Skip to main content

Assessing Land Use and Biodiversity Impacts of Industrial Biotechnology

  • Chapter
  • First Online:
Sustainability and Life Cycle Assessment in Industrial Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 173))

Abstract

One of the many promises of biotechnology is that it allows societies to move away from a fossil-based industry toward a bio-based industry, with positive implications for anthropogenic climate change and resource dependency. The provision of biomass from agriculture or forestry is, however, linked to specific environmental implications that cannot be disregarded in an informed discussion about the role of biotechnology in the twenty-first century. In this chapter, we discuss landuse-related effects of biomass provision such as landscape homogenization, eutrophication, erosion, biodiversity, and others. We also discuss how these effects are represented in Life Cycle Assessment, which is a powerful tool for product sustainability evaluation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UN (1992) Convention on biological diversity. United Nations, New York. https://www.cbd.int/convention/text/. Accessed 26 Sep 2017

    Google Scholar 

  2. EC (2017) Bioeconomy. European Commission, Brussels. http://ec.europa.eu/programmes/horizon2020/en/h2020-section/bioeconomy. Accessed 26 Sep 2017

    Google Scholar 

  3. BMBF (2011) National Research Strategy BioEconomy 2030 – Our Route towards a biobased economy. Federal Ministry of Education and Research (BMBF), Berlin

    Google Scholar 

  4. Venkatesh A, Posen ID, MacLean HL, Chu PL, Griffin WM, Saville BA (2018) Environmental aspects of biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  5. Nova Institute (2014) Industrial material use of biomass in Europe 2013. Poster. Nova Institute, Hürth

    Google Scholar 

  6. Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  7. Fröhling M, Hiete M (2019) Sustainability and life cycle assessments in industrial biotechnology: a review of current approaches and future needs. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  8. Erb KH, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H (2007) A comprehensive 5 min resolution land-use data set for the year 2000 consistent with national consensus data. J Land Use Sci 2(3):191–224

    Article  Google Scholar 

  9. UN (2017) World population prospects: the 2017 revision, key findings and advance tables. Working paper no. ESA/P/WP/248. United Nations, Department of Economic and Social Affairs, Population Division (DESA), New York

    Google Scholar 

  10. UNEP (2014) Assessing global land use: balancing consumption with sustainable supply. A report of the Working Group on Land and Soils of the International Resource Panel. Bringezu S, Schütz H, Pengue W, O’Brien M, Garcia F, Sims R, Howarth R, Kauppi L, Swilling M, Herrick J. ISBN 978-92-807-3330-3

    Google Scholar 

  11. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington

    Google Scholar 

  12. MA (2005) Ecosystems and human well-being: synthesis. A report of the millennium ecosystem assessment. Island Press, Washington

    Google Scholar 

  13. Hooke RL, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22(12):4–10

    Article  Google Scholar 

  14. Pei H, Jiang L (2018) Mixing seawater with a little wastewater to produce bioenergy from limnetic algae. Trends Biotechnol 36(5):480–483

    Article  CAS  PubMed  Google Scholar 

  15. Cárdenas JP, Quatrini R, Holmes DS (2016) Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 167(7):529–538

    Article  PubMed  CAS  Google Scholar 

  16. Glombitza F, Kermer R, Reiche S (2019) Application of geobiotechnology in mining, mineral processing and metal recycling. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  17. Zah R, Böni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. Bundesamt für Energie, Bundesamt für Umwelt, Bundesamt für Landwirtschaft, Bern. http://www.news.admin.ch/NSBSubscriber/message/attachments/8514.pdf. Accessed 26 Sep 2017

    Google Scholar 

  18. Böcker N, Grahl M, Tota A, Häussinger P, Leitgeb P, Schmücker B (2013) Nitrogen. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, published online. http://onlinelibrary.wiley.com/doi/10.1002/14356007.a17_457.pub2/full. Accessed 26 Sep 2017

  19. Odum E (1991) Prinzipien der Ökologie: Lebensräume, Stoffkreisläufe, Wachstumsgrenzen. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  20. Schubert S (2006) Pflanzenernährung. Grundwissen Bachelor. Ulmer, Stuttgart

    Google Scholar 

  21. BGR (2005) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  22. FAO (2017) Voluntary guidelines for sustainable soil management. Food and Agriculture Organization of the United Nations (FAO), Rome. http://www.fao.org/3/a-bl813e.pdf. Accessed 6 Jul 2018

    Google Scholar 

  23. FAO (2015) Status of the world’s soil resources. Food and Agriculture Organization of the United Nations (FAO), Rome. http://www.fao.org/3/a-i5228e.pdf. Accessed 26 Sep 2017

    Google Scholar 

  24. Dasgupte P, Mäler K-G (1997) The environment and emerging development issues, vol 2. Oxford University Press, New York

    Google Scholar 

  25. Masdramootoo C (2012) Sustainable groundwater use in agriculture. Irrig Drain 61:26–33

    Article  Google Scholar 

  26. Margni M, Rossier D, Crettaz P, Jolliet O (2002) Life cycle impact assessment of pesticides on human health and ecosystems. Agric Ecosyst Environ 93:379–392

