Skip to main content

Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability

  • Chapter
  • First Online:
Alkaliphiles in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 172))

Abstract

Concrete is one of the most commonly used building materials ever used. Despite it is a very important and common construction material, concrete is very sensitive to crack formation and requires repair. A variety of chemical-based techniques and materials have been developed to repair concrete cracks. Although the use of these chemical-based repair systems are the best commercially available choices, there have also been concerns related to their use. These repair agents suffer from inefficiency and unsustainability. Most of the products are expensive and susceptible to degradation, exhibit poor bonding to the cracked concrete surfaces, and are characterized by different physical properties such as thermal expansion coefficients which are different to that of concrete. Moreover, many of these repair agents contain chemicals that pose environmental and health hazards. Thus, there has been interest in developing concrete crack repair agents that are efficient, long lasting, safe, and benign to the environment and exhibit physical properties which resemble that of the concrete. The search initiated by these desires brought the use of biomineralization processes as tools in mending concrete cracks. Among biomineralization processes, microbially initiated calcite precipitation has emerged as an interesting alternative to the existing chemical-based concrete crack repairing system. Indeed, results of several studies on the use of microbial-based concrete repair agents revealed the remarkable potential of this approach in the fight against concrete deterioration. In addition to repairing existing concrete cracks, microorganisms have also been considered to make protective surface coating (biodeposition) on concrete structures and in making self-healing concrete.

Even though a wide variety of microorganisms can precipitate calcite, the nature of concrete determines their applicability. One of the important factors that determine the applicability of microbes in concrete is pH. Concrete is highly alkaline in nature, and hence the microbes envisioned for this application are alkaliphilic or alkali-tolerant. This work reviews the available information on applications of microbes in concrete: repairing existing cracks, biodeposition, and self-healing. Moreover, an effort is made to discuss biomineralization processes that are relevant to extend the durability of concrete structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ACDC:

Activated compact denitrifying core

BCM:

Biologically controlled mineralization

BIM:

Biologically induced mineralization

CERUP:

Cyclic EnRiched Ureolytic Powder

EPS:

Extracellular polymeric substances

MICCP:

Microbial-induced calcium carbonate precipitation

PCB:

Polychlorinated biphenyl

RH:

Relative humidity

References

  1. Van Tittelboom K, De Belie N (2013) Self-healing in cementitious materials – a review. Materials (Basel) 6:2182–2217

    Google Scholar 

  2. De Muynck W, Cox K, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Google Scholar 

  3. De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38:1005–1014

    Google Scholar 

  4. Van Tittelboom K, de Belie N (2010) Self-healing concrete: suitability of different healing agents. Int J 3R’s 1:12–21

    Google Scholar 

  5. Dhami N, Mukherjee A, Reddy MS (2012) Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed) Advanced topics in biomineralization. IntechOpen, New York, pp 137–164. https://doi.org/10.5772/31124

    Chapter  Google Scholar 

  6. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:1–21

    Google Scholar 

  7. Cailleux E, Pollet V (2009) Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars. In: Proceedings of 2nd international conference on self-healing materials, Chicago, IL, 28 June–1 July

    Google Scholar 

  8. Alonso C, Andrade C, Rodriguez J, Diez JM (1998) Factors controlling cracking of concrete affected by reinforcement corrosion. Mater Struct 31:435–441

    CAS  Google Scholar 

  9. Wang J, Tittelboom KV, De Belie N, Verstraete W (2012) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26:532–540

    Google Scholar 

  10. Wiktor VAC, Jonkers HM (2011) Quantification of crack-healing in novel bacteria based self-healing concrete. Cem Concr Compos 33:763–770

    CAS  Google Scholar 

  11. Wang J, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 58:110–119

    Google Scholar 

  12. Zhang P, Wittmann FH, Haist M, Müller HS, Vontobel P, Zhao TJ (2014) Water penetration into micro-cracks in reinforced concrete. Restor Build Monum 20:85–94

    Google Scholar 

  13. De Belie N, De Muynck W (2008) Crack repair in concrete using biodeposition. In: Alexander MG, Beushausen HD, Dehn F, Moyo P (eds) Proceedings of ICCRR, Cape Town, South Africa. CRC Press, Leiden, pp 291–292

    Google Scholar 

  14. Wu M, Johannesson B, Geiker M (2012) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583

    Google Scholar 

  15. Mihashi H, Nishiwaki T (2012) Development of engineered self-healing and self-repairing concrete-state-of the-art report. J Adv Concr Technol 10:170–184

    CAS  Google Scholar 

  16. Snoeck D, de Belie N (2015) From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – a review. Constr Build Mater 95:774–787

    Google Scholar 

  17. Yıldırım G, Keskin ÖK, Keskin SB, Sahmaran M, Lachemi M (2015) A review of intrinsic self-healing capability of engineered cementitious composites: recovery of transport and mechanical properties. Constr Build Mater 101:10–21

