Skip to main content

Gradient Hydrogels

  • Chapter
  • First Online:
Tunable Hydrogels

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 178))

Abstract

Gradient hydrogels represent a pivotal and expanding direction of three-dimensional cell culture. Since various types of gradients play an important role in physiological and pathological processes in vivo, recreation of these gradients in vitro allows a better understanding of cellular behavior, intercellular and cell–matrix interactions. Moreover, gradient hydrogels can advance the creation of functionally improved and physiologically relevant tissue engineered constructs. Another application of gradient hydrogels is the optimization of the 3D in vitro microenvironment (e.g., in terms of hydrogel stiffness or concentration of adhesion ligands). Tunable hydrogels provide researchers with a versatile toolbox to manufacture such gradients in vitro. In this chapter different types of in vivo and in vitro gradients in hydrogels will be presented. Equipment and methods for various gradient fabrications will be discussed. Furthermore, methods of gradient characterizations in hydrogels will be reported. As one of the most recent developments, the influence of low oxygen concentration on cells, as well as the creation and characterization of oxygen gradients in hydrogels will be described. In the last part, achievements in the creation of multiple combinatorial gradients will be presented. The aim of this chapter is to give the reader an overview on existing techniques and biological importance of gradient hydrogels in basic science as well as in applied research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan TH (1901) Regeneration and liability to injury. Science 14(346):235–248

    CAS  PubMed  Google Scholar 

  2. Wartlick O, Kicheva A, González-Gaitán M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1(3):a001255

    PubMed  PubMed Central  Google Scholar 

  3. Child C (1912) Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. IV. Certain dynamic factors in the regulatory morphogenesis of Planaria dorotocephala in relation to the axial gradient. J Exp Zool 13(1):103–152

    Google Scholar 

  4. Fathollahipour S, Patil PS, Leipzig ND (2018) Oxygen regulation in development: lessons from embryogenesis towards tissue engineering. Cells Tissues Organs 205(5–6):350–371

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xia T, Liu W, Yang L (2017) A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A 105(6):1799–1812

    CAS  PubMed  Google Scholar 

  6. Wu J et al (2012) Gradient biomaterials and their influences on cell migration. Interf Focus 2(3):337–355

    Google Scholar 

  7. Laasanen MS et al (2003) Biomechanical properties of knee articular cartilage. Biorheology 40(1–3):133–140

    CAS  PubMed  Google Scholar 

  8. Wang Y et al (2018) Bioengineered systems and designer matrices that recapitulate the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol 5(3):440–453.e1

    PubMed  PubMed Central  Google Scholar 

  9. Katz NR (1992) Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr 122(3 Suppl):843–849

    CAS  PubMed  Google Scholar 

  10. Erickson K et al (2003) Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation. Cancer Res 63(15):4705–4712

    CAS  PubMed  Google Scholar 

  11. Dewhirst MW et al (1999) Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br J Cancer 79(11–12):1717–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Remensnyder JP, Majno G (1968) Oxygen gradients in healing wounds. Am J Pathol 52(2):301–323

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Knighton DR, Silver IA, Hunt TK (1981) Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 90(2):262–270

    CAS  PubMed  Google Scholar 

  14. Cheema U et al (2008) Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Mol Life Sci 65(1):177–186

    CAS  PubMed  Google Scholar 

  15. Radisic M et al (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93(2):332–343

    CAS  PubMed  Google Scholar 

  16. Jing X et al (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18(1):157

    PubMed  PubMed Central  Google Scholar 

  17. Lewis DM et al (2016) Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci 113(33):9292–9297

    CAS  PubMed  Google Scholar 

  18. Pedron S, Becka E, Harley BA (2015) Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv Mater 27(9):1567–1572

    CAS  PubMed  Google Scholar 

  19. Schreml S et al (2014) Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. Theranostics 4(7):721

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Niethammer P et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moeendarbary E et al (2017) The soft mechanical signature of glial scars in the central nervous system. Nat Commun 8(1):14787

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo J et al (2018) High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 153:85–101

    CAS  PubMed  Google Scholar 

  23. Smith Callahan LA (2018) Gradient material strategies for hydrogel optimization in tissue engineering applications. High-throughput 7(1):1

