Skip to main content

Digital Twins for Bioprocess Control Strategy Development and Realisation

  • Chapter
  • First Online:
Digital Twins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 177))

Abstract

New innovative Digital Twins can represent complex bioprocesses, including the biological, physico-chemical, and chemical reaction kinetics, as well as the mechanical and physical characteristics of the reactors and the involved peripherals. Digital Twins are an ideal tool for the rapid and cost-effective development, realisation and optimisation of control and automation strategies. They may be utilised for the development and implementation of conventional controllers (e.g. temperature, dissolved oxygen, etc.), as well as for advanced control strategies (e.g. control of substrate or metabolite concentrations, multivariable controls), and the development of complete bioprocess control. This chapter describes the requirements Digital Twins must fulfil to be used for bioprocess control strategy development, and implementation and gives an overview of research projects where Digital Twins or “early-stage” Digital Twins were used in this context. Furthermore, applications of Digital Twins for the academic education of future control and bioprocess engineers as well as for the training of future bioreactor operators will be described. Finally, a case study is presented, in which an “early-stage” Digital Twin was applied for the development of control strategies of the fed-batch cultivation of Saccharomyces cerevisiae.

Graphical Abstract

Development, realisation and optimisation of control strategies utilising Digital Twins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMBC:

Advanced and model-based control

CHO:

Chinese hamster ovary (mammalian cell)

DCU:

Digital control unit

DLL:

Dynamic link library

DO:

Dissolved oxygen

DoE:

Design of experiment

EtOH:

Ethanol

GUI:

Graphical user Interface

MPC:

Model predictive control

NMPC:

Nonlinear model predictive control

OLFO:

Open-loop-feedback-optimal strategy

OTS:

Operator training simulator

P:

Product (Ethanol)

P:

Proportional (P-controller)

P&ID:

Piping and instrumentation diagram

PCS:

Process control system

PI:

Proportional integral (PI-controller)

PID:

Proportional integral derivate (PID-controller)

RQ:

Respiratory quotient

S:

Substrate (Glucose)

SSF-BC:

Simultaneous saccharification, fermentation, and biocatalysis

STR:

Stirred tank reactor

X:

Dry biomass density (S. cerevisiae)

References

  1. Grieves M (2016) Origins of the digital twin concept: working paper

    Google Scholar 

  2. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. Air Force Vehicles: 22267B. https://doi.org/10.2514/6.2012-1818

  3. El Saddik A (2018) Digital twins: the convergence of multimedia technologies. IEEE MultiMedia 25:87–92. https://doi.org/10.1109/MMUL.2018.023121167

    Article  Google Scholar 

  4. He R, Chen G, Dong C et al (2019) Data-driven digital twin technology for optimized control in process systems. ISA Trans 95:221–234. https://doi.org/10.1016/j.isatra.2019.05.011

    Article  PubMed  Google Scholar 

  5. Zobel-Roos S, Schmidt A, Mestmäcker F et al (2019) Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a digital-twin? PRO 7:94. https://doi.org/10.3390/pr7020094

    Article  Google Scholar 

  6. Zhang C, Ji W (2019) Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop. Proc CIRP 83:624–629. https://doi.org/10.1016/j.procir.2019.04.095

    Article  Google Scholar 

  7. Dudley T, de Villiers P, Bouwer W et al (2008) The operator training simulator system for the pebble bed modular reactor (PBMR) plant. Nucl Eng Des 238:2908–2915. https://doi.org/10.1016/j.nucengdes.2007.12.028

    Article  CAS  Google Scholar 

  8. Appl C, Fittkau C, Moser A et al (2019) Adaptive, model-based control of Saccharomyces cerevisiae fed-batch cultivations. In: AIDIC SERVIZI SRL (ed) Book of abstracts: bridging science with technology, pp 1504–1505

    Google Scholar 

  9. Hass VC, Kuhnen F, Schoop K-M (2005) Rapid design of interactive operator-training simulators for training and education. In: 7th world congress of chemical engineering, WCCE 2005, 10th-14th July

    Google Scholar 

  10. Isimite J, Baganz F, Hass VC (2018) Operator training simulators for biorefineries: current position and future directions. J Chem Technol Biotechnol 93:1529–1541. https://doi.org/10.1002/jctb.5583

    Article  CAS  Google Scholar 

  11. Hass VC (2016) Operator training simulators for bioreactors. In: Mandenius C-F (ed) Bioreactors: design, operation and novel applications, vol 69. Wiley, Weinheim, pp 453–486

    Chapter  Google Scholar 

  12. Pavé A (2012) Modeling living systems: from cell to ecosystem. In: Environmental engineering series. ISTE Wiley, London

