Skip to main content

Droplet Microfluidics for Microbial Biotechnology

  • Chapter
  • First Online:
Microfluidics in Biotechnology

Abstract

Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouzes E, Medkova M, Savenelli N et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Nat Acad Sci U S A 106(34):14195–14200

    Article  CAS  Google Scholar 

  2. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zilionis R, Nainys J, Veres A et al (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12(1):44–73

    Article  CAS  PubMed  Google Scholar 

  5. Rotem A, Ram O, Shoresh N et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng GXY, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borgstrom E, Redin D, Lundin S et al (2015) Phasing of single DNA molecules by massively parallel barcoding. Nat Commun 6:7173

    Article  CAS  PubMed  Google Scholar 

  8. Lan F, Demaree B, Ahmed N et al (2017) Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 35(7):640–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. El Debs B, Utharala R, Balyasnikova IV et al (2012) Functional single-cell hybridoma screening using droplet-based microfluidics. Proc Nat Acad Sci U S A 109(29):11570–11575

    Article  Google Scholar 

  10. Mazutis L, Gilbert J, Ung WL et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eyer K, Doineau RCL, Castrillon CE et al (2017) Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat Biotechnol 35(10):977–982

    Article  CAS  PubMed  Google Scholar 

  12. Agresti JJ, Antipov E, Abate AR et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Nat Acad Sci U S A 107(9):4004–4009

    Article  CAS  Google Scholar 

  13. Fischlechner M, Schaerli Y, Mohamed MF et al (2014) Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat Chem 6(9):791–796

    Article  CAS  PubMed  Google Scholar 

  14. Obexer R, Godina A, Garrabou X et al (2017) Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat Chem 9(1):50–56

    Article  CAS  PubMed  Google Scholar 

  15. Larsen AC, Dunn MR, Hatch A et al (2016) A general strategy for expanding polymerase function by droplet microfluidics. Nat Commun 7:11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachmann H, Fischlechner M, Rabbers I et al (2013) Availability of public goods shapes the evolution of competing metabolic strategies. Proc Nat Acad Sci U S A 110(35):14302–14307

    Article  CAS  Google Scholar 

  17. Ma L, Kim J, Hatzenpichler R et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome project’s most wanted taxa. Proc Nat Acad Sci U S A 111(27):9768–9773

    Article  CAS  Google Scholar 

  18. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Traxler MF, Kolter R (2015) Natural products in soil microbe interactions and evolution. Nat Prod Rep 32(7):956–970

    Article  CAS  PubMed  Google Scholar 

  20. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl 48(32):5908–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16(5):636–642

    Article  CAS  PubMed  Google Scholar 

  22. Huang MT, Bai YP, Sjostrom SL et al (2015) Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Nat Acad Sci U S A 112(34):E4689–E4696

    Article  CAS  Google Scholar 

  23. Colin PY, Kintses B, Gielen F et al (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008

    Article  CAS  PubMed  Google Scholar 

  24. Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072

    Article  CAS  PubMed  Google Scholar 

  25. Kaminski TS, Scheler O, Garstecki P (2016) Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16(12):2168–2187

    Article  CAS  PubMed  Google Scholar 

  26. Vincent ME, Liu W, Haney EB et al (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 39(3):974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi W, Qin J, Ye N et al (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8(9):1432–1435

    Article  CAS  PubMed  Google Scholar 

  28. Schmitz CH, Rowat AC, Köster S et al (2009) Dropspots: a picoliter array in a microfluidic device. Lab Chip 9(1):44–49

    Article  CAS  PubMed  Google Scholar 

  29. Huebner A, Bratton D, Whyte G et al (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9(5):692–698

    Article  CAS  PubMed  Google Scholar 

  30. Bjork SM, Sjostrom SL, Andersson-Svahn H et al (2015) Metabolite profiling of microfluidic cell culture conditions for droplet based screening. Biomicrofluidics 9(4):044128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Svensson CM, Shvydkiv O, Dietrich S et al (2019) Coding of experimental conditions in microfluidic droplet assays using colored beads and machine learning supported image analysis. Small 15(4):1–14

    Article  CAS  Google Scholar 

  32. Mahler L, Tovar M, Weber T et al (2015) Enhanced and homogeneous oxygen availability during incubation of microfluidic droplets. RSC Adv 5(123):101871–101878