    Google Scholar 

  18. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Google Scholar 

  19. De Belie N (2016) Application of bacteria in concrete: a critical review. RILEM Tech Lett 1:56–61

    Google Scholar 

  20. Sierra-Beltran MG, Jonkers HM, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 67:344–352

    Google Scholar 

  21. De Belie N (2010) Microorganisms versus stony materials: a love-hate relationship. Mater Struct 43:1191–1202

    Google Scholar 

  22. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    CAS  PubMed  Google Scholar 

  23. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    CAS  PubMed  Google Scholar 

  24. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  25. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114

    CAS  Google Scholar 

  26. Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    CAS  PubMed  Google Scholar 

  27. Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121

    CAS  Google Scholar 

  28. Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 42:614–641

    Google Scholar 

  29. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WE (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    PubMed  Google Scholar 

  30. Tamerler C, Sarikaya M (2006) Molecular biomimetics: linking polypeptides to inorganic structures. In: Rehm B (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon Bioscience, Wymondham, pp 190–221

    Google Scholar 

  31. Legros M, Hemker KJ, LaVan DA, Sharpe WN, Rittner MN, Weertman JR (1996) Micro-tensile testing of nanocrystalline Al/Zr alloys. In: Komarneni S, Parker JC, Wollenberger HJ (eds) Nanophase and nanocomposite materials. Materials research society symposium proceedings, vol 457, pp 272–278. https://doi.org/10.1557/PROC-457-273

    Chapter  Google Scholar 

  32. Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    CAS  Google Scholar 

  33. Schröder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WE (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359

    PubMed  Google Scholar 

  34. Bäuerlein E (2000) Biomineralization: from biology to biotechnology and medical application. Wiley, Weinheim

    Google Scholar 

  35. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–26

    CAS  Google Scholar 

  36. Bazylinski DA, Frankel RB, Konhauser KO (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol J 24:465–475

    CAS  Google Scholar 

  37. Ngwenya B (2016) Bacterial mineralisation. Reference module in materials science and materials engineering. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-803581-8.02248-7

    Chapter  Google Scholar 

  38. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47

    CAS  PubMed  Google Scholar 

  39. Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiology 71:1–17

    CAS  Google Scholar 

  40. Zavarzina DG, Pchelintseva NF, Zhilina TN (1996) Calcium leaching by primary anaerobes. Mikrobiologiya 65:604–608

    Google Scholar 

  41. Douglas S, Beveridge TJ (1998) Mini review: mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    CAS  Google Scholar 

  42. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microbiol 71:1790–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauerlein E (2004) Biomineralization. Progress in biology, molecular biology and application. Wiley, Weinheim

    Google Scholar 

  44. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106:17757–17762

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:359316. https://doi.org/10.1155/2014/359316

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miller AG, Colman B (1980) Evidence of HCO3 transport by the blue-green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schultze-Lam S, Beveridge TJ (1994) Nucleation of celestite and strontianite on a cyanobacterial S-layer. Appl Environ Microbiol 60:447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamilton TL, Bryant DA, Macalady JL (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 18:325–340

    CAS  PubMed  Google Scholar 

  49. Dejong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132:1381–1392

    CAS  Google Scholar 

  50. Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724

    CAS  Google Scholar 

  51. Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater 1:28–39

    CAS  Google Scholar 

  52. Chou CW, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137:1179–1189

    CAS  Google Scholar 

  53. Ehrlich HL (1996) Geomicrobiology. Marcel Dekker, New York

    Google Scholar 

  54. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  55. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    CAS  PubMed  Google Scholar 

  56. Thompson JB, Schultze-Lam S, Beveridge TJ, Des Marais DJ (1997) Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol Oceanogr 42:133–141

    CAS  PubMed  Google Scholar 

  57. Wang JY, Ersan YC, Boon N, De Belie N (2016) Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100:2993–3007

    CAS  PubMed  Google Scholar 

  58. Hamdan N (2013) Carbonate mineral precipitation for soil improvement through microbial denitrification. MSc dissertation, Arizona State University, Tempe

    Google Scholar 

  59. Erşan YÇ, De Belie N, Boon N (2015) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118

    Google Scholar 

  60. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    CAS  PubMed  Google Scholar 

  61. Merz MUE (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–102

    Google Scholar 

  62. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley D, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    CAS  Google Scholar 

  63. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305–318

    CAS  Google Scholar 

  64. Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235

    Google Scholar 

  65. Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36:168–175

    Google Scholar 

  66. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    CAS  Google Scholar 

  67. González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F, Arias JM, Merroun ML, Rodriguez-Gallego M (2010) Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geol Soc Spec Publ 336:31–50

    Google Scholar 

  68. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    CAS  Google Scholar 

  69. Rivadeneyra MA, Delgado R, Del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microb Ecol 13:197–204

    CAS  Google Scholar 

  70. Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    CAS  PubMed  Google Scholar 

  71. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    CAS  Google Scholar 

  72. Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287

    CAS  PubMed  Google Scholar 

  73. Knorre H, Krumbein KE (2000) Bacterial calcification. In: Riding EE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 25–31

