Skip to main content

Microfluidics in Biotechnology: Overview and Status Quo

  • Chapter
  • First Online:
Microfluidics in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 179))

Abstract

Microfluidics has emerged as a powerful tool, enabling biotechnological processes to be performed on a microscale where certain physical processes (such as laminar flow, surface-to-volume ratio, and surface interactions) become dominant factors. At the same time, volumes and assay times are also reduced in microscale – which can substantially lower experimental costs. A decade ago, most microfluidic systems were only used for proof-of-concept studies; today, a wide array of microfluidic systems have been deployed to tackle various biotechnological research questions – especially regarding the analysis, screening, and understanding of cellular systems. Examples cover all biotechnological areas, from diagnostic applications in the field of medical biotechnology to the screening of potentially useful cells in the field of industrial biotechnology. As part of this review, we provide a brief introduction to microfluidics technology (including the vision of Lab-on-a-chip (LOC) systems) and survey some of the most notable applications of microfluidic technology in biotechnology to date.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chmiel H, Takors R, Weuster-Botz D (2018) Bioprozesstechnik. Springer, Berlin

    Book  Google Scholar 

  2. Antranikian G (2006) Angewandte mikrobiologie. Springe

    Google Scholar 

  3. Haaf A, Hofmann S. Measuring the economic footprint of the biotechnology industry in Europe. https://www.europabio.org/wp-content/uploads/2021/02/201208_WifOR_EuropaBIO_Economic_Impact_Biotech_FINAL.pdf

  4. National Academies of Sciences Engineering and Medicine (2017) Preparing for future products of biotechnology. National Academies Press

    Google Scholar 

  5. Lokko Y et al (2018) Biotechnology and the bioeconomy – towards inclusive and sustainable industrial development. New Biotechnol 40:5–10

    Article  CAS  Google Scholar 

  6. Sampson TR, Weiss DS (2014) Exploiting CRISPR/Cas systems for biotechnology. BioEssays 36:34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36:134–146

    Article  CAS  PubMed  Google Scholar 

  8. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  9. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF (2019) Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Front Bioeng Biotechnol 7:184

    Article  PubMed  PubMed Central  Google Scholar 

  10. Conlisk AT (2007) Introduction to microfluidics. J Fluid Mech 570:503–507

    Article  Google Scholar 

  11. Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16:554–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marques MPC, Lorente-Arevalo A, Bolivar JM (2021) Biocatalysis in continuous-flow microfluidic reactors. Springer, Berlin, pp 1–36. https://doi.org/10.1007/10_2020_160

    Book  Google Scholar 

  13. Hage-Hülsmann J et al (2018) Natural biocide cocktails: combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 13:e0200940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Du G, Fang Q, den Toonder JMJ (2016) Microfluidics for cell-based high throughput screening platforms – a review. Anal Chim Acta 903:36–50

    Article  CAS  PubMed  Google Scholar 

  15. Velve-Casquillas G, le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5:28–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29:15–23

    Article  PubMed  CAS  Google Scholar 

  17. Wang H et al (2017) A portable microfluidic platform for rapid molecular diagnostic testing of patients with myeloproliferative neoplasms. Sci Rep 7:1–11

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Beebe DJ, Mensing GA, Walker GM (2003) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  CAS  Google Scholar 

  19. Daw R, Finkelstein J (2006) Lab on a chip. Nature 442:367

    Article  CAS  Google Scholar 

  20. Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A (2010) Latest developments in microfluidic cell biology and analysis systems. Anal Chem 82:4848–4864

    Article  CAS  PubMed  Google Scholar 

  21. Jamshaid T et al (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal Chem 79:344–362

    Article  CAS  Google Scholar 

  22. Bahnemann J, Stahl F, Scheper T (2020) Spezielle labortechnische Reaktoren: lab-on-a-chip. Springer Spektrum, Berlin, pp 1391–1418. https://doi.org/10.1007/978-3-662-56434-9_49

    Book  Google Scholar 

  23. Levinson HJ (2001) Principles of lithography. SPIE Press

    Google Scholar 

  24. Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5:209–218

    Article  CAS  PubMed  Google Scholar 

  25. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  26. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  PubMed  Google Scholar 