    Article  CAS  Google Scholar 

  33. Tovar M, Mahler L, Buchheim S et al (2020) Monitoring and external control of pH in microfluidic droplets during microbial culturing. Microb Cell Fact 19(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joensson HN, Andersson Svahn H (2012) Droplet microfluidics – a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192

    Article  CAS  Google Scholar 

  35. Rakszewska A, Tel J, Chokkalingam V et al (2014) One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Mater 6(10):e133–e133

    Article  CAS  Google Scholar 

  36. Lareau CA, Duarte FM, Chew JG et al (2019) Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol 37(8):916–924

    Article  CAS  PubMed  Google Scholar 

  37. Li M, van Zee M, Riche CT et al (2018) A gelatin microdroplet platform for high-throughput sorting of hyperproducing single-cell-derived microalgal clones. Small 14(44):1–9

    Article  CAS  Google Scholar 

  38. Terekhov SS, Smirnov IV, Stepanova AV et al (2017) Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc Nat Acad Sci U S A 114(10):2550–2555

    Article  CAS  Google Scholar 

  39. Wang BL, Ghaderi A, Zhou H et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowman EK, Alper HS (2019) Microdroplet-assisted screening of biomolecule production for metabolic engineering applications. Trends Biotechnol 38(7):701–714

    Article  CAS  PubMed  Google Scholar 

  41. Wagner JM, Liu L, Yuan SF et al (2018) A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: riboflavin overproduction in Yarrowia lipolytica. Metab Eng 47:346–356

    Article  CAS  PubMed  Google Scholar 

  42. Najah M, Calbrix R, Mahendra-Wijaya IP et al (2014) Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem Biol 21(12):1722–1732

    Article  CAS  PubMed  Google Scholar 

  43. Kim HS, Hsu S-C, Han S-I et al (2017) High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Plant Direct 1(3):e00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammar P, Angermayr SA, Sjostrom SL et al (2015) Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. Biotechnol Biofuels 8(1):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Godina A (2013) In vivo and in vitro direct evolution of enzymes using droplet-based microfluidics. In: Chemical sciences. University of Strasbourg, Strasbourg

    Google Scholar 

  46. Thibault D, Jensen PA, Wood S et al (2019) Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes. Nat Commun 10(1):5729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cottinet D, Condamine F, Bremond N et al (2016) Lineage tracking for probing heritable phenotypes at single-cell resolution. PLoS One 11(4):e0152395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boitard L, Cottinet D, Kleinschmitt C et al (2012) Monitoring single-cell bioenergetics via the coarsening of emulsion droplets. Proc Nat Acad Sci U S A 109(19):7181–7186

    Article  CAS  Google Scholar 

  49. Scheler O, Makuch K, Debski PR et al (2020) Droplet-based digital antibiotic susceptibility screen reveals single-cell clonal heteroresistance in an isogenic bacterial population. Sci Rep 10:3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Postek W, Gargulinski P, Scheler O et al (2018) Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. Lab Chip 18(23):3668–3677

    Article  CAS  PubMed  Google Scholar 

  51. Liu X, Painter RE, Enesa K et al (2016) High-throughput screening of antibiotic-resistant bacteria in picodroplets. Lab Chip 16(9):1636–1643

    Article  CAS  PubMed  Google Scholar 

  52. Dong L, Chen D-W, Liu S-J et al (2016) Automated chemotactic sorting and single-cell cultivation of microbes using droplet microfluidics. Sci Rep 6(1):24192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang C-Y, Dong L, Zhao J-K et al (2016) High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 82(7):2210–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Q, Wang T, Zhou Q et al (2017) Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep 7(1):41192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsu RH, Clark RL, Tan JW et al (2019) Microbial interaction network inference in microfluidic droplets. Cell Systems 9(3):229–242.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Watterson WJ, Tanyeri M, Watson AR et al (2019) High-throughput isolation and sorting of gut microbes reduce biases of traditional cultivation strategies. bioRxiv:759969

    Google Scholar 

  57. Ota Y, Saito K, Takagi T et al (2019) Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS One 14(4):e0214533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohan J, Pelle B, Nath P et al (2019) High-throughput phenotyping of cell-to-cell interactions in gel microdroplet pico-cultures. Biotechniques 66(5):218–224