    Google Scholar 

  74. Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    CAS  PubMed  Google Scholar 

  75. Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529

    Google Scholar 

  76. Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martinez L (2010) Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 71:341–350

    CAS  PubMed  Google Scholar 

  77. Castanier S, Le Metayer-Levrel G, Orial G, Loubiere JF, Perthuisot JP (1999) Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Proceedings of microbes and art: the role of microbial communities on the degradation and protection of cultural heritage. CNR, Florence, pp 203–218

    Google Scholar 

  78. Braissant O, Verrecchia E, Aragno M (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89:366–370

    CAS  PubMed  Google Scholar 

  79. Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis – the microbiogeologist point of view. Sediment Geol 126:9–23

    CAS  Google Scholar 

  80. Morita RY (1980) Calcite precipitation by marine bacteria. Geomicrobiology 2:63–82

    CAS  Google Scholar 

  81. Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–46

    CAS  Google Scholar 

  82. Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490

    CAS  Google Scholar 

  83. Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Microanal 13:42–50

    CAS  PubMed  Google Scholar 

  84. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    CAS  PubMed  Google Scholar 

  85. Wright DT, Oren A (2005) Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J 22:27–53

    CAS  Google Scholar 

  86. Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008

    CAS  Google Scholar 

  87. Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado G, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227

    CAS  Google Scholar 

  88. Susana GF, Maria CI, Humberto JS (2002) Effect of a cyanobacterial community on calcium carbonate precipitation in Puente del Inca (Mendoza, Argentina). Acta Bot Croat 61:1–9

    Google Scholar 

  89. Chen L, Shen Y, Xie A, Huang B, Jia R, Guo R, Tang W (2009) Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Crys Growth Des 9:743–754

    CAS  Google Scholar 

  90. Van Waasbergen LG, Balkwill DL, Crocker FH, Bjornstad BN, Miller RV (2000) Genetic diversity among arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl Environ Microbiol 66:3454–3463

    PubMed  PubMed Central  Google Scholar 

  91. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    CAS  Google Scholar 

  92. Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SW, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State. Appl Environ Microbiol 70:4230–4241

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Barrientos-Díaz L, Gidekel M (2008) Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World J Microbiol Biotechnol 24:2289–2296

    Google Scholar 

  94. Aloisi G (2008) The calcium carbonate saturation state in cyanobacterial mats throughout Earth’s history. Geochim Cosmochim Acta 72:6037–6060

    CAS  Google Scholar 

  95. Kremer B, Kazmierczak J, Stal LJ (2008) Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6:46–56

    CAS  PubMed  Google Scholar 

  96. Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:139–145

    CAS  PubMed  Google Scholar 

  97. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126:25–34

    Google Scholar 

  98. Castainer S, Le MG, Perthuisot JP (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Heidelberg, pp 32–39

    Google Scholar 

  99. Ben Chekroun K, Rodríguez-Navarro C, González-Muñoz MT, Arias JM, Cultrone G, Rodríguez-Gallego M (2004) Precipitation and growth morphology of calcium carbonate induced by Myxococcus Xanthus: implications for recognition of bacterial carbonates. J Sediment Res 74:868–876

    CAS  Google Scholar 

  100. Dick J, Windt W, Graef B, Saveyn H, Meeren P, De Belie N, Verstraete W (2006) Biodeposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    CAS  PubMed  Google Scholar 

  101. Baskar S, Baskar R, Mauclaire L, Mc Kenzie JA (2006) Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci India 90:58–64

    CAS  Google Scholar 

  102. González-Muñoz MT (2008) Bacterial biomineralization applied to the protection-consolidation of ornamental stone: current development and perspectives. Coalition 15:12–18

    Google Scholar 

  103. Jroundi F, Merroun ML, Arias JM, Rossberg A, Selenska-Pobell S, González-Muñoz MT (2007) Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus. Geomicrobiol J 24:441–449

    CAS  Google Scholar 

  104. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Google Scholar 

  105. Tourney J, Ngwenya BT (2009) Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem Geol 262:138–146

    CAS  Google Scholar 

  106. Riding R (2009) An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago? Palaios 24:685–696

    Google Scholar 

  107. Planavsky N, Reid RP, Lyons TW, Myshrall KL, Visscher PT (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576

    CAS  PubMed  Google Scholar 

  108. Kamennaya NA, Ajo-Franklin CM, Northen T, Jansson C (2013) Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2:338–364

    Google Scholar 

  109. Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. Dissertation, School of Biological Sciences and Biotechnology, Murdoch University, Perth

    Google Scholar 

  110. Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophila. Curr Microbiol 32:308–313

    CAS  PubMed  Google Scholar 

  111. Zippel B, Dynes JJ, Obst M, Lawrence JR, Neu TR (2010) EPS composition and calcification potential of tufa-dominating cyanobacteria investigated by Scanning Transmission X-ray Microscopy (STXM) and Laser Scanning Microscopy (LSM). Earth Environ Sci 1:26–27

    Google Scholar 

  112. Atlan G, Delattre O, Berland S, LeFaou A, Nabias G, Cot D et al (1999) Interface between bone and nacre implants in sheep. Biomaterials 20:1017–1022

