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J Biol Chem 288(5):3126–3135

    CAS  PubMed  Google Scholar 

  • Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci U S A 100(10):5813–5818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima M, Tomita T, Janoshazi A, Putney JW (2012) Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. J Cell Sci 125(Pt 18):4354–4361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamper N, Rohacs T (2012) Phosphoinositide sensitivity of ion channels, a functional perspective. Subcell Biochem 59:289–333

    CAS  PubMed  Google Scholar 

  • Gao BN, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci U S A 88(22):10178–10182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J, Zhao Q, Zhang T, Xiao B (2017) In touch with the mechanosensitive piezo channels: structure, ion permeation, and mechanotransduction. Curr Top Membr 79:159–195

    CAS  PubMed  Google Scholar 

  • Gomes P, Soares-da-Silva P (2002) Role of cAMP-PKA-PLC signaling cascade on dopamine-induced PKC-mediated inhibition of renal Na(+)-K(+)-ATPase activity. Am J Physiol Renal Physiol 282(6):F1084–F1096

    CAS  PubMed  Google Scholar 

  • Gramajo-Buhler MC, Zelarayan L, Sanchez-Toranzo G (2016) Involvement of protein cAMP-dependent kinase, phospholipase A2 and phospholipase C in sperm acrosome reaction of Chinchilla lanigera. Reprod Domest Anim 51(1):150–157

    CAS  PubMed  Google Scholar 

  • Gu C, Cooper DM (1999) Calmodulin-binding sites on adenylyl cyclase type VIII. J Biol Chem 274(12):8012–8021

    CAS  PubMed  Google Scholar 

  • Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG (2014) STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun 5:5164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gudlur A, Zeraik AE, Hirve N, Rajanikanth V, Bobkov AA, Ma G, Zheng S, Wang Y, Zhou Y, Komives EA, Hogan PG (2018) Calcium sensing by the STIM1 ER-luminal domain. Nat Commun 9(1):4536

    PubMed  PubMed Central  Google Scholar 

  • Guillou JL, Nakata H, Cooper DM (1999) Inhibition by calcium of mammalian adenylyl cyclases. J Biol Chem 274(50):35539–35545

    CAS  PubMed  Google Scholar 

  • Hacker BM, Tomlinson JE, Wayman GA, Sultana R, Chan G, Villacres E, Disteche C, Storm DR (1998) Cloning, chromosomal mapping, and regulatory properties of the human type 9 adenylyl cyclase (ADCY9). Genomics 50(1):97–104

    CAS  PubMed  Google Scholar 

  • Halls ML, Cooper DM (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3(1):a004143

    PubMed  PubMed Central  Google Scholar 

  • Han JZ, Lin W, Chen YZ (2005) Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A. Acta Pharmacol Sin 26(2):199–204

    PubMed  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    CAS  PubMed  Google Scholar 

  • Hasan R, Zhou GL (2019) The cytoskeletal protein cyclase-associated protein 1 (CAP1) in breast cancer: context-dependent roles in both the invasiveness and proliferation of cancer cells and underlying cell signals. Int J Mol Sci 20(11)

    Google Scholar 

  • Haslauer M, Baltensperger K, Porzig H (1998) Thrombin and phorbol esters potentiate Gs-mediated cAMP formation in intact human erythroid progenitors via two synergistic signaling pathways converging on adenylyl cyclase type VII. Mol Pharmacol 53(5):837–845

    CAS  PubMed  Google Scholar 

  • He RQ, Li XJ, Liang L, Xie Y, Luo DZ, Ma J, Peng ZG, Hu XH, Chen G (2017) The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model. BMC Cancer 17(1):655

    PubMed  PubMed Central  Google Scholar 

  • Heemskerk JW, Feijge MA, Sage SO, Walter U (1994) Indirect regulation of Ca2+ entry by cAMP-dependent and cGMP-dependent protein kinases and phospholipase C in rat platelets. Eur J Biochem 223(2):543–551

    CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    CAS  PubMed  Google Scholar 

  • Hofmann F, Flockerzi V, Kahl S, Wegener JW (2014) L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 94(1):303–326

    CAS  PubMed  Google Scholar 

  • Holz GG, Leech CA, Chepurny OG (2014) New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice. Biochim Biophys Acta 1842(12 Pt B):2593–2600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzmann C, Kilch T, Kappel S, Armbruster A, Jung V, Stockle M, Bogeski I, Schwarz EC, Peinelt C (2013) ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget 4(11):2096–2107