    PubMed Central  Google Scholar 

  24. Wong JY et al (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19(5):1908–1913

    CAS  Google Scholar 

  25. Lavrentieva A et al (2020) Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer. Macromol Biosci 20(7):2000107

    CAS  Google Scholar 

  26. Selimovic S et al (2011) Generating nonlinear concentration gradients in microfluidic devices for cell studies. Anal Chem 83(6):2020–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hadden WJ et al (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci 114(22):5647–5652

    CAS  PubMed  Google Scholar 

  28. Liu Z et al (2012) Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 6(2):024111

    PubMed Central  Google Scholar 

  29. Sant S et al (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88(6):899–911

    CAS  PubMed  PubMed Central  Google Scholar 

  30. He J et al (2010) Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv Funct Mater 20(1):131–137

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee D et al (2019) Fabrication of hydrogels with a stiffness gradient using limited mixing in the hele-Shaw geometry. Exp Mech 59(9):1249–1259

    CAS  Google Scholar 

  32. Zinkovska N, Smilek J, Pekar M (2020) Gradient hydrogels—the state of the art in preparation methods. Polymers 12(4):966

    CAS  PubMed Central  Google Scholar 

  33. Jeon NL et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316

    CAS  Google Scholar 

  34. Du Y et al (2010) Convection-driven generation of long-range material gradients. Biomaterials 31(9):2686–2694

    CAS  PubMed  Google Scholar 

  35. Song F et al (2015) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 11(1):40–52

    CAS  PubMed  Google Scholar 

  36. Gadjanski I (2017) Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000 Res 6

    Google Scholar 

  37. Oh SH et al (2016) Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater 35:23–31

    CAS  PubMed  Google Scholar 

  38. Ko H et al (2019) A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication 11(2):025014

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Foxman EF, Kunkel EJ, Butcher EC (1999) Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J Cell Biol 147(3):577–588

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lo C-M et al (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Piraino F et al (2012) Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels. Lab Chip 12(3):659–661

    CAS  PubMed  Google Scholar 

  42. Jeon O et al (2013) Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25(44):6366–6372

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bailey BM, Nail LN, Grunlan MA (2013) Continuous gradient scaffolds for rapid screening of cell–material interactions and interfacial tissue regeneration. Acta Biomater 9(9):8254–8261

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu C et al (2017) Microfluidic platforms for gradient generation and its applications. Biochem Anal Biochem 6(320):2161

    Google Scholar 

  45. Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13):5153–5156

    CAS  PubMed  Google Scholar 

  46. Loessberg-Zahl J et al (2019) Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips. Lab Chip 19(2):206–213

    CAS  PubMed  Google Scholar 

  47. Yamada M et al (2006) A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing. Lab Chip 6(2):179–184

    CAS  PubMed  Google Scholar 

  48. Idaszek J et al (2019) 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 11(4):044101

    CAS  PubMed  Google Scholar 

  49. Motealleh A et al (2019) 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication 11(4):045015

    CAS  PubMed  Google Scholar 

  50. Sun Y et al (2020) 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration. Sci Adv 6(37):eaay1422

    CAS  PubMed  Google Scholar 

  51. Tse J, Engler A (2011) Stiffness gradients mimicking. Vivo

    Google Scholar 

  52. Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6(1):136–143

    CAS  Google Scholar 

  53. Sunyer R et al (2012) Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7(10):e46107

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Norris SC, Tseng P, Kasko AM (2016) Direct gradient photolithography of photodegradable hydrogels with patterned stiffness control with submicrometer resolution. ACS Biomater Sci Eng 2(8):1309–1318

    CAS  PubMed  Google Scholar 

  55. Zaari N et al (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16(23–24):2133–2137

    CAS  Google Scholar 

  56. Zhu D et al (2018) Mimicking cartilage tissue zonal organization by engineering tissue-scale gradient hydrogels as 3D cell niche. Tissue Eng A 24(1–2):1–10