    Google Scholar 

  13. Hass VC, Knutzsch S, Gerlach I et al (2012) Towards the development of a training simulator for biorefineries. Chem Eng Trans:247–252. https://doi.org/10.3303/CET1229042

  14. Gerlach I, Hass V, Mandenius C-F (2015) Conceptual design of an operator training simulator for a bio-ethanol plant. PRO 3:664–683. https://doi.org/10.3390/pr3030664

    Article  Google Scholar 

  15. Blesgen A (2009) Entwicklung und Einsatz eines interaktiven Biogas-Echtzeit-Simulators. Dissertation, Universität Bremen

    Google Scholar 

  16. Blesgen A, Hass VC (2010) Efficient biogas production through process simulation †. Energy Fuel 24:4721–4727. https://doi.org/10.1021/ef9012483

    Article  CAS  Google Scholar 

  17. Hass VC, Kuntzsch S, Schoop K-M et al. (2014) Resource efficiency studies using a new operator training simulator for a bioethanol plant. In: PRES 2014, 17th conference on process integration, modelling and optimisation for energy saving and pollution reduction: PRES 2014, 23–27 August 2014, Prague, Czech Republic. AIDIC Associazione Italiana di Ingegneria Chimica ČSCHI Česká Společnost Chemického Inženýrství, Milano, pp 541–546

    Google Scholar 

  18. Honeywell (2020) UniSim competency suite. https://www.honeywellprocess.com/en-US/explore/products/advanced-applications/unisim/unisim-competency-suite/Pages/default.aspx. Accessed 18 Aug 2020

  19. CORYS (2020) Indiss Plus®. https://www.corys.com/en/indiss-plusr. Accessed 18 Aug 2020

  20. Ingenieurbüro Dr.-Ing.Schoop GmbH (2018) WinErs: process control and automation system on PC under Windows, Hamburg, Germany

    Google Scholar 

  21. Hass VC, Kuhnen F, Schoop K-M (2005) An environment for the development of operator training systems (OTS) from chemical engineering models. Comput Aided Chem Eng:289–293. https://doi.org/10.1016/S1570-7946(05)80170-1

  22. Perceptive Engineering (2020) PerceptiveAPC - key features and tools. https://www.perceptiveapc.com/software/features/. Accessed 18 Aug 2020

  23. DuPont Industrial Biosciences (2020) Operator training simulator and training solutions for STRATCO® alkylation - DuPont industrial biosciences. http://cleantechnologies.dupont.com/technologies/stratcor/stratcor-equipment-services/alkylation-technology-training-solutions/. Accessed 18 Aug 2020

  24. Aspen Technology (2008) Aspen OTS framework: best-in-class technology to configure and build operator training simulator applications. https://www.aspentech.com/uploadedfiles/products/templates/aspen_ots.pdf. Accessed 18 Aug 2020

  25. Wood (2018) ProDyn - operator training simulator software. https://www.woodplc.com/capabilities/digital-and-technology/software,-applications-and-analytics/prodyn-operator-training-simulator-software. Accessed 18 Aug 2020

  26. NovaTech (2017) Training simulators. NovaTech Process Control and Optimization. https://www.novatechweb.com/process-control/training-simulators/. Accessed 18 Aug 2020

  27. Outotec (2020) HSC Sim: process simulation module. https://www.outotec.com/products-and-services/technologies/digital-solutions/hsc-chemistry/hsc-sim-process-simulation-module/. Accessed 18 Aug 2020

  28. Protomation (2019) Custom made OTS. https://protomation.com/custom-made-ots/. Accessed 18 Aug 2020

  29. Siemens AG (2020) SIMIT Simulation. https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/simit.html. Accessed 18 Aug 2020

  30. SimGenics (2020) SimuPACT. https://www.simgenics.com/page/simupact. Accessed 18 Aug 2020

  31. Yokogawa (2020) Operator training simulator (OTS) which supports to acquire plant operation skills by using it with a dynamic virtual plant model. https://www.yokogawa.com/solutions/solutions/energy-management/operator-training-simulator/. Accessed 18 Aug 2020

  32. Hitzmann B, Scheper T (2018) Bioprozessanalytik und -steuerung. In: Chmiel H, Takors R, Weuster-Botz D (eds) Bioprozesstechnik. Springer, Berlin, pp 263–294

    Google Scholar 

  33. Hass VC, Pörtner R (2011) Praxis der Bioprozesstechnik: Mit virtuellem Praktikum, 2. Aufl. Spektrum Akad. Verl., Heidelberg

    Google Scholar 

  34. Baeza JA (2016) Principles of bioprocess control. In: Larroche C, Pandey A, Du G et al (eds) Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls. Elsevier Science, Saint Louis, pp 527–561