  27. Kiran Raj M, Chakraborty S (2020) PDMS microfluidics: a mini review. J Appl Polym Sci 137:48958

    Article  CAS  Google Scholar 

  28. Klein A-K, Dietzel A (2020) A primer on microfluidics: from basic principles to microfabrication. Springer, Berlin, pp 1–19. https://doi.org/10.1007/10_2020_156

    Book  Google Scholar 

  29. Heuer C, Preuß JA, Habib T, Enders A, Bahnemann J (2021) 3D printing in biotechnology – an insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci. https://doi.org/10.1002/ELSC.202100081

  30. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2014) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41

    Article  PubMed  CAS  Google Scholar 

  31. Winkler S, Grünberger A, Bahnemann J (2021) Microfluidics in biotechnology: quo vadis. Springer, Berlin, pp 1–26. https://doi.org/10.1007/10_2020_162

    Book  Google Scholar 

  32. Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS (2020) Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem 93:311–331

    Article  PubMed  CAS  Google Scholar 

  33. Muñoz-Sánchez BN, Silva SF, Pinho D, Vega EJ, Lima R (2016) Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 10:014122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Das T, Chakraborty S (2010) Bio-microfluidics: overview. Microfluid Microfabr. https://doi.org/10.1007/978-1-4419-1543-6_4

  35. Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260

    Article  CAS  PubMed  Google Scholar 

  36. Frey LJ, Krull R (2020) Microbioreactors for process development and cell-based screening studies. Springer, Berlin, pp 1–34. https://doi.org/10.1007/10_2020_130

    Book  Google Scholar 

  37. Maschmeyer I, Kakava S (2020) Organ-on-a-chip. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2020_135

  38. Yuan GC et al (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18:1–8

    Article  CAS  Google Scholar 

  39. Tokeshi M (2019) Applications of microfluidic systems in biology and medicine, vol 7. Springer, Singapore

    Google Scholar 

  40. Marques MP, Szita N (2017) Bioprocess microfluidics: applying microfluidic devices for bioprocessing. Curr Opin Chem Eng 18:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamon M, Dai J, Jambovane S, Hong JW (2015) Microfluidic systems for marine biotechnology. In: Springer handbook of marine biotechnology, pp 509–530. https://doi.org/10.1007/978-3-642-53971-8_20

    Chapter  Google Scholar 

  42. Arshavsky-Graham S, Segal E (2020) Lab-on-a-chip devices for point-of-care medical diagnostics. Springer, Berlin, pp 1–19. https://doi.org/10.1007/10_2020_127

    Book  Google Scholar 

  43. Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann J, Segal E (2021) 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Microchim Acta 188:1–12

    Article  CAS  Google Scholar 

  44. Frey LJ et al (2021) 3D-printed micro bubble column reactor with integrated microsensors for biotechnological applications: from design to evaluation. Sci Rep 11:1–14

    Article  CAS  Google Scholar 

  45. Wang B, Wang Z, Chen T, Zhao X (2020) Development of novel bioreactor control systems based on smart sensors and actuators. Front Bioeng Biotechnol 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang T, Yu C, Xie X (2020) Microfluidics for environmental applications. Springer, Berlin, pp 1–24. https://doi.org/10.1007/10_2020_128

    Book  Google Scholar 

  47. Gao H, Yan C, Wu W, Li J (2020) Application of microfluidic chip technology in food safety sensing. Sensors 20:1792

    Article  CAS  PubMed Central  Google Scholar 

  48. Kim G, Lim J, Mo C (2016) Applications of microfluidics in the agro-food sector: a review. J Biosyst Eng 41:116–125

    Article  Google Scholar 

  49. Kim SK (2015) Springer handbook of marine biotechnology. Springer, pp 1–1512. https://doi.org/10.1007/978-3-642-53971-8

    Book  Google Scholar 

  50. Aranda Hernandez J, Heuer C, Bahnemann J, Szita N (2021) Microfluidic devices as process development tools for cellular therapy manufacturing. Springer, Berlin, pp 1–27. https://doi.org/10.1007/10_2021_169

    Book  Google Scholar 

  51. Zeng W, Guo L, Xu S, Chen J, Zhou J (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol 38:888–906

    Article  CAS  PubMed  Google Scholar 

  52. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  PubMed  Google Scholar 

  53. Gong Y, Fan N, Yang X, Peng B, Jiang H (2019) New advances in microfluidic flow cytometry. Electrophoresis 40:1212–1229