    CAS  PubMed  Google Scholar 

  113. Gauri KL, Bandyopadhyay JK (1999) Carbonate stone: chemical behaviour, durability and conservation. Springer, New York

    Google Scholar 

  114. May E (2005) Biobrush research monograph: novel approaches to conserve our European heritage. EVK4-CT-2001-00055

    Google Scholar 

  115. Ersan YC, Da Silva FB, Boon N, Verstraete W, De Belie N (2015) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203

    Google Scholar 

  116. Santomauro G, Baier J, Huang W, Pezold S, Bill J (2012) Formation of calcium carbonate polymorphs induced by living microalgae. J Biomater Nanobiotechnol 3:413–420

    Google Scholar 

  117. Foster JS, Green SJ, Ahrendt SR, Golubic S, Reid RP, Hetherington KL, Bebout L (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J 3:573–587

    CAS  PubMed  Google Scholar 

  118. Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1 based on microbially induced calcite precipitation. Ecol Eng 37:1601–1605

    Google Scholar 

  119. Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983

    CAS  Google Scholar 

  120. Park S, Park Y, Chun W, Kim W, Ghim S (2010) Calcite forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20:782–788

    CAS  PubMed  Google Scholar 

  121. Day JL, Ramakrishnan V, Bang SS (2003) Microbiologically induced sealant for concrete crack remediation. In: Proceedings of the 16th engineering mechanics conference, Seattle, WA, pp 1–8

    Google Scholar 

  122. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9

    CAS  Google Scholar 

  123. Ramakrishnan V (2007) Performance characteristics of bacterial concrete – a smart biomaterial. In: Proceedings of the 1st international conference on recent advances in concrete technology, Washington, DC, pp 67–78

    Google Scholar 

  124. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Park JM, Park SJ, Ghim SY (2013) Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar. J Microbiol Biotechnol 23:1269–1278

    CAS  PubMed  Google Scholar 

  126. Jroundi F, Fernandez-Vivas A, Rodriguez-Navarro C, Bedmar EJ, Gonzalez-Munoz MT (2010) Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol 60:39–54

    CAS  PubMed  Google Scholar 

  127. Ettenauer J, Piñar G, Sterflinger K, González-Muñoz MT, Jroundi F (2011) Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environ 409:5337–5352

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ercole C, Bozzelli P, Altieri F, Cacchio P, Santacecilia A, Del Gallo M (2012) Exopolymeric substances involved in calcium carbonate biomineralization and their use to preserve and restore stone monuments. Environ Eng Manag J 11:85–90

    Google Scholar 

  129. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    CAS  Google Scholar 

  130. Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, Hoehler TM, Barton HA (2010) Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27:444–454

    CAS  Google Scholar 

  131. Achal V, Pan X, Zhang D (2012) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768

    CAS  PubMed  Google Scholar 

  132. Achal V, Pan X, Zhang D, Fu Q (2012) Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol 22:244–247

    PubMed  Google Scholar 

  133. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    CAS  Google Scholar 

  134. Mitchell AC, Ferris FG (2006) The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol J 23:213–22694

    CAS  Google Scholar 

  135. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    CAS  Google Scholar 

  136. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 96:361–365

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    PubMed  Google Scholar 

  138. Doi K, Fujino Y, Inagaki F, Kawatsu R, Tahara M, Ohshima T, Okaue Y, Yokoyama T, Iwai S, Ogata S (2009) Stimulation of expression of a silica-induced protein (Sip) in Thermus thermophilus by supersaturated silicic acid. Appl Environ Microbiol 75:2406–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang X, Schröder HC, Wiens M, Schloßmacher U, Müller WE (2012) Biosilica: molecular biology, biochemistry and function in demosponges as well as its applied aspects for tissue engineering. Adv Mar Biol 62:231–271

    PubMed  Google Scholar 

  140. Konhauser KO, Ferris FG (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology 24:323–326

    CAS  Google Scholar 

  141. Konhauser KO, Fyfe WS, Ferris FG, Beveridge TJ (1993) Metal sorption and mineral precipitation by bacteria in two Amazonian river systems, Rio Solimoìes and Rio Negro, Brazil. Geology 21:1103–1106

    CAS  Google Scholar 

  142. Konhauser KO, Schultze-Lam S, Ferris FG, Fyfe WS, Longsta FJ, Beveridge TJ (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl Environ Microbiol 60:549–553

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Fortin D, Davis B, Beveridge TJ (1996) Role of Thiobacillus and sulfate reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol Ecol 21:11–24

    CAS  Google Scholar 

  144. Peng X, Zhou H, Yao H, Li J, Tang S, Jiang L, Wu Z (2007) Microbe-related precipitation of iron and silica in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Chin Bull 52:3233–3238

    CAS  Google Scholar 

  145. Konhauser KO, Jones B, Phoenix VR, Ferris G, Renaut RW (2004) The microbial role in hot spring silicification. Ambio 33:552–558