    Article  CAS  PubMed  Google Scholar 

  59. Kehe J, Kulesa A, Ortiz A et al (2019) Massively parallel screening of synthetic microbial communities. Proc Nat Acad Sci U S A 116(26):12804–12809

    Article  CAS  Google Scholar 

  60. Terekhov SS, Smirnov IV, Malakhova MV et al (2018) Ultrahigh-throughput functional profiling of microbiota communities. Proc Nat Acad Sci U S A 115(38):9551–9556

    Article  CAS  Google Scholar 

  61. Egli T (2015) Microbial growth and physiology: a call for better craftsmanship. Front Microbiol:6(287)

    Google Scholar 

  62. Yang H, Gijs MAM (2018) Micro-optics for microfluidic analytical applications. Chem Soc Rev 47(4):1391–1458

    Article  CAS  PubMed  Google Scholar 

  63. Tung Y-C, Huang N-T, Oh B-R et al (2012) Optofluidic detection for cellular phenotyping. Lab Chip 12(19):3552–3565

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Fang Q (2013) Analytical detection techniques for droplet microfluidics--a review. Anal Chim Acta 787:24–35

    Article  CAS  PubMed  Google Scholar 

  65. J-R C, Song H, Sung JH et al (2016) Microfluidic assay-based optical measurement techniques for cell analysis: a review of recent progress. Biosens Bioelectron 77:227–236

    Article  CAS  Google Scholar 

  66. Qiao Y, Zhao X, Zhu J et al (2018) Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system. Lab Chip 18(1):190–196

    Article  CAS  Google Scholar 

  67. Kaushik AM, Hsieh K, Chen L et al (2017) Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron 97:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scheler O, Kaminski TS, Ruszczak A et al (2016) Dodecylresorufin (C12R) outperforms resorufin in microdroplet bacterial assays. ACS Appl Mater Interfaces 8(18):11318–11325

    Article  CAS  PubMed  Google Scholar 

  69. Abalde-Cela S, Gould A, Liu X et al (2015) High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform. J R Soc Interface 12(106):20150216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kang DK, Gong X, Cho S et al (2015) 3D droplet microfluidic systems for high-throughput biological experimentation. Anal Chem 87(21):10770–10778

    Article  CAS  PubMed  Google Scholar 

  71. Scanlon TC, Dostal SM, Griswold KE (2014) A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 111(2):232–243

    Article  CAS  PubMed  Google Scholar 

  72. Martin K, Henkel T, Baier V et al (2003) Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip 3(3):202–207

    Article  CAS  PubMed  Google Scholar 

  73. Jusková P, Schmid YRF, Stucki A et al (2019) “Basicles”: microbial growth and production monitoring in giant lipid vesicles. ACS Appl Mater Interfaces 11(38):34698–34706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang S, Srimani JK, Lee AJ et al (2015) Dynamic control and quantification of bacterial population dynamics in droplets. Biomaterials 61:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baraban L, Bertholle F, Salverda MLM et al (2011) Millifluidic droplet analyser for microbiology. Lab Chip 11(23):4057–4057

    Article  CAS  PubMed  Google Scholar 

  76. Mahler L, Wink K, Beulig RJ et al (2018) Detection of antibiotics synthetized in microfluidic picolitre-droplets by various actinobacteria. Sci Rep 8(1):1–11

    Google Scholar 

  77. Burmeister A, Hilgers F, Langner A et al (2019) A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip 19(1):98–110

    Article  CAS  Google Scholar 

  78. Tovar M, Hengoju S, Weber T et al (2019) One sensor for multiple colors: fluorescence analysis of microdroplets in microbiological screenings by frequency-division multiplexing. Anal Chem 91(4):3055–3061

    Article  CAS  PubMed  Google Scholar 

  79. Gielen F, Hours R, Emond S et al (2016) Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc Nat Acad Sci U S A 113(47):E7383–E7389

    Article  CAS  Google Scholar 

  80. Churski K, Ruszczak A, Jakiela S et al (2015) Droplet microfluidic technique for the study of fermentation. Micromachines (Basel) 6(10):1514–1525