    Google Scholar 

  57. Garcia S et al (2015) Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 15(12):2606–2614

    CAS  PubMed  Google Scholar 

  58. Wang W et al (2018) A microfluidic hydrogel chip with orthogonal dual gradients of matrix stiffness and oxygen for cytotoxicity test. Biochip J 12(2):93–101

    CAS  Google Scholar 

  59. Iturri J, Toca-Herrera JL (2017) Characterization of cell scaffolds by atomic force microscopy. Polymers 9(8):383

    PubMed Central  Google Scholar 

  60. Ruedinger F et al (2015) Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 99(2):623–636

    CAS  PubMed  Google Scholar 

  61. Deng CX, Hong X, Stegemann JP (2016) Ultrasound imaging techniques for spatiotemporal characterization of composition, microstructure, and mechanical properties in tissue engineering. Tissue Eng Part B Rev 22(4):311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kennedy KM et al (2015) Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci Rep 5:15538

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schmitz C et al (2020) Live reporting for hypoxia: hypoxia sensor–modified mesenchymal stem cells as in vitro reporters. Biotechnol Bioeng 117:3265

    CAS  PubMed  Google Scholar 

  64. Rosales AM et al (2017) Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew Chem Int Ed 56(40):12132–12136

    CAS  Google Scholar 

  65. Chen Y et al (2017) Receptor-mediated cell mechanosensing. Mol Biol Cell 28(23):3134–3155

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cross LM et al (2018) Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine 14(7):2465–2474

    CAS  PubMed  Google Scholar 

  67. Pedron S et al (2017) Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Commun 7(3):442–449

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rape AD et al (2015) A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat Commun 6(1):1–9

    Google Scholar 

  69. Zhang Y et al (2017) Influence of stage cooling method on pore architecture of biomimetic alginate scaffolds. Sci Rep 7(1):1–8

    Google Scholar 

  70. Orsi S, Guarnieri D, Netti PA (2010) Design of novel 3D gene activated PEG scaffolds with ordered pore structure. J Mater Sci Mater Med 21(3):1013–1020

    CAS  PubMed  Google Scholar 

  71. Yin Q et al (2020) Bio-inspired design of reinforced gradient hydrogels with rapid water-triggered shape memory performance. ACS Appl Polym Mater

    Google Scholar 

  72. Chen CS et al (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    CAS  PubMed  Google Scholar 

  73. Hogrebe NJ, Reinhardt JW, Gooch KJ (2017) Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A 105(2):640–661

    CAS  PubMed  Google Scholar 

  74. Xi W et al (2019) Material approaches to active tissue mechanics. Nat Rev Mater 4(1):23–44

    Google Scholar 

  75. Scarpa E et al (2013) A novel method to study contact inhibition of locomotion using micropatterned substrates. Biol Open 2(9):901–906

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stoecklin C et al (2018) A new approach to design artificial 3D microniches with combined chemical, topographical, and rheological cues. Adv Biosyst 2(7):1700237

    Google Scholar 

  77. Zou J et al (2019) Highly efficient and environmentally friendly fabrication of robust, programmable, and biocompatible anisotropic, all-cellulose, wrinkle-patterned hydrogels for cell alignment. Adv Mater 31(46):1904762

    CAS  Google Scholar 

  78. Nerger BA, Brun P-T, Nelson CM (2020) Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci Adv 6(24):eaaz7748

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Eng G et al (2013) Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc Natl Acad Sci 110(12):4551–4556

    CAS  PubMed  Google Scholar 

  80. Trkov S et al (2010) Micropatterned three-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J Tissue Eng Regen Med 4(3):205–215

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X et al (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90

    CAS  PubMed  Google Scholar 

  82. O'Grady B et al (2019) Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci 7(4):1358–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ahadian S et al (2015) Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug Chem 26(10):1984–2001

    CAS  PubMed  Google Scholar 

  84. DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234

    CAS  PubMed  Google Scholar 

  85. Kapur TA, Shoichet MS (2004) Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res A 68(2):235–243

    PubMed  Google Scholar 

  86. DeLong SA, Gobin AS, West JL (2005) Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109(1–3):139–148

    CAS  PubMed  Google Scholar 

  87. Metzger S et al (2015) Modular poly(ethylene glycol) matrices for the controlled 3D-localized osteogenic differentiation of mesenchymal stem cells. Adv Healthc Mater 4(4):550–558