    PubMed  PubMed Central  Google Scholar 

  • Hong SH, Goh SH, Lee SJ, Hwang JA, Lee J, Choi IJ, Seo H, Park JH, Suzuki H, Yamamoto E, Kim IH, Jeong JS, Ju MH, Lee DH, Lee YS (2013) Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway. Oncotarget 4(10):1791–1803

    PubMed  PubMed Central  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    CAS  PubMed  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Burstein SR, Long SB (2018) Structures reveal opening of the store-operated calcium channel Orai. Elife 7

    Google Scholar 

  • Hua Y, Ma X, Liu X, Yuan X, Qin H, Zhang X (2017) Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS 125(2):93–100

    CAS  PubMed  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    CAS  PubMed  Google Scholar 

  • Huang J, Zhou H, Mahavadi S, Sriwai W, Murthy KS (2007) Inhibition of Galphaq-dependent PLC-beta1 activity by PKG and PKA is mediated by phosphorylation of RGS4 and GRK2. Am J Physiol Cell Physiol 292(1):C200–C208

    CAS  PubMed  Google Scholar 

  • Inserte J, Hernando V, Ruiz-Meana M, Poncelas-Nozal M, Fernandez C, Agullo L, Sartorio C, Vilardosa U, Garcia-Dorado D (2014) Delayed phospholamban phosphorylation in post-conditioned heart favours Ca2+ normalization and contributes to protection. Cardiovasc Res 103(4):542–553

    CAS  PubMed  Google Scholar 

  • Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekstrom TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci U S A 95(11):6145–6150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobowitz O, Chen J, Premont RT, Iyengar R (1993) Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem 268(6):3829–3832

    CAS  PubMed  Google Scholar 

  • Jaiswal BS, Conti M (2003) Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. Proc Natl Acad Sci U S A 100(19):10676–10681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jardin I, Lopez JJ, Salido GM, Rosado JA (2008a) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304

    CAS  PubMed  Google Scholar 

  • Jardin I, Redondo PC, Salido GM, Rosado JA (2008b) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783(1):84–97

    CAS  PubMed  Google Scholar 

  • Jardin I, Albarran L, Salido GM, Lopez JJ, Sage SO, Rosado JA (2018a) Fine-tuning of store-operated calcium entry by fast and slow Ca(2+)-dependent inactivation: involvement of SARAF. Biochim Biophys Acta Mol Cell Res 1865(3):463–469

    CAS  PubMed  Google Scholar 

  • Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, Rosado JA (2018b) TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of Orai1 and Orai3 surface exposure. Cancers (Basel) 10(9):331

    Google Scholar 

  • Jardin I, Lopez JJ, Salido GM, Rosado JA (2018c) Store-operated Ca(2+) entry in breast cancer cells: remodeling and functional role. Int J Mol Sci 19(12)

    Google Scholar 

  • Kakurina GV, Kolegova ES, Kondakova IV (2018) Adenylyl cyclase-associated protein 1: structure, regulation, and participation in cellular processes. Biochemistry (Mosc) 83(1):45–53

    CAS  Google Scholar 

  • Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA, Henson E, Efendiev R, Dessauer CW (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284(35):23540–23546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB (2014) Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 24(12):1361–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci U S A 89(18):8774–8778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe J, Iwami G, Ebina T, Ohno S, Katada T, Ueda Y, Homcy CJ, Ishikawa Y (1994) Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269(24):16554–16558

    CAS  PubMed  Google Scholar 

  • Kawabe J, Ebina T, Toya Y, Oka N, Schwencke C, Duzic E, Ishikawa Y (1996) Regulation of type V adenylyl cyclase by PMA-sensitive and -insensitive protein kinase C isoenzymes in intact cells. FEBS Lett 384(3):273–276

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Kretsinger RH (2017) Conformational landscape mapping the difference between N-lobes and C-lobes of calmodulin. J Inorg Biochem 177:55–62

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385(1):49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki T, Ueyama T, Lange I, Feske S, Saito N (2010) Protein kinase C-induced phosphorylation of Orai1 regulates the intracellular Ca2+ level via the store-operated Ca2+ channel. J Biol Chem 285(33):25720–25730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kheirbek MA, Britt JP, Beeler JA, Ishikawa Y, McGehee DS, Zhuang X (2009) Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning. J Neurosci 29(39):12115–12124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH (2006) Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A. J Pharmacol Exp Ther 318(1):230–237