    Article  Google Scholar 

  81. Siltanen CA, Cole RH, Poust S et al (2018) An oil-free picodrop bioassay platform for synthetic biology. Sci Rep 8(1):7913–7913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oscar S-V, Fernando O-CL, del Pilar C-MM (2017) Total polyphenols content in white wines on a microfluidic flow injection analyzer with embedded optical fibers. Food Chem 221:1062–1068

    Article  CAS  PubMed  Google Scholar 

  83. Ottevaere H, Van Overmeire S, Albero J et al (2015) Plastic light coupler for absorbance detection in silicon microfluidic channels. Microfluid Nanofluidics 18(4):559–568

    Article  CAS  Google Scholar 

  84. Deal KS, Easley CJ (2012) Self-regulated, droplet-based sample chopper for microfluidic absorbance detection. Anal Chem 84(3):1510–1516

    Article  CAS  PubMed  Google Scholar 

  85. Yang T, Stavrakis S, de Mello A (2017) A high-sensitivity, integrated absorbance and fluorescence detection scheme for probing picoliter-volume droplets in segmented flows. Anal Chem 89(23):12880–12887

    Article  CAS  PubMed  Google Scholar 

  86. Yu JQ, Huang W, Chin LK et al (2014) Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab Chip 14:3519–3524

    Article  CAS  PubMed  Google Scholar 

  87. Zang E, Brandes S, Tovar M et al (2013) Real-time image processing for label-free enrichment of actinobacteria cultivated in picolitre droplets. Lab Chip 13(18):3707–3713

    Article  CAS  PubMed  Google Scholar 

  88. Girault M, Kim H, Arakawa H et al (2017) An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci Rep 7:40072–40072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Golberg A, Linshiz G, Kravets I et al (2014) Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PLoS One 9(1):4–12

    Article  CAS  Google Scholar 

  90. Anagnostidis V, Sherlock B, Metz J et al (2020) Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures. Lab Chip 20(5):889–900

    Article  CAS  PubMed  Google Scholar 

  91. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    Article  CAS  PubMed  Google Scholar 

  92. Song C, Nguyen N-T, Tan SH (2017) Toward the commercialization of optofluidics. Microfluidics Nanofluidics 21(8):139

    Article  Google Scholar 

  93. Hengoju S, Wohlfeil S, Munser AS et al (2020) Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets. Biomicrofluidics 14(2):024109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cahill BP, Land R, Nacke T et al (2011) Contactless sensing of the conductivity of aqueous droplets in segmented flow. Sens Actuators B 159(1):286–293

    Article  CAS  Google Scholar 

  95. Moiseeva EV, Fletcher AA, Harnett CK (2011) Thin-film electrode based droplet detection for microfluidic systems. Sens Actuators B 155(1):408–414

    Article  CAS  Google Scholar 

  96. Fan W, Chen X, Ge Y et al (2019) Single-cell impedance analysis of osteogenic differentiation by droplet-based microfluidics. Biosens Bioelectron 145:111730–111730

    Article  CAS  PubMed  Google Scholar 

  97. Duarte LC, Figueredo F, Ribeiro LEB et al (2019) Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Anal Chim Acta 1071:36–43

    Article  CAS  PubMed  Google Scholar 

  98. Küster SK, Fagerer SR, Verboket PE et al (2013) Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. Anal Chem 85(3):1285–1289

    Article  CAS  PubMed  Google Scholar 

  99. Gasilova N, Yu QL, Qiao L et al (2014) On-chip spyhole mass spectrometry for droplet-based microfluidics. Angew Chem Int Ed Engl 53(17):4408–4412

    Article  CAS  PubMed  Google Scholar 

  100. Wink K, Mahler L, Beulig JR et al (2018) An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets. Anal Bioanal Chem 410(29):7679–7687

    Article  CAS  PubMed  Google Scholar 

  101. Holland-Moritz DA, Wismer M, Mann B et al (2020) Mass activated droplet sorting (MADS) enables high throughput screening of enzymatic reactions at nanoliter scale. Angew Chem Int Ed 59(11):4470–4477

    Article  CAS  Google Scholar 

  102. Girault M, Beneyton T, Pekin D et al (2018) High-content screening of plankton alkaline phosphatase activity in microfluidics. Anal Chem 90(6):4174–4181