    Article  CAS  Google Scholar 

  27. Geiger F, Bengtsson J, Berendse F, Weisser W, Emmerson M, Morales M, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement L, Dennis C, Palmer C (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11(2):97–105

    Article  CAS  Google Scholar 

  28. WWF (2018) Living planet report 2018: aiming higher. WWF International, Gland

    Google Scholar 

  29. SCA (2017) Sustainability report 2016. Svenska Cellulosa Aktiebolaget, Stockholm

    Google Scholar 

  30. UPM (2017) Aiming higher with biofore. Annual report 2016. UPM-Kymmene Oy, Helsinki

    Google Scholar 

  31. Millan CH, Develey PF, Verdade LM (2015) Stand-level management practices increase occupancy by birds in exotic Eucalyptus plantations. For Ecol Manag 336:174–182

    Article  Google Scholar 

  32. Quammen D (2012) Forest giant. A tree-climbing scientist and his team have learned surprising new facts about giant sequoias by measuring them inch by inch. National Geographic Magazine, US Edition, December 2012

    Google Scholar 

  33. Graham SA (1939) Principles of forest entomology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  34. Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22(3):550–561

    Article  Google Scholar 

  35. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28(1):621–658

    Article  Google Scholar 

  36. Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15(5):396–406

    Article  Google Scholar 

  37. Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L, France R, Goldman CR, Heanue K, Jones JA, Swanson FJ, Turrentine T, Winter TC (2003) Road ecology: science and solutions. Island Press, Washington

    Google Scholar 

  38. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  39. Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MA (2013) Prospects of doubling global wheat yields. Food Energy Secur 2(1):34–48

    Article  Google Scholar 

  40. Yuan Y, Scheben A, Batley J, Edwards D (2019) Using genomics to adapt crops to climate change. In: Sarkar A, Sensarma SR, van Loon GW (eds) Sustainable solutions for food security. Springer, Cham

    Google Scholar 

  41. Grau R, Kuemmerle T, Macchi L (2013) Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr Opin Environ Sustain 5(5):477–483

    Article  Google Scholar 

  42. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    Article  CAS  PubMed  Google Scholar 

  43. WWF (2016) Living planet report 2018: risk and resilience in a new era. WWF International, Gland

    Google Scholar 

  44. BMUB (2007) Nationale Strategie zur biologischen Vielfalt. Federal Ministry for the Environment Nature Conservation, Building and Nuclear Safety (BMUB), Berlin

    Google Scholar 

  45. Koellner T, De Baan L, Beck T, Brandão M, Civit B, Margni M, Canals LMI, Saad R, De Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202

    Article  Google Scholar 

  46. Milà I, Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  47. Brandão M, Milà I, Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18(6):1243–1252

    Article  Google Scholar 

  48. Brandão M, Milà I, Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35(6):2323–2336

    Article  CAS  Google Scholar 

  49. Morais TG, Domingos T, Teixeira RFM (2016) A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. Int J Life Cycle Assess 21(8):1076–1091

    Article  CAS  Google Scholar 

  50. Núñez M, Civit B, Muñoz P, Arena AP, Rieradevall J, Antón A (2010) Assessing potential desertification environmental impact in life cycle assessment: part 1: methodological aspects. Int J Life Cycle Assess 15(1):67–78

    Article  Google Scholar 

  51. Garrigues E, Corson MS, Angers DA, van der Werf, Hayo MG, Walter C (2013) Development of a soil compaction indicator in life cycle assessment. Int J Life Cycle Assess 18(7):1316–1324

    Article  Google Scholar 

  52. Baitz M (2002) Die Bedeutung der funktionsbasierten Charakterisierung von Flächen-Inanspruchnahmen in industriellen Prozesskettenanalysen: Ein Beitrag zur Ganzheitlichen Bilanzierung. Doctoral thesis, University of Stuttgart, Germany

    Google Scholar 

  53. Beck T, Bos U, Wittstock B, Baitz M, Fischer M, Sedlbauer K (2010) LANCA®: land use indicator value calculation in life cycle assessment. Fraunhofer-Verlag, Stuttgart

    Google Scholar 

  54. Bos U, Horn R, Beck T, Lindner JP, Fischer M (2016) LANCA® – characterization factors for life cycle impact assessment. Version 2.0. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  55. European Commission (2017) PEFCR Guidance document [online]. Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs). Version 6.3

    Google Scholar 

  56. Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Thiele-Bruhn S, Welp G, Wilke B-M, Scheffer F, Schachtschabel P (2010) Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, 16 Auflage. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  57. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook No. 537. Gov. Print. Off. Agriculture Handbook, Prep. by Science and Education Administration, U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  58. Marks R, Müller MJ, Leser H, Klink HJ (eds) (1989) Anleitung zur Bewertung des Leistungsvermögens des Landschaftshauhaltes. Forschungen zur Deutschen Landeskunde, vol 229. Zentralausschuss für deutsche Landeskunde, Trier