    CAS  PubMed  Google Scholar 

  • Kim JH, Lkhagvadorj S, Lee MR, Hwang KH, Chung HC, Jung JH, Cha SK, Eom M (2014) Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochem Biophys Res Commun 448(1):76–82

    CAS  PubMed  Google Scholar 

  • Kleinboelting S, Diaz A, Moniot S, van den Heuvel J, Weyand M, Levin LR, Buck J, Steegborn C (2014) Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci U S A 111(10):3727–3732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolegova ES, Kakurina GV, Kondakova IV, Dobrodeev AY, Kostromitskii DN, Zhuikova LD (2019) Adenylate cyclase-associated protein 1 and Cofilin in progression of non-small cell lung cancer. Bull Exp Biol Med 167(3):393–395

    CAS  PubMed  Google Scholar 

  • Komal P, Estakhr J, Kamran M, Renda A, Nashmi R (2015) cAMP-dependent protein kinase inhibits alpha7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors. J Physiol 593(16):3513–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konieczny V, Tovey SC, Mataragka S, Prole DL, Taylor CW (2017) Cyclic AMP recruits a discrete intracellular Ca(2+) store by unmasking hypersensitive IP3 receptors. Cell Rep 18(3):711–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korzeniowski MK, Popovic MA, Szentpetery Z, Varnai P, Stojilkovic SS, Balla T (2009) Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinositides. J Biol Chem 284(31):21027–21035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic M, Ludtmann MH, Bading H, Hershfinkel M, Steer E, Chu CT, Abramov AY, Sekler I (2015) PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep 13(2):376–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244(4912):1558–1564

    CAS  PubMed  Google Scholar 

  • Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 284(22):14760–14768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Appukuttan A, Maghnouj A, Hahn S, Peter Reusch H, Ladilov Y (2014) Suppression of soluble adenylyl cyclase protects smooth muscle cells against oxidative stress-induced apoptosis. Apoptosis 19(7):1069–1079

    CAS  PubMed  Google Scholar 

  • Kwan CY, Takemura H, Obie JF, Thastrup O, Putney JW Jr (1990) Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Phys 258(6 Pt 1):C1006–C1015

    CAS  Google Scholar 

  • Lai HL, Yang TH, Messing RO, Ching YH, Lin SC, Chern Y (1997) Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem 272(8):4970–4977

    CAS  PubMed  Google Scholar 

  • Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S, Hofer AM (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11(4):433–442

    CAS  PubMed  Google Scholar 

  • Li W, Zhang M, Xu L, Lin D, Cai S, Zou F (2013) The apoptosis of non-small cell lung cancer induced by cisplatin through modulation of STIM1. Exp Toxicol Pathol 65(7–8):1073–1081

    CAS  PubMed  Google Scholar 

  • Li C, Xie J, Lu Z, Chen C, Yin Y, Zhan R, Fang Y, Hu X, Zhang CC (2015) ADCY7 supports development of acute myeloid leukemia. Biochem Biophys Res Commun 465(1):47–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Baldwin TA, Wang Y, Subramaniam J, Carbajal AG, Brand CS, Cunha SR, Dessauer CW (2017) Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction. Sci Rep 7(1):5522

    PubMed  PubMed Central  Google Scholar 

  • Liauw J, Wu LJ, Zhuo M (2005) Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J Neurophysiol 94(1):878–882

    CAS  PubMed  Google Scholar 

  • Lin FG, Cheng HF, Lee IF, Kao HJ, Loh SH, Lee WH (2001) Downregulation of phospholipase C delta3 by cAMP and calcium. Biochem Biophys Res Commun 286(2):274–280

    CAS  PubMed  Google Scholar 

  • Lin TH, Lai HL, Kao YY, Sun CN, Hwang MJ, Chern Y (2002) Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains. J Biol Chem 277(18):15721–15728

    CAS  PubMed  Google Scholar 

  • Linder JU, Schultz JE (2003) The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 15(12):1081–1089

    CAS  PubMed  Google Scholar 

  • Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17(9):794–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278(18):15922–15926

    CAS  PubMed  Google Scholar 

  • Liu L, Gritz D, Parent CA (2014) PKCbetaII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol Biol Cell 25(9):1446–1457

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Yu HH, Ye HL, Luo ZY, Xiao F (2015) Effects of stromal interacting molecule 1 gene silencing by short hairpin RNA on the biological behavior of human gastric cancer cells. Mol Med Rep 12(2):3047–3054