    Article  CAS  PubMed  Google Scholar 

  103. Huebner A, Olguin LF, Bratton D et al (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896

    Article  CAS  PubMed  Google Scholar 

  104. He R, Ding R, Heyman JA et al (2019) Ultra-high-throughput picoliter-droplet microfluidics screening of the industrial cellulase-producing filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol 46(11):1603–1610

    Article  CAS  PubMed  Google Scholar 

  105. Beneyton T, Wijaya IPM, Postros P et al (2016) High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci Rep 6(1):27223–27223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beneyton T, Thomas S, Griffiths AD et al (2017) Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica. Microb Cell Fact 16(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Beneyton T, Coldren F, Baret J-C et al (2014) CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. Analyst 139:3314–3323

    Article  CAS  PubMed  Google Scholar 

  108. Meyer A, Pellaux R, Potot S et al (2015) Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem 7(8):673–678

    Article  CAS  PubMed  Google Scholar 

  109. Sklodowska K, Debski PR, Michalski JA et al (2018) Simultaneous measurement of viscosity and optical density of bacterial growth and death in a microdroplet. Micromachines (Basel) 9(5):251

    Article  Google Scholar 

  110. Walter A, März A, Schumacher W et al (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11(6):1013–1021

    Article  CAS  PubMed  Google Scholar 

  111. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes – a review. Nat Prod Rep 33(8):988–1005

    Article  CAS  PubMed  Google Scholar 

  112. Bergmann S, Schümann J, Scherlach K et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3(4):213–217

    Article  CAS  PubMed  Google Scholar 

  113. Hertweck C (2009) Hidden biosynthetic treasures brought to light. Nat Chem Biol 5(7):450–452

    Article  CAS  PubMed  Google Scholar 

  114. Petersen L-E, Kellermann MY, Schupp PJ (2020) Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology. In: Jungblut S, Liebich V, Bode-Dalby M (eds) YOUMARES 9 – the oceans: our research, our future: proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Springer, Cham, pp 159–180

    Chapter  Google Scholar 

  115. Milshteyn A, Colosimo DA, Brady SF (2018) Accessing bioactive natural products from the human microbiome. Cell Host Microbe 23(6):725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Villa MM, Bloom RJ, Silverman JD et al (2019) High-throughput isolation and culture of human gut bacteria with droplet microfluidics. bioRxiv:630822

    Google Scholar 

  117. Mahler L, Niehs S, Martin K et al (2019) Highly parallelized microfluidic droplet cultivation and prioritization on antibiotic producers from complex natural microbial communities. bioRxiv. https://doi.org/10.1101/2019.12.18.877530

  118. Hutter B, Fischer C, Jacobi A et al (2004) Panel of Bacillus subtilis reporter strains indicative of various modes of action. Antimicrob Agents Chemother 48(7):2588–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kang W, Sarkar S, Lin ZS et al (2019) Ultrafast parallelized microfluidic platform for antimicrobial susceptibility testing of gram positive and negative bacteria. Anal Chem 91(9):6242–6249

    Article  CAS  PubMed  Google Scholar 

  120. Millet LJ, Velez JM, Michener JK (2018) Genetic selection for small molecule production in competitive microfluidic droplets. bioRxiv:469007

    Google Scholar 

  121. Boedicker JQ, Li L, Kline TR et al (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma L, Datta SS, Karymov MA et al (2014) Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integr Biol (Camb) 6(8):796–805

    Article  CAS  Google Scholar 

  123. Hu B, Xu B, Yun J et al (2020) High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge. Lab Chip 20(2):363–372

    Article  PubMed  Google Scholar 

  124. Liu W, Kim HJ, Lucchetta EM et al (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lauffenburger D, Linderman J (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, Oxford

    Google Scholar 

  126. Park J, Kerner A, Burns MA et al (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6(2):e17019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jarosz DF, Brown JCS, Walker GA et al (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158(5):1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huys GR, Raes J (2018) Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Curr Opin Microbiol 44:1–8