    PubMed  Google Scholar 

  146. Yee N, Phoenix VR, Konhauser KO, Benning LG, Ferris FG (2003) The effect of cyanobacteria on silica precipitation at neutral pH: implications for bacterial silicification in geothermal hot springs. Chem Geol 199:83–90

    CAS  Google Scholar 

  147. Urrutia-Mera M, Beveridge TJ (1993) Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. J Bacteriol 175:1936–1945

    Google Scholar 

  148. Urrutia MM, Beveridge TJ (1994) Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chem Geol 116:261–280

    CAS  Google Scholar 

  149. Urrutia MM, Beveridge TJ (1995) Formation of short range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands. Geoderma 65:149–165

    CAS  Google Scholar 

  150. Burne RV, Moore LS (1987) Microbialites, organo-sedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Google Scholar 

  151. Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol 55:2976–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilisation of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol 56:3191–3203

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Furukawa Y, O’Reilly SE (2007) Rapid precipitation of amorphous silica in experimental systems with nontronite (NAu-1) and Shewanella oneidensis MR-1. Geochim Cosmochim Acta 71:363–377

    CAS  Google Scholar 

  154. Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31:93–98

    CAS  Google Scholar 

  155. Biswas M, Majumdar S, Chowdhury T, Chattopadhyay B, Mandal S, Halder U, Yamasaki S (2010) Bioremediase a unique protein from a novel bacterium BKH1, ushering a new hope in concrete technology. Enzym Microb Technol 46:581–587

    CAS  Google Scholar 

  156. Majumdar S, Sarkar M, Chowdhury T, Chattopadhyay B, Mandal S (2012) Use of bacterial protein powder in commercial fly ash pozzolana cements for high performance construction materials. Open J Civil Eng 2:218–228

    Google Scholar 

  157. Chattopadhyay B, Mandal S (2013) Hot spring bacterial strain BKH1 and protein isolated therefrom, concrete compositions, and uses thereof. US 8476039 B2

    Google Scholar 

  158. Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25:3791–3801

    Google Scholar 

  159. Kumar VR, Bhuvaneshwari B, Maheswaran S, Palani GS, Ravisankar K, Iyer NR (2011) An overview of techniques based on biomimetics for sustainable development of concrete. Curr Sci 101:741–747

    CAS  Google Scholar 

  160. Sarayu K, Iyer NR, Murthy AR (2014) Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials – a review. Appl Biochem Biotechnol 172:2308–2323

    CAS  PubMed  Google Scholar 

  161. De Belie N, Gruyaert E, Al-Tabbaa A, Antonaci P, Baera C, Bajare D, Darquennes A, Davies R, Ferrara L, Jefferson T, Litina C, Miljevic B, Otlewska A, Ranogajec J, Roig-Flores M, Paine K, Lukowski P, Serna P, Tulliani JM, Vucetic S, Wang J, Jonker HM (2018) A review of self-healing concrete for damage management of structures. Adv Mater Interfaces 5:1–28

    Google Scholar 

  162. Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane immobilized Sporosarcina pasteurii. Enzym Microb Technol 28:404–409

    CAS  Google Scholar 

  163. Ramakrishnan V, Ramesh KP, Bang SS (2001) Bacterial concrete. In: Wilson AR, Asanuma H (eds) Smart materials. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4234, pp 168–176

    Google Scholar 

  164. Krishnapriya S, Venkatesh Babu DLV, Arulraj GP (2015) Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 174:48–55

    CAS  PubMed  Google Scholar 

  165. Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591–2602

    CAS  PubMed  Google Scholar 

  166. Irwan JM, Anneza LH, Othman N, Alshalif AF, Zamer MM, Teddy T (2017) Mechanical properties of concrete with Enterococcus Faecalis and calcium lactate. Procedia Eng 171:592–597

    CAS  Google Scholar 

  167. Ramakrishnan V, Deo KS, Duke EF, Bang SS (1999) SEM investigation of microbial calcite precipitation in cement. In: Proceeding of the 21st international conference on cement microscopy, Las Vegas, NV, pp 406–414

    Google Scholar 

  168. Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as nutrient source. Ind Biotechnol 6:170–174

    Google Scholar 

  169. Sharma TK, Alazhari M, Heath A, Paine K, Cooper RM (2017) Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J Appl Microbiol 122:1233–1244

    CAS  PubMed  Google Scholar 

  170. Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5

    Google Scholar 

  171. Jonkers HM, Schlangen E (2009) A two component bacteria-based self-healing concrete. In: Alexander NG, Beaushausen H-D, Dehn F, Moyo P (eds) Proceedings of 2nd international conference on concrete repair, rehabilitation and retrofitting II (ICCRRR-2), Cape Town, 2008 November 24–26. Taylor & Frances, London, pp 215–220

    Google Scholar 

  172. Wang JY, Soens H, Verstraete W, De Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152

    CAS  Google Scholar 

  173. Sarode DD, Mukherjee A (2009) Microbial precipitation for repairs of concrete structures. In: Grantham M, Majorana C, Salomoni V (eds) Concrete solutions. CRC Press, Boca Raton, pp 191–198