    CAS  PubMed  Google Scholar 

  • Liu X, Wu G, Yu Y, Chen X, Ji R, Lu J, Li X, Zhang X, Yang X, Shen Y (2019) Molecular understanding of calcium permeation through the open Orai channel. PLoS Biol 17(4):e3000096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Smani T, Rosado JA (2020) TRPC channels in the SOCE scenario. Cell 9(1)

    Google Scholar 

  • Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454(7203):538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Hou X, Li M, Ren H, Fang S, Wang X, He C (2015) Genome-wide methylation profiling reveals new biomarkers for prognosis prediction of glioblastoma. J Cancer Res Ther 11(Suppl 2):C212–C215

    PubMed  Google Scholar 

  • Magro CM, Crowson AN, Desman G, Zippin JH (2012) Soluble adenylyl cyclase antibody profile as a diagnostic adjunct in the assessment of pigmented lesions. Arch Dermatol 148(3):335–344

    PubMed  Google Scholar 

  • Marsden AN, Dessauer CW (2019) Nanometric targeting of type 9 adenylyl cyclase in heart. Biochem Soc Trans 47(6):1749–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AC, Cooper DM (2006) Capacitative and 1-oleyl-2-acetyl-sn-glycerol-activated Ca(2+) entry distinguished using adenylyl cyclase type 8. Mol Pharmacol 70(2):769–777

    CAS  PubMed  Google Scholar 

  • Martin AC, Willoughby D, Ciruela A, Ayling LJ, Pagano M, Wachten S, Tengholm A, Cooper DM (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 75(4):830–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masada N, Ciruela A, Macdougall DA, Cooper DM (2009) Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles. J Biol Chem 284(7):4451–4463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masada N, Schaks S, Jackson SE, Sinz A, Cooper DM (2012) Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 51(40):7917–7929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michailidis IE, Zhang Y, Yang J (2007) The lipid connection-regulation of voltage-gated Ca(2+) channels by phosphoinositides. Pflugers Arch 455(1):147–155

    CAS  PubMed  Google Scholar 

  • Michel LYM, Verkaart S, Latta F, Hoenderop JGJ, Bindels RJM (2017) Differential regulation of the Na(+)-Ca(2+) exchanger 3 (NCX3) by protein kinase PKC and PKA. Cell Calcium 65:52–62

    CAS  PubMed  Google Scholar 

  • Miederer AM, Alansary D, Schwar G, Lee PH, Jung M, Helms V, Niemeyer BA (2015) A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun 6:6899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579(Pt 3):703–715

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 586(1):185–195

    CAS  PubMed  Google Scholar 

  • Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285(25):19173–19183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motiani RK, Tanwar J, Raja DA, Vashisht A, Khanna S, Sharma S, Srivastava S, Sivasubbu S, Natarajan VT, Gokhale RS (2018) STIM1 activation of adenylyl cyclase 6 connects Ca(2+) and cAMP signaling during melanogenesis. EMBO J 37(5)

    Google Scholar 

  • Mou TC, Masada N, Cooper DM, Sprang SR (2009) Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry 48(15):3387–3397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic Homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284(13):8421–8426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins FM, Lewis RS (2016) The inactivation domain of STIM1 is functionally coupled with the Orai1 pore to enable Ca2+-dependent inactivation. J Gen Physiol 147(2):153–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JG, Sanderson JL, Gorski JA, Scott JD, Catterall WA, Sather WA, Dell'Acqua ML (2014) AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep 7(5):1577–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nalli AD, Kumar DP, Al-Shboul O, Mahavadi S, Kuemmerle JF, Grider JR, Murthy KS (2014) Regulation of Gbetagammai-dependent PLC-beta3 activity in smooth muscle: inhibitory phosphorylation of PLC-beta3 by PKA and PKG and stimulatory phosphorylation of Galphai-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 70(2):867–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson EJ, Hellevuo K, Yoshimura M, Tabakoff B (2003) Ethanol-induced phosphorylation and potentiation of the activity of type 7 adenylyl cyclase. Involvement of protein kinase C delta. J Biol Chem 278(7):4552–4560

    CAS  PubMed  Google Scholar 

  • Oliveria SF, Dell'Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55(2):261–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ong HL, de Souza LB, Ambudkar IS (2016) Role of TRPC channels in store-operated calcium entry. Adv Exp Med Biol 898:87–109