    Google Scholar 

  35. Pörtner R, Platas Barradas O, Frahm B et al (2016) Advanced process and control strategies for bioreactors. In: Larroche C, Pandey A, Du G et al (eds) Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls. Elsevier Science, Saint Louis, pp 463–493

    Google Scholar 

  36. Fenila F, Shastri Y (2016) Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resour Effici Technol 2:S96–S104. https://doi.org/10.1016/j.reffit.2016.11.006

    Article  Google Scholar 

  37. Moradi H, Saffar-Avval M, Bakhtiari-Nejad F (2011) Nonlinear multivariable control and performance analysis of an air-handling unit. Energ Buildings 43:805–813. https://doi.org/10.1016/j.enbuild.2010.11.022

    Article  Google Scholar 

  38. Alford JS (2006) Bioprocess control: advances and challenges. Comput Chem Eng 30:1464–1475. https://doi.org/10.1016/j.compchemeng.2006.05.039

    Article  CAS  Google Scholar 

  39. Morales-Rodríguez R, Capron M, Hussom JK et al. (2010) Controlled fed-batch operation for improving cellulose hydrolysis in 2G bioethanol production. In: 20th European symposium on computer aided process engineering – ESCAPE20

    Google Scholar 

  40. Nyttle VG, Chidambaram M (1993) Fuzzy logic control of a fed-batch fermentor. Bioprocess Eng 9:115–118. https://doi.org/10.1007/BF00369040

    Article  CAS  Google Scholar 

  41. Álvarez L, García J, Urrego D (2006) Control of a fedbatch bioprocess using nonlinear model predictive control. IFAC Proc 39:347–352. https://doi.org/10.3182/20060402-4-BR-2902.00347

    Article  Google Scholar 

  42. Chang L, Liu X, Henson MA (2016) Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models. J Process Control 42:137–149. https://doi.org/10.1016/j.jprocont.2016.04.012

    Article  CAS  Google Scholar 

  43. Craven S, Whelan J, Glennon B (2014) Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control 24:344–357. https://doi.org/10.1016/j.jprocont.2014.02.007

    Article  CAS  Google Scholar 

  44. Li M (2015) Adaptive predictive control by open-loop-feedback-optimal controller for cultivation processes. Dissertation, Jacobs University

    Google Scholar 

  45. Frahm B, Lane P, Märkl H et al (2003) Improvement of a mammalian cell culture process by adaptive, model-based dialysis fed-batch cultivation and suppression of apoptosis. Bioprocess Biosyst Eng 26:1–10. https://doi.org/10.1007/s00449-003-0335-z

    Article  CAS  PubMed  Google Scholar 

  46. Frahm B, Hass VC, Lane P et al (2003) Fed-Batch-Kultivierung tierischer Zellen - Eine Herausforderung zur adaptiven, modellbasierten Steuerung. Chemi Ingen Tech 75:457–460. https://doi.org/10.1002/cite.200390093

    Article  CAS  Google Scholar 

  47. Frahm B, Lane P, Atzert H et al (2002) Adaptive, model-based control by the open-loop-feedback-optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells. Biotechnol Prog 18:1095–1103. https://doi.org/10.1021/bp020035y

    Article  CAS  PubMed  Google Scholar 

  48. Zacher S, Reuter M (2017) Regelungstechnik für Ingenieure. Springer Fachmedien Wiesbaden, Wiesbaden

    Book  Google Scholar 

  49. Grüne L, Pannek J (2017) Nonlinear model predictive control. Springer, Cham

    Book  Google Scholar 

  50. Hodge DB, Karim MN, Schell DJ et al (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152:88–107. https://doi.org/10.1007/s12010-008-8217-0

    Article  CAS  PubMed  Google Scholar 

  51. Bück A, Casciatori FP, Thoméo JC et al (2015) Model-based control of enzyme yield in solid-state fermentation. Proc Eng 102:362–371. https://doi.org/10.1016/j.proeng.2015.01.163

    Article  CAS  Google Scholar 

  52. Luttmann R, Munack A, Thoma M (1985) Mathematical modelling, parameter identification and adaptive control of single cell protein processes in tower loop bioreactors. In: Fiechter A, Aiba S, Bungoy HR et al (eds) Agricultural feedstock and waste treatment and engineering, vol 32. Springer, Berlin, pp 95–205

    Chapter  Google Scholar 

  53. Witte VC, Munack A, Märkl H (1996) Mathematische Modellierung und adaptive Prozeßsteuerung der Kultivierung von Cyathus striatus. Zugl.: Hamburg-Harburg, Techn. Univ., Arbeitsbereich Regelungstechnik und Systemdynamik [i.e. Arbeitsbereich Regelungstechnik] und Arbeitsbereich Bioprozess- und Bioverfahrenstechnik, Diss., 1996, Als Ms. gedr. Fortschritt-Berichte/VDI Reihe 17, Biotechnik, vol 144. VDI-Verl., Düsseldorf