    Google Scholar 

  174. Wiktor V, Jonkers HM (2015) Field performance of bacteria-based repair system: pilot study in a parking garage. Case Stud Constr Mater 2:11–17

    Google Scholar 

  175. Tziviloglou E, van Tittelboom K, Palin D, Wang J, Sierra Beltran MG, Ersan YC, Mors M, Wiktor VAC, Jonkers HM, Schlangen E, de Belie N (2016) Bio-based self-healing concrete: from research to field application. Adv Polym Sci 273:346–385

    Google Scholar 

  176. Basheer L, Kropp J, Cleland DJ (2001) Assessment of the durability of concrete from its permeation properties: a review. Constr Build Mater 15:93–103

    Google Scholar 

  177. Perez JL, Villegas R, Vale JF, Bello MA, Alcade M (1995) Effects of consolidant and water repellent treatments on the porosity and pore size distribution of limestones. In: Proceedings of international colloquium: methods of evaluating products for conservation of porous building materials in monuments, ICCROM, Rome, pp 203–211

    Google Scholar 

  178. Adolphe JM, Loubiere JF, Paradas J, Soleilhavoup F (1990) Procédé traitement biologique d’une surface artificielle. European patent 90400G97.0 (after French patent 8903517, 1989)

    Google Scholar 

  179. De Muynck W, Boon N, De Belie N (2014) From lab scale to in situ applications – the ascent of a biogenic carbonate based surface treatment. In: Quattrone M, John VM (eds) XIII international conference on durability of building materials and components (DBMC), 2014 September 2–5, São Paulo, Brazil, pp 728–735

    Google Scholar 

  180. Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P (2003) Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog Org Coat 48:259–270

    CAS  Google Scholar 

  181. Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three leaf stone masonry grouted with ternary or hydraulic lime-based grouts. Eng Struct 30:2265–2276

    Google Scholar 

  182. Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43:1135–1146

    CAS  Google Scholar 

  183. Jimenez-Lopez C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosua FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68:1929–1936

    CAS  PubMed  Google Scholar 

  184. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62:352–363

    CAS  Google Scholar 

  185. De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77:6808–6820

    PubMed  PubMed Central  Google Scholar 

  186. Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7:49–55

    Google Scholar 

  187. Qian CX, Wang JY, Wang RX, Cheng L (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng C 29:1273–1280

    CAS  Google Scholar 

  188. Okwadha G, Li J (2011) Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation. J Environ Manag 92:2860–2864

    CAS  Google Scholar 

  189. Achal V, Mukherjee A, Goyal S, Reddy MS (2012) Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater J 109:157–163

    Google Scholar 

  190. Nosouhian F, Mostofinejad D, Hasheminejad H (2015) Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst Eng 133:141–152

    Google Scholar 

  191. Li P, Qu W (2012) Microbial carbonate mineralization as an improvement method for durability of concrete structures. Adv Mater Res 365:280–286

    CAS  Google Scholar 

  192. Achal V, Mukherjee A, Reddy MS (2011) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38:1229–1234

    CAS  PubMed  Google Scholar 

  193. De Muynck W, Verbeken K, De Belie N, Verstraete W (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36:99–111

    Google Scholar 

  194. Richardson A, Coventry K, Pasley J (2016) Bacterial crack sealing and surface finish application to concrete. In: Claisse P, Ganjian E, Naik T (eds) Fourth international conference on sustainable construction materials and technologies, Las Vegas, 7–11 Aug

    Google Scholar 

  195. FHWA (Federal Highway Administration) (2002) Corrosion cost and preventive strategies in the United States. Publication No. FHWA-RD-01-156. http://impact.nace.org/documents/ccsupp.pdf

  196. Silva FP, Boon N, De Belie N, Verstraete W (2015) Industrial application of biological self-healing concrete: challenges and economical feasibility. J Commer Biotechnol 21:31–38

    Google Scholar 

  197. Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:S49–S60

    Google Scholar 

  198. Basaran Z (2013) Biomineralization in cement based materials: inoculation of vegetative cells. Dissertation, University of Texas, Austin

    Google Scholar 

  199. Achal V, Mukherjee A, Reddy MS (2010) Isolation and characterization of urease producing and calcifying bacteria from cement. J Microbiol Biotechnol 20:1571–1576

    CAS  PubMed  Google Scholar 

  200. Jonkers HM, Schlangen E (2007) Self-healing of cracked concrete: a bacterial approach. In: Proceedings of the 6th international conference on fracture mechanics of concrete and concrete structures. Italy, vol 3, pp. 1821–1826

    Google Scholar 

  201. Silva FB (2015) Up-scaling the production of bacteria for self-healing concrete application. Dissertation, Ghent University, Ghent

    Google Scholar 

  202. Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28:351–356

    Google Scholar 

  203. Chahal N, Siddique R (2013) Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr Build Mater 49:161–174

    Google Scholar 

  204. Farmani F, Bonakdarpour B, Ramezanianpour AA (2015) pH reduction through amendment of cement mortar with silica fume enhances its biological treatment using bacterial carbonate precipitation. Mater Struct 48:3205–3215