    CAS  PubMed  Google Scholar 

  • Onodera Y, Nam JM, Bissell MJ (2014) Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124(1):367–384

    CAS  PubMed  Google Scholar 

  • Ostrom RS, Naugle JE, Hase M, Gregorian C, Swaney JS, Insel PA, Brunton LL, Meszaros JG (2003) Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem 278(27):24461–24468

    CAS  PubMed  Google Scholar 

  • Pagano M, Clynes MA, Masada N, Ciruela A, Ayling LJ, Wachten S, Cooper DM (2009) Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry. Am J Physiol Cell Physiol 296(3):C607–C619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149(2):425–438

    CAS  PubMed  Google Scholar 

  • Palvolgyi A, Simpson J, Bodnar I, Biro J, Palkovits M, Radovits T, Skehel P, Antoni FA (2018) Auto-inhibition of adenylyl cyclase 9 (AC9) by an isoform-specific motif in the carboxyl-terminal region. Cell Signal 51:266–275

    CAS  PubMed  Google Scholar 

  • Parekh AB (1998) Slow feedback inhibition of calcium release-activated calcium current by calcium entry. J Biol Chem 273(24):14925–14932

    CAS  PubMed  Google Scholar 

  • Parekh AB (2017) Regulation of CRAC channels by Ca(2+)-dependent inactivation. Cell Calcium 63:20–23

    CAS  PubMed  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker T, Wang KW, Manning D, Dart C (2019) Soluble adenylyl cyclase links Ca(2+) entry to Ca(2+)/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Sci Rep 9(1):7317

    PubMed  PubMed Central  Google Scholar 

  • Patel TB, Du Z, Pierre S, Cartin L, Scholich K (2001) Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269(1–2):13–25

    CAS  PubMed  Google Scholar 

  • Piggott LA, Bauman AL, Scott JD, Dessauer CW (2008) The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci U S A 105(37):13835–13840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza DM, Janicek R, Fernandez-Tenorio M, Camors E, Ramos-Mondragon R, Valdivia HH, Niggli E (2019) Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete beta-adrenergic response. J Gen Physiol 151(2):131–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    CAS  PubMed  Google Scholar 

  • Price T, Brust TF (2019) Adenylyl cyclase 7 and neuropsychiatric disorders: a new target for depression? Pharmacol Res 143:106–112

    CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    CAS  PubMed  Google Scholar 

  • Quinn SN, Graves SH, Dains-McGahee C, Friedman EM, Hassan H, Witkowski P, Sabbatini ME (2017) Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells. Mol Carcinog 56(4):1344–1360

    CAS  PubMed  Google Scholar 

  • Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (2008) Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 132(3):329–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Espiritu L, Diaz A, Nardin C, Saviola AJ, Shaw F, Plitt T, Yang X, Wolchok J, Pirog EC, Desman G, Sboner A, Zhang T, Xiang J, Merghoub T, Levin LR, Buck J, Zippin JH (2016) The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein. Oncotarget 7(29):45597–45607

    PubMed  PubMed Central  Google Scholar 

  • Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, Gonzalez A, Moritoh Y, Shigeto M, Zhang Q, Braun M, Clark A, Johnson PR, Rorsman P, Briant LJB (2018) GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca(2+) channels. Physiol Rep 6(17):e13852

    PubMed  PubMed Central  Google Scholar 

  • Rathee PK, Distler C, Obreja O, Neuhuber W, Wang GK, Wang SY, Nau C, Kress M (2002) PKA/AKAP/VR-1 module: a common link of Gs-mediated signaling to thermal hyperalgesia. J Neurosci 22(11):4740–4745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond LA, Blackstone CD, Huganir RL (1993) Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361(6413):637–641

    CAS  PubMed  Google Scholar 

  • Rieg T, Kohan DE (2014) Regulation of nephron water and electrolyte transport by adenylyl cyclases. Am J Physiol Renal Physiol 306(7):F701–F709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CD, Dvoryanchikov G, Roper SD, Chaudhari N (2009) Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. J Physiol 587(Pt 8):1657–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado JA, Porras T, Conde M, Sage SO (2001) Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 276(19):15666–15675

    CAS  PubMed  Google Scholar 

  • Ruiz-Hurtado G, Morel E, Dominguez-Rodriguez A, Llach A, Lezoualc'h F, Benitah JP, Gomez AM (2013) Epac in cardiac calcium signaling. J Mol Cell Cardiol 58:162–171