    Article  CAS  Google Scholar 

  54. Ozdalgic B et al (2021) Microfluidics for microalgal biotechnology. Biotechnol Bioeng 118:1716–1734

    Article  CAS  Google Scholar 

  55. Kim HS, Guzman AR, Thapa HR, Devarenne TP, Han A (2016) A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Biotechnol Bioeng 113:1691–1701

    Article  CAS  PubMed  Google Scholar 

  56. Girault M, Beneyton T, del Amo Y, Baret JC (2019) Microfluidic technology for plankton research. Curr Opin Biotechnol 55:134–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yew M, Ren Y, Koh KS, Sun C, Snape C (2019) A review of state-of-the-art microfluidic technologies for environmental applications: detection and remediation. Global Chall 3:1800060

    Article  Google Scholar 

  58. Habib T et al (2022) 3D-printed microfluidic device for protein purification in batch chromatography. Lab Chip. https://doi.org/10.1039/D1LC01127H

  59. Bahnemann J, Enders A, Winkler S (2021) Microfluidic systems and organ (human) on a chip. Springer, pp 175–200. https://doi.org/10.1007/978-3-030-66749-8_8

    Book  Google Scholar 

  60. Rothbauer M, Ertl P (2020) Emerging biosensor trends in organ-on-a-chip. Springer, Berlin, pp 1–12. https://doi.org/10.1007/10_2020_129

    Book  Google Scholar 

  61. Enders A, Preuss JA, Bahnemann J (2021) 3D printed microfluidic spiral separation device for continuous, pulsation-free and controllable CHO cell retention. Micromachines 12:1060

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci 105:4209–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moussus M, Meier M (2021) A 3D-printed Arabidopsis thaliana root imaging platform. Lab Chip 21:2557

    Article  CAS  PubMed  Google Scholar 

  64. Stanley CE, Grossmann G, CasadevallI Solvas X, DeMello AJ (2016) Soil-on-a-Chip: microfluidic platforms for environmental organismal studies. Lab Chip 16:228–241

    Article  CAS  PubMed  Google Scholar 

  65. Täuber S et al (2020) Dynamic environmental control in microfluidic single-cell cultivations: from concepts to applications. Small 16:1906670

    Article  CAS  Google Scholar 

  66. Zhou W et al (2021) Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnol 19:1–21

    Article  Google Scholar 

  67. Lin S et al (2021) Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab Chip 21:3829–3849

    Article  CAS  PubMed  Google Scholar 

  68. Guo S, Zhang C, Le A (2021) The limitless applications of single-cell metabolomics. Curr Opin Biotechnol 71:115–122

    Article  CAS  PubMed  Google Scholar 

  69. Rossi E, Zamarchi R (2019) Single-cell analysis of circulating tumor cells: how far have we come in the-omics era? Front Genet 7:958

    Article  CAS  Google Scholar 

  70. Freiherr von Boeselager R, Pfeifer E, Frunzke J (2018) Cytometry meets next-generation sequencing – RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  71. Deng Y, Finck A, Fan R (2019) Single-cell omics analyses enabled by microchip technologies. Annu Rev Biomed Eng 21:365–393

    Article  CAS  PubMed  Google Scholar 

  72. Dusny C, Grünberger A (2020) Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding. Curr Opin Biotechnol 63:26–33

    Article  CAS  PubMed  Google Scholar 

  73. Höving AL et al (2021) Human blood serum induces p38-MAPK- and Hsp27-dependent migration dynamics of adult human cardiac stem cells: single-cell analysis via a microfluidic-based cultivation platform. Biology 10:708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ortseifen V, Viefhues M, Wobbe L, Grünberger A (2020) Microfluidics for biotechnology: bridging gaps to foster microfluidic applications. Front Bioeng Biotechnol 8:1324

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steffen Winkler for the design and creation of Fig. 3, and Julian Schmitz for the design and creation of the icons for the different biotechnology fields (see Fig. 4). We furthermore would like to thank Christopher Heuer for proof-reading this manuscript.

Conflict of Interest

No conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janina Bahnemann or Alexander Grünberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahnemann, J., Grünberger, A. (2022). Microfluidics in Biotechnology: Overview and Status Quo. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2022_206

Download citation

Publish with us

Policies and ethics