    CAS  Google Scholar 

  205. Jonkers HM, Mors RM (2012) Full scale application of bacteria-based self-healing concrete for repair purposes. In: Alexander MG, Beushausen HD, Dehn F, Moyo P (eds) Proceedings 3rd international conference on concrete repair, rehabilitation and retrofitting, 2012 September 3–5, Cape Town, South Africa. Taylor & Francis, London, pp 967–971

    Google Scholar 

  206. Vijay K, Murmu M, Deo SV (2017) Bacteria based self-healing concrete – a review. Constr Build Mater 152:1008–1014

    CAS  Google Scholar 

  207. Wang J, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6:1088

    PubMed  PubMed Central  Google Scholar 

  208. Chen H, Qian C, Huang H (2016) Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr Build Mater 126:297–303

    CAS  Google Scholar 

  209. Wang J, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577

    CAS  PubMed  Google Scholar 

  210. Alazhari M, Sharma T, Heath A, Cooper R, Paine K (2018) Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Constr Build Mater 160:610–619

    CAS  Google Scholar 

  211. Khaliq W, Ehsan MB (2016) Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater 102:239–357

    Google Scholar 

  212. Seifan M, Sarmah AK, Samani AK, Ebrahiminezhad A, Ghasemi Y, Berenjian A (2018) Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl Microbiol Biotechnol 102:4489–4498

    CAS  PubMed  Google Scholar 

  213. De Belie N, Wang J, Soens H (2013) Microcapsules and concrete containing the same, UK Patent application 1303690.0 & 1314220.3, US application AEC/PM334564US. Applicants: Devan Chemicals NV, Universiteit Gent

    Google Scholar 

  214. Li M, Zhu X, Mukherjee A, Huang M, Achal V (2017) Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. J Hazard Mater 329:178–184

    CAS  PubMed  Google Scholar 

  215. Ersan YC, Gruyaert E, Louis G, Lors C, De Belie N, Boon N (2015) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol 6:1228

    PubMed  PubMed Central  Google Scholar 

  216. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166

    Google Scholar 

  217. Wang J, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014) X-ray computed tomography proof of bacterial based self-healing in concrete. Cem Concr Compos 53:289–304

    CAS  Google Scholar 

  218. Wang J, Jonkers HM, Boon N, De Belie N (2017) Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl Microbiol Biotechnol 101:5101–5114

    CAS  PubMed  Google Scholar 

  219. Tagnit-Hamou A, Petrov N, Luke K (2003) Properties of concrete containing diatomaceous earth. ACI Mater J 100:73–78

    CAS  Google Scholar 

  220. Bakr HEGMM (2010) Diatomite: its characterization, modifications and applications. Asian J Mater Sci 2:121–136

    Google Scholar 

  221. Wang J, De Belie N (2014) Effect of water availability on microbial self-healing of concrete. In: Justness H (ed) Concrete innovation conference, 2014 June 11–13, Norway, Oslo, pp 1–8

    Google Scholar 

  222. Silva FP, Boon N, De Belie N, Boon N, Verstraete W (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr Build Mater 93:1034–1041

    Google Scholar 

  223. Ganendra G, De Muynck W, Ho A, Arvaniti EC, Hosseinkhani B, Ramos JA, Rahier H, Boon N (2014) Formate oxidation driven calcium carbonate precipitation by Methylocystis parvus OBBP. Appl Environ Microbiol 80:4659–4667

    PubMed  PubMed Central  Google Scholar 

  224. Jonkers HM, Schlangen HEJG (2008) Development of a bacteria-based self-healing concrete. In: Walraven JC, Stoelhorst D (eds) Tailor made concrete structures. Taylor & Francis, London, pp 425–430

    Google Scholar 

  225. Burbank MB, Weaver TJ, Green TL, Williams B, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312

    Google Scholar 

  226. Erşan YC, Hernandez-Sanabria E, De Belie N, Boon N (2016) Enhanced crack closure performance of microbial mortar through nitrate reduction. Cem Concr Compos 70:159–170

    Google Scholar 

  227. Ersan YC, Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N (2016) Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem Concr Res 83:19–30

    CAS  Google Scholar 

  228. Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou Z, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69:3152–3157

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson DC (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111:338–349

    CAS  PubMed  Google Scholar 

  230. Ng SW, Lee ML, Hii SL (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad Sci Eng Technol 62:723–729

    Google Scholar 

  231. Qabany AA, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138:992–1001

    CAS  Google Scholar 

  232. Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5:250

    PubMed  PubMed Central  Google Scholar 

  233. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol 23:707–714

    CAS  PubMed  Google Scholar 

  234. Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172:2552–2561

    CAS  PubMed  Google Scholar 

  235. Achal V, Pan X (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl Biochem Biotechnol 173:307–317

    CAS  PubMed  Google Scholar 

  236. Gorospe CM, Han SH, Kim SG, Park JY, Kang CH, Jeong JH, So JS (2013) Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol Bioprocess Eng 18:903–908