    Google Scholar 

  59. EC (2015) EPLCA – European reference Life-Cycle Database. ELCD 3.2. European Commission – Joint Research Centre – Institute for Environment and Sustainability – Unit H08 Sustainability Assessment. European Commission, Brussels. http://eplca.jrc.ec.europa.eu/ELCD3/index.xhtml?stock=default. Accessed 30 Nov 2015

    Google Scholar 

  60. Horn R, Maier S (2018) LANCA® characterization factors for life cycle impact assessment: version 2.5. In: Bos U, Horn R, Beck T, Lindner JP, Fischer M (eds) LANCA® – characterization factors for life cycle impact assessment. Version 2.0. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  61. European Commission (2013) 2013/179/EU: Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations text with EEA relevance. https://eur-lex.europa.eu/eli/reco/2013/179/oj. Accessed 30 Jul 2019

  62. Lehmann A, Bach V, Finkbeiner M (2015) Product environmental footprint in policy and market decisions: applicability and impact assessment. Integr Environ Assess Manag 11(3):417–424

    Article  CAS  PubMed  Google Scholar 

  63. Manfredi S, Allacker K, Pelletier N, Schau E, Chomkhamsri K, Pant R, Pennington D (2015) Comparing the European Commission product environmental footprint method with other environmental accounting methods. Int J Life Cycle Assess 20(3):389–404

    Article  Google Scholar 

  64. MA (2005) Ecosystems and human wellbeing: biodiversity synthesis. A report of the millennium ecosystem assessment. World Resources Institute, Washington

    Google Scholar 

  65. TEEB (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. http://www.teebweb.org/our-publications/teeb-study-reports/synthesis-report/. Accessed 1 Oct 2017

  66. Koellner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8(4):293–311

    Article  Google Scholar 

  67. Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13(1):32

    Google Scholar 

  68. Itsubo N, Inaba A (2012) LIME 2 life-cycle impact assessment method based on endpoint modeling chapter 1 – outline of LIME 2. In: JLCA News Letter English Edition No. 14

    Google Scholar 

  69. De Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  70. Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49(16):9987–9995

    Article  CAS  PubMed  Google Scholar 

  71. Yamaguchi K, Ii R, Itsubo N (2016) Ecosystem damage assessment of land transformation using species loss. Int J Life Cycle Assess 23(12):1–12

    Google Scholar 

  72. Arrhenius O (1921) Species and area. J Ecol 9(1):95–99

    Article  Google Scholar 

  73. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938

    Article  Google Scholar 

  74. IUCN Red list of threatened species. IUCN Global Species Programme Red List Unit, Cambridge. https://www.iucnredlist.org/

  75. Michelsen O (2008) Assessment of land use impact on biodiversity. Int J Life Cycle Assess 13(1):22

    Google Scholar 

  76. Coelho C, Michelsen O (2014) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess 19(2):285–296

    Article  Google Scholar 

  77. Lindner JP (2016) Quantitative Darstellung der Wirkungen landnutzender Prozesse auf die Biodiversität in Ökobilanzen. Fraunhofer Verlag, Stuttgart

    Google Scholar 

  78. Fehrenbach H, Grahl B, Giegrich J, Busch M (2015) Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int J Life Cycle Assess 20(11):1511–1527

    Article  Google Scholar 

  79. Maia de Souza D, Flynn DF, DeClerck F, Rosenbaum RK, de Melo Lisboa H, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242

    Article  Google Scholar 

  80. Curran M, Maia de Souza D, Antón A, Teixeira RF, Michelsen O, Vidal-Legaz B, Sala S, Milà I, Canals L (2016) How well does LCA model land use impacts on biodiversity? A comparison with approaches from ecology and conservation. Environ Sci Technol 50(6):2782–2795

    Article  CAS  PubMed  Google Scholar 

  81. Teixeira R, Souza D, Curran M, Antón A, Michelsen O, Milà I, Canals L (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112:4283–4287

    Article  CAS  Google Scholar 

  82. Finkbeiner M (2014) Indirect land use change – help beyond the hype? Biomass Bioenergy 62:218–221

    Article  Google Scholar 

  83. Schmidt JH, Weidema BP, Brandão M (2015) A framework for modelling indirect land use changes in life cycle assessment. J Clean Prod 99:230–238

    Article  Google Scholar 

  84. Pleissner D, Kümmerer K (2019) Green chemistry and its contribution to industrial biotechnology. In: Fröhling M, Hiete M (eds) Sustainability and life cycle assessment in industrial biotechnology. Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  85. UN (2009) Towards sustainable production and use of resources: assessing biofuels. United Nations Environment Programme, Paris

    Google Scholar 

  86. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries exploring the safe operating space for humanity. Ecol Soc 14(2):32

    Article  Google Scholar 

  87. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennet EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Paul Lindner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindner, J.P., Beck, T., Bos, U., Albrecht, S. (2019). Assessing Land Use and Biodiversity Impacts of Industrial Biotechnology. In: Fröhling, M., Hiete, M. (eds) Sustainability and Life Cycle Assessment in Industrial Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 173. Springer, Cham. https://doi.org/10.1007/10_2019_114

Download citation

Publish with us

Policies and ethics