    Google Scholar 

  54. Patle DS, Ahmad Z, Rangaiah GP (2014) Operator training simulators in the chemical industry: review, issues, and future directions. Rev Chem Eng 30. https://doi.org/10.1515/revce-2013-0027

  55. Cameron D, Clausen C, Morton W (2002) Dynamic simulators for operator training. In: Braunschweig B, Gani R (eds) Software architectures and tools for computer aided process engineering, vol 11, 1st edn. Elsevier, Amsterdam, pp 393–431

    Google Scholar 

  56. Pörtner R, Platas-Barradas O, Gradkowski J et al (2011) “BioProzessTrainer” as training tool for design of experiments. BMC Proc 5(Suppl 8):P62. https://doi.org/10.1186/1753-6561-5-S8-P62

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gerlach I, Hass VC, Brüning S et al (2013) Virtual bioreactor cultivation for operator training and simulation: application to ethanol and protein production. J Chem Technol Biotechnol 88:2159–2168. https://doi.org/10.1002/jctb.4079

    Article  CAS  Google Scholar 

  58. Reinig G, Winter P, Linge V et al (1998) Training simulators: engineering and use. Chem Eng Technol 21:711–716. https://doi.org/10.1002/(SICI)1521-4125(199809)21:9<711:AID-CEAT711>3.0.CO;2-H

    Article  CAS  Google Scholar 

  59. Ahmad AL, Low EM, Abd Shukor SR (2010) Safety improvement and operational enhancement via dynamic process simulator: a review. Chem Prod Process Model 5. https://doi.org/10.2202/1934-2659.1502

  60. González Hernández Y, Jáuregui Haza UJ, Albasi C et al (2014) Development of a submerged membrane bioreactor simulator: a useful tool for teaching its functioning. Educ Chem Eng 9:e32–e41. https://doi.org/10.1016/j.ece.2014.03.001

    Article  Google Scholar 

  61. Gerlach I, Brüning S, Gustavsson R et al (2014) Operator training in recombinant protein production using a structured simulator model. J Biotechnol 177:53–59. https://doi.org/10.1016/j.jbiotec.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  62. Ahmad Z, Patle DS, Rangaiah GP (2016) Operator training simulator for biodiesel synthesis from waste cooking oil. Process Saf Environ Prot 99:55–68. https://doi.org/10.1016/j.psep.2015.10.002

    Article  CAS  Google Scholar 

  63. Balaton MG, Nagy L, Szeifert F (2013) Operator training simulator process model implementation of a batch processing unit in a packaged simulation software. Comput Chem Eng 48:335–344. https://doi.org/10.1016/j.compchemeng.2012.09.005

    Article  CAS  Google Scholar 

  64. Gerlach I, Mandenius C-F, Hass VC (2015) Operator training simulation for integrating cultivation and homogenisation in protein production. Biotechnol Rep (Amst) 6:91–99. https://doi.org/10.1016/j.btre.2015.03.002

    Article  Google Scholar 

  65. Hass VC, Kuhnen F, Schoop K-M (2005) An environment for the development of operator training systems (OTS) from chemical engineering models, vol 20. Elsevier, Amsterdam, pp 289–293. https://doi.org/10.1016/S1570-7946(05)80170-1

    Book  Google Scholar 

  66. Brüning S, Gerlach I, Pörtner R et al (2017) Modeling suspension cultures of microbial and mammalian cells with an adaptable six-compartment model. Chem Eng Technol 40:956–966. https://doi.org/10.1002/ceat.201600639

    Article  CAS  Google Scholar 

  67. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  68. Xiong Z-Q, Guo M-J, Guo Y-X et al (2010) RQ feedback control for simultaneous improvement of GSH yield and GSH content in Saccharomyces cerevisiae T65. Enzym Microb Technol 46:598–602. https://doi.org/10.1016/j.enzmictec.2010.03.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Fittkau and S. Dreßler for their excellent laboratory work at Furtwangen University. We gratefully appreciate that parts of the presented work have been funded by the German Federal Ministry of Education and Research, Innovation Alliance prot P.S.I. (FKZ: 031B0405C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker C. Hass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Appl, C., Moser, A., Baganz, F., Hass, V.C. (2020). Digital Twins for Bioprocess Control Strategy Development and Realisation. In: Herwig, C., Pörtner, R., Möller, J. (eds) Digital Twins. Advances in Biochemical Engineering/Biotechnology, vol 177. Springer, Cham. https://doi.org/10.1007/10_2020_151

Download citation

Publish with us

Policies and ethics