    CAS  PubMed  Google Scholar 

  88. Ahadian S et al (2014) Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications. Biosens Bioelectron 59:166–173

    CAS  PubMed  Google Scholar 

  89. Zhang B, Huang J, Narayan RJ (2020) Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B

    Google Scholar 

  90. Radhakrishnan J et al (2018) Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials 162:82–98

    CAS  PubMed  Google Scholar 

  91. Xiao H et al (2019) Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine 14:2011

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chow DC et al (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81(2):675–684

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bizzarri A et al (2006) Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis. Anal Chim Acta 573:48–56

    PubMed  Google Scholar 

  94. Harrison JS et al (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99(1):394–394

    CAS  PubMed  Google Scholar 

  95. Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond Ser B Biol Sci 271(912):261–272

    CAS  Google Scholar 

  96. Fermor B et al (2007) Oxygen, nitric oxide and articular cartilage. Eur Cell Mater 13:56–65

    CAS  PubMed  Google Scholar 

  97. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220(3):562–568

    CAS  PubMed  Google Scholar 

  98. Dollery CT, Bulpitt CJ, Kohner EM (1969) Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Investig Ophthalmol 8(6):588–594

    CAS  Google Scholar 

  99. Masamoto K, Tanishita K (2009) Oxygen transport in brain tissue. J Biomech Eng 131(7):074002

    PubMed  Google Scholar 

  100. Zhang K, Zhu L, Fan M (2011) Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci 4:5

    PubMed  PubMed Central  Google Scholar 

  101. Bahsoun S et al (2018) The role of dissolved oxygen levels on human mesenchymal stem cell culture success, regulatory compliance, and therapeutic potential. Stem Cells Dev 27(19):1303–1321

    PubMed  Google Scholar 

  102. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Park KM, Gerecht S (2014) Hypoxia-inducible hydrogels. Nat Commun 5:4075

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Blatchley M, Park KM, Gerecht S (2015) Designer hydrogels for precision control of oxygen tension and mechanical properties. J Mater Chem B 3(40):7939–7949

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sato A et al (2014) An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Biophys Res Commun 453(4):767–771

    CAS  PubMed  Google Scholar 

  106. Lesher-Pérez SC et al (2017) Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures. Biomater Sci 5(10):2106–2113

    PubMed  PubMed Central  Google Scholar 

  107. Sharon Gerecht DL, Park KM, Eisinger TSK (2019) WO2018017657 – Oxygen gradient hydrogel drug screening

    Google Scholar 

  108. Boyce MW et al (2020) Generating linear oxygen gradients across 3D cell cultures with block-layered oxygen controlled chips (BLOCCs). Anal Methods 12(1):18–24

    CAS  PubMed  Google Scholar 

  109. Polinkovsky M et al (2009) Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures. Lab Chip 9(8):1073–1084

    CAS  PubMed  Google Scholar 

  110. Erapaneedi R et al (2016) A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO J 35(1):102–113

    CAS  PubMed  Google Scholar 

  111. Vega SL et al (2018) Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat Commun 9(1):1–10

    CAS  Google Scholar 

  112. Tong X et al (2016) Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions. ACS Biomater Sci Eng 2(5):845–852

    CAS  PubMed  Google Scholar 

  113. Orsi G et al (2017) A new 3D concentration gradient maker and its application in building hydrogels with a 3D stiffness gradient. J Tissue Eng Regen Med 11(1):256–264

    CAS  PubMed  Google Scholar 

  114. Lozano AM et al (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–160

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG Project 398007461 488 “3D Dual-Gradient Systems for Functional Cell Screening”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Lavrentieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavrentieva, A. (2020). Gradient Hydrogels. In: Lavrentieva, A., Pepelanova, I., Seliktar, D. (eds) Tunable Hydrogels. Advances in Biochemical Engineering/Biotechnology, vol 178. Springer, Cham. https://doi.org/10.1007/10_2020_155

Download citation

Publish with us

Policies and ethics