    CAS  Google Scholar 

  237. Kang CH, Han SH, Shin YJ, Oh SJ, So JS (2014) Bioremediation of Cd by microbially induced calcite precipitation. Appl Biochem Biotechnol 172:1929–1937

    CAS  PubMed  Google Scholar 

  238. Karatas I, Kavazanjian JE, Rittmann BE (2008) Microbially induced precipitation of calcite using Pseudomonas denitrificans. In: Proceedings of 1st bio-geo engineering conference, TU Delft and Deltares, Delft, pp 58–66

    Google Scholar 

  239. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:1–13

    Google Scholar 

  240. Seifan M, Samani AK, Berenjian A (2017) New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol 101:3131–3142

    CAS  PubMed  Google Scholar 

  241. Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81:1143–1148

    CAS  PubMed  Google Scholar 

  242. Krajewska B (2018) Urease-aided calcium carbonate mineralization for engineering applications: a review. J Adv Res 13:59–67

    CAS  PubMed  Google Scholar 

  243. Declet A, Reyes E, Suraz OM (2016) Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composites. Rev Adv Mater Sci 44:87–107

    CAS  Google Scholar 

  244. Loewenthal RE, Marais GVR (1976) Carbonate chemistry of aquatic systems: theory and application, vol 1. Ann Arbor Science, Ann Arbor

    Google Scholar 

  245. Ferris FG, Phoenix V, Fujita Y, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim Cosmochim Acta 67:1701–1710

    Google Scholar 

  246. Dupraz S, Menez B, Gouze P, Leprovost R, Benezeth P, Pokrovsky OS, Guyot F (2009) Experimental approach of CO2 biomineralization in deep saline aquifers. Chem Geol 265:54–62

    CAS  Google Scholar 

  247. Stabnikov V, Jian C, Ivanov V, Li Y (2013) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 29:1453–1460

    CAS  PubMed  Google Scholar 

  248. Mitchell AC, Ferris FG (2005) The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetics dependence. Geochim Cosmochim Acta 69:4199–4210

    CAS  Google Scholar 

  249. De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97:1335–1347

    PubMed  Google Scholar 

  250. Revertegat E, Richet C, Gegout P (1992) Effect of pH on the durability of cement pastes. Cem Concr Res 22:259–272

    CAS  Google Scholar 

  251. Silver S, Toth K, Scribner H (1975) Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. J Bacteriol 122:880–885

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69:4901–4909

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Nemati M, Greene EA, Voordouw G (2005) Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochem 40:925–933

    CAS  Google Scholar 

  254. Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2010) Potential of applying bacteria to heal cracks in concrete. In: Zachar J, Claisse P, Naik TR, Ganjian E (eds) 2nd international conference on sustainable construction materials and technologies. 2010 June 28–30, Ancona, Italy. UWM Center for By-Products Utilization, Milwaukee, pp 1807–1818

    Google Scholar 

  255. Somani RS, Patel KS, Mehta AR, Jasra RV (2006) Examination of the polymorphs and particle size of calcium carbonate precipitated using still effluent (i.e. CaCl + NaCl Solution) of soda ash manufacturing process. Ind Eng Chem Res 45:5223–5230

    CAS  Google Scholar 

  256. Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Sato T, Stutzman PE, Tanesi J, Weiss WJ (2015) Multi-scale investigation of the performance of limestone in concrete. Constr Build Mater 70:1–10

    Google Scholar 

  257. Spanos N, Koutsoukos PG (1998) The transformation of vaterite to calcite: effect of the conditions of the solution in contact with the mineral phase. J Cryst Growth 191:783–790

    CAS  Google Scholar 

  258. Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretion (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235

    CAS  Google Scholar 

  259. Ferrer MR, Quevedo-Sarmiento J, Bejar V, Delgado R, Ramos-Cormenzana A, Rivadeneyra MA (1988) Calcium carbonate formation by Deleya halophila: effect on salt concentration and incubation temperature. Geomicrobiol J 6:49–57

    CAS  Google Scholar 

  260. Shirakawa MA, Cincotto MA, Atencio D, Gaylarde CC, John VM (2011) Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis. Braz J Microbiol 42:499–507

    PubMed  PubMed Central  Google Scholar 

  261. Rodriguez-Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñozb MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Appl Environ Microbiol 78:4017–4029

    CAS  PubMed  PubMed Central  Google Scholar 

  262. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Google Scholar 

  263. Favre N, Christ ML, Pierre AC (2009) Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J Mol Catal B Enzym 60:163–170

    CAS  Google Scholar 

  264. Tai CY, Chen FB (1998) Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE J 44:1790–1798

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gashaw Mamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamo, G., Mattiasson, B. (2019). Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability. In: Mamo, G., Mattiasson, B. (eds) Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 172. Springer, Cham. https://doi.org/10.1007/10_2019_94

Download citation

Publish with us

Policies and ethics