    Article  CAS  PubMed  Google Scholar 

  129. Ge Z, Girguis PR, Buie CR (2016) Nanoporous microscale microbial incubators. Lab Chip 16(3):480–488

    Article  CAS  PubMed  Google Scholar 

  130. Devi R, Madhavan Nampoothiri K, Sukumaran RK et al (2020) Lipase of Pseudomonas guariconesis as an additive in laundry detergents and transesterification biocatalysts. J Basic Microbiol 60(2):112–125

    Article  CAS  PubMed  Google Scholar 

  131. Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17(3):197–203

    Article  CAS  PubMed  Google Scholar 

  132. Austin HP, Allen MD, Donohoe BS et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Nat Acad Sci U S A 115(19):E4350

    Article  CAS  Google Scholar 

  133. Yang Y, Yang J, Wu W-M et al (2015) Biodegradation and mineralization of polystyrene by plastic-aating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086

    Article  CAS  PubMed  Google Scholar 

  134. Autour A, Ryckelynck M (2017) Ultrahigh-throughput improvement and discovery of enzymes using droplet-based microfluidic screening. Micromachines (Basel) 8(4):128

    Article  Google Scholar 

  135. Guo MT, Rotem A, Heyman JA et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    Article  CAS  PubMed  Google Scholar 

  136. Schutz SS, Beneyton T, Baret JC et al (2019) Rational design of a high-throughput droplet sorter. Lab Chip 19(13):2220–2232

    Article  CAS  PubMed  Google Scholar 

  137. Obexer R, Pott M, Zeymer C et al (2016) Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Protein Eng Des Sel 29(9):355–366

    Article  CAS  PubMed  Google Scholar 

  138. Håti AG, Bassett DC, Ribe JM et al (2016) Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab Chip 16(19):3718–3727

    Article  CAS  PubMed  Google Scholar 

  139. Schaerli Y (2018) Bacterial microcolonies in gel beads for high-throughput screening. Bio Protoc 8(13):e2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma C, Tan ZL, Lin Y et al (2019) Gel microdroplet-based high-throughput screening for directed evolution of xylanase-producing Pichia pastoris. J Biosci Bioeng 128(6):662–668

    Article  CAS  PubMed  Google Scholar 

  141. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117(12):7964–8040

    Article  CAS  PubMed  Google Scholar 

  142. Theberge AB, Courtois F, Schaerli Y et al (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49(34):5846–5868

    Article  CAS  Google Scholar 

  143. Kintses B, Hein C, Mohamed MF et al (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19(8):1001–1009

    Article  CAS  PubMed  Google Scholar 

  144. Karamitros CS, Morvan M, Vigne A et al (2020) Bacterial expression systems for enzymatic activity in droplet-based microfluidics. Anal Chem 92(7):4908–4916

    Article  CAS  PubMed  Google Scholar 

  145. Debon A, Pott M, Obexer R et al (2019) Ultrahigh-throughput screening enables efficient single-round oxidase remodelling. Nat Cat 2(9):740–747

    Article  CAS  Google Scholar 

  146. Romero PA, Tran TM, Abate AR (2015) Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc Nat Acad Sci U S A 112(23):7159–7164

    Article  CAS  Google Scholar 

  147. Gielen F, Colin P-Y, Mair P et al (2018) Ultrahigh-throughput screening of single-cell lysates for directed evolution and functional metagenomics. In: Bornscheuer U, Höhne M (eds) Protein engineering – methods and protocols. Humana Press, Totowa

    Google Scholar 

  148. Ma F, Chung MT, Yao Y et al (2018) Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat Commun 9(1):1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fujitani H, Tsuda S, Ishii T et al (2019) High-throughput screening of high protein producer budding yeast using gel microdrop technology. bioRxiv:830596

    Google Scholar 

  150. Wang G, Björk SM, Huang M et al (2019) RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in Saccharomyces cerevisiae. Proc Nat Acad Sci U S A 116(19):9324–9332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam A. Rosenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hengoju, S., Tovar, M., Man, D.K.W., Buchheim, S., Rosenbaum, M.A. (2020). Droplet Microfluidics for Microbial Biotechnology. In: Bahnemann, J., Grünberger, A. (eds) Microfluidics in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 179. Springer, Cham. https://doi.org/10.1007/10_2020_140

Download citation

Publish with us

Policies and ethics