    CAS  PubMed  Google Scholar 

  • Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17(1):5–22

    CAS  PubMed  Google Scholar 

  • Sanchez-Collado J, Lopez JJ, Jardin I, Camello PJ, Falcon D, Regodon S, Salido GM, Smani T, Rosado JA (2019) Adenylyl cyclase type 8 overexpression impairs phosphorylation-dependent Orai1 inactivation and promotes migration in MDA-MB-231 breast cancer cells. Cancers (Basel) 11(11)

    Google Scholar 

  • Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mugge A, Meyer R, Ladilov Y, Jaquet K (2018) Soluble adenylyl cyclase: a novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS One 13(2):e0192322

    PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a rap GTPase. Nat Cell Biol 3(11):1020–1024

    CAS  PubMed  Google Scholar 

  • Sculptoreanu A, Rotman E, Takahashi M, Scheuer T, Catterall WA (1993) Voltage-dependent potentiation of the activity of cardiac L-type calcium channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 90(21):10135–10139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JX, Wachten S, Halls ML, Everett KL, Cooper DM (2012) Muscarinic receptors stimulate AC2 by novel phosphorylation sites, whereas Gbetagamma subunits exert opposing effects depending on the G-protein source. Biochem J 447(3):393–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1999) Discriminating between capacitative and arachidonate-activated Ca(2+) entry pathways in HEK293 cells. J Biol Chem 274(44):31174–31178

    CAS  PubMed  Google Scholar 

  • Simko V, Iuliano F, Sevcikova A, Labudova M, Barathova M, Radvak P, Pastorekova S, Pastorek J, Csaderova L (2017) Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII. Sci Rep 7(1):10121

    PubMed  PubMed Central  Google Scholar 

  • Simpson RE, Ciruela A, Cooper DM (2006) The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8. J Biol Chem 281(25):17379–17389

    CAS  PubMed  Google Scholar 

  • Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F, Mei FC, Zhu Y, Cheng X, Hawke D, Mayor F Jr, Murga C, Heijnen CJ, Kavelaars A (2016) Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci U S A 113(11):3036–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smit MJ, Iyengar R (1998) Mammalian adenylyl cyclases. Adv Second Messenger Phosphoprotein Res 32:1–21

    CAS  PubMed  Google Scholar 

  • Smith KE, Gu C, Fagan KA, Hu B, Cooper DM (2002) Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry. J Biol Chem 277(8):6025–6031

    CAS  PubMed  Google Scholar 

  • Sobradillo D, Hernandez-Morales M, Ubierna D, Moyer MP, Nunez L, Villalobos C (2014) A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem 289(42):28765–28782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soulsby MD, Wojcikiewicz RJ (2007) Calcium mobilization via type III inositol 1,4,5-trisphosphate receptors is not altered by PKA-mediated phosphorylation of serines 916, 934, and 1832. Cell Calcium 42(3):261–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soulsby MD, Alzayady K, Xu Q, Wojcikiewicz RJ (2004) The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5-trisphosphate receptor by PKA and PKG. FEBS Lett 557(1–3):181–184

    CAS  PubMed  Google Scholar 

  • Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M (2017) Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J Hepatol 66(3):571–580

    CAS  PubMed  Google Scholar 

  • Srikanth S, Jung HJ, Ribalet B, Gwack Y (2010) The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 285(7):5066–5075

    CAS  PubMed  Google Scholar 

  • Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963

    PubMed  PubMed Central  Google Scholar 

  • Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta 1842(12 Pt B):2535–2547

    CAS  PubMed  Google Scholar 

  • Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12(1):32–37

    CAS  PubMed  Google Scholar 

  • Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z (2006) Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits. Cell Signal 18(1):62–68

    CAS  PubMed  Google Scholar 

  • Stokes AJ, Shimoda LM, Koblan-Huberson M, Adra CN, Turner H (2004a) A TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J Exp Med 200(2):137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes L, Gordon J, Grafton G (2004b) Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits. J Biol Chem 279(19):19566–19573

    CAS  PubMed  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306(5938):67–69

    CAS  PubMed  Google Scholar 

  • Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintron M, Navedo MF (2019) Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 129(8):3140–3152

    PubMed  PubMed Central  Google Scholar 

  • Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 101(16):6009–6014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254(5037):1500–1503

    CAS  PubMed  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269(8):6093–6100

    CAS  PubMed  Google Scholar 

  • Taylor CW (2017) Regulation of IP3 receptors by cyclic AMP. Cell Calcium 63:48–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    CAS  PubMed  Google Scholar 

  • Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR (1999) Two-metal-ion catalysis in adenylyl cyclase. Science 285(5428):756–760

    CAS  PubMed  Google Scholar 

  • Thangavel M, Liu X, Sun SQ, Kaminsky J, Ostrom RS (2009) The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae. Cell Signal 21(2):301–308

    CAS  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2015) Anchoring protein AKAP79-mediated PKA phosphorylation of STIM1 determines selective activation of the ARC channel, a store-independent Orai channel. J Physiol 593(3):559–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Yang T, Yu S, Liu C, He M, Hu C (2018) Prostaglandin E2 increases migration and proliferation of human glioblastoma cells by activating transient receptor potential melastatin 7 channels. J Cell Mol Med 22(12):6327–6337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong T, Shen Y, Lee HW, Yu R, Park T (2016) Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci Rep 6:34179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tovey SC, Dedos SG, Rahman T, Taylor EJ, Pantazaka E, Taylor CW (2010) Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 285(17):12979–12989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 9(2):e89292

    PubMed  PubMed Central  Google Scholar 

  • Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V, Kacskovics I, Prakriya M, Feske S (2017) ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 8:14714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vatner SF, Park M, Yan L, Lee GJ, Lai L, Iwatsubo K, Ishikawa Y, Pessin J, Vatner DE (2013) Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Physiol Heart Circ Physiol 305(1):H1–H8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278(31):29031–29040

    CAS  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorherr T, Knopfel L, Hofmann F, Mollner S, Pfeuffer T, Carafoli E (1993) The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 32(23):6081–6088

    CAS  PubMed  Google Scholar 

  • Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M, Sabourin LA (2008) FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS One 3(4):e1868

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Balet Sindreu C, Li V, Nudelman A, Chan GC, Storm DR (2006) Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci 26(28):7375–7379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Gu Y, Li GW, Huang LY (2007) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584(Pt 1):191–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330(6000):105–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson EL, Wu Z, Jacobson KL, Storm DR, Singh JC, Ott SM (1998) Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini. Am J Phys 274(3):C557–C565

    CAS  Google Scholar 

  • Wayman GA, Wei J, Wong S, Storm DR (1996) Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol 16(11):6075–6082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BL, Hirst SJ, Giembycz MA (2000) Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br J Pharmacol 130(7):1433–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wecker L, Rogers CQ (2003) Phosphorylation sites within alpha4 subunits of alpha4beta2 neuronal nicotinic receptors: a comparison of substrate specificities for cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). Neurochem Res 28(3–4):431–436

    CAS  PubMed  Google Scholar 

  • Wei J, Wayman G, Storm DR (1996) Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem 271(39):24231–24235

    CAS  PubMed  Google Scholar 

  • Wei J, Zhao AZ, Chan GC, Baker LP, Impey S, Beavo JA, Storm DR (1998) Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in neurons: a mechanism for attenuation of olfactory signals. Neuron 21(3):495–504

    CAS  PubMed  Google Scholar 

  • Wieczorek L, Majumdar D, Wills TA, Hu L, Winder DG, Webb DJ, Muglia LJ (2012) Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory. Transl Psychiatry 2:e126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010

    CAS  PubMed  Google Scholar 

  • Willoughby D, Masada N, Wachten S, Pagano M, Halls ML, Everett KL, Ciruela A, Cooper DM (2010) AKAP79/150 interacts with AC8 and regulates Ca2+−dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem 285(26):20328–20342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DM (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5(219):ra29

    PubMed  Google Scholar 

  • Willoughby D, Ong HL, De Souza LB, Wachten S, Ambudkar IS, Cooper DM (2014) TRPC1 contributes to the Ca2+-dependent regulation of adenylate cyclases. Biochem J 464(1):73–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27(3):487–497

    CAS  PubMed  Google Scholar 

  • Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42(2):205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MM, Covington ED, Lewis RS (2014) Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum-plasma membrane junctions. Mol Biol Cell 25(22):3672–3685

    PubMed  PubMed Central  Google Scholar 

  • Xiao R, Xu XZ (2010) Mechanosensitive channels: in touch with Piezo. Curr Biol 20(21):R936–R938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Han Q, Shi H, Liu W, Chu T, Li H (2017) Role of PKA in the process of neonatal cardiomyocyte hypertrophy induced by urotensin II. Int J Mol Med 40(2):499–504

    CAS  PubMed  Google Scholar 

  • Yamashita M, Yeung PS, Ing CE, McNally BA, Pomes R, Prakriya M (2017) STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate. Nat Commun 8:14512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G (2013) Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 330(2):163–169

    CAS  PubMed  Google Scholar 

  • Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14(6):273–280

    CAS  PubMed  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi H, Wang K, Jin JF, Jin H, Yang L, Zou Y, Du B, Liu X (2018) Elevated adenylyl cyclase 9 expression is a potential prognostic biomarker for patients with colon cancer. Med Sci Monit 24:19–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoast RE, Emrich SM, Zhang X, Xin P, Johnson MT, Fike AJ, Walter V, Hempel N, Yule DI, Sneyd J, Gill DL, Trebak M (2020) The native ORAI channel trio underlies the diversity of Ca(2+) signaling events. Nat Commun 11(1):2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimaru T, Suzuki Y, Inoue T, Ra C (2009) L-type Ca2+ channels in mast cells: activation by membrane depolarization and distinct roles in regulating mediator release from store-operated Ca2+ channels. Mol Immunol 46(7):1267–1277

    CAS  PubMed  Google Scholar 

  • Yoshimura M, Cooper DM (1992) Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci U S A 89(15):6716–6720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191(3):523–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Wang Y, Qian D, Sun X, Tang Y, Shen X, Lin L (2017) Advanced glycation end products impair Ca2+ mobilization and sensitization in colonic smooth muscle cells via the CAMP/PKA pathway. Cell Physiol Biochem 43(4):1571–1587

    CAS  PubMed  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Storm DR, Wang H (2011) Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+−stimulated adenylyl cyclases. J Neurosci 31(28):10174–10183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ghai P, Wu H, Wang C, Field J, Zhou GL (2013) Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J Biol Chem 288(29):20966–20977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pathak T, Yoast R, Emrich S, Xin P, Nwokonko RM, Johnson M, Wu S, Delierneux C, Gueguinou M, Hempel N, Putney JW Jr, Gill DL, Trebak M (2019) A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. Nat Commun 10(1):1971

    PubMed  PubMed Central  Google Scholar 

  • Zheng S, Zhou L, Ma G, Zhang T, Liu J, Li J, Nguyen NT, Zhang X, Li W, Nwokonko R, Zhou Y, Zhao F, Huang Y, Gill DL, Wang Y (2018) Calcium store refilling and STIM activation in STIM- and Orai-deficient cell lines. Pflugers Arch 470(10):1555–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Mancarella S, Wang Y, Yue C, Ritchie M, Gill DL, Soboloff J (2009) The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284(29):19164–19168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann G, Taussig R (1996) Protein kinase C alters the responsiveness of adenylyl cyclases to G protein alpha and betagamma subunits. J Biol Chem 271(43):27161–27166

    CAS  PubMed  Google Scholar 

  • Zippin JH, Chadwick PA, Levin LR, Buck J, Magro CM (2010) Soluble adenylyl cyclase defines a nuclear cAMP microdomain in keratinocyte hyperproliferative skin diseases. J Invest Dermatol 130(5):1279–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Liu J, She L, Chen J, Zhu T, Yin J, Li X, Zhou H, Liu Z (2019) A perspective profile of ADCY1 in cAMP signaling with drug-resistance in lung cancer. J Cancer 10(27):6848–6857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zweifach A, Lewis RS (1995a) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105(2):209–226

    CAS  PubMed  Google Scholar 

  • Zweifach A, Lewis RS (1995b) Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 270(24):14445–14451

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO (Grant BFU2016-74932-C2-1-P and PID2019-104084GB-C21) and Junta de Extremadura-Consejería de Economía e Infraestructura-FEDER (Fondo Europeo de Desarrollo Regional, Grants IB16046 and GR18061). We also thank Fundación Caja de Extremadura for its support. J.J.L. and I.J. are supported by a contract from Junta de Extremadura (TA18011 and TA18054, respectively). J.S.-C. is supported by a contract from Ministry of Science, Innovation, and Universities, Spain.

Disclosures

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez-Collado, J., Lopez, J.J., Jardin, I., Salido, G.M., Rosado, J.A. (2020). Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 179. Springer, Cham. https://doi.org/10.1007/112_2020_55

Download citation

Publish with us

Policies and ethics