Skip to main content

Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines

  • Chapter
  • First Online:
Advances in Glycobiotechnology

Abstract

Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

BCR:

B cell receptor

CPS:

Capsular polysaccharide

DT:

Diphtheria toxoid

GBS:

Group B Streptococcus

glycOMV:

Glycosylated outer membrane vesicle

Hib:

Haemophilus influenzae type b

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

iNKT:

Invariant natural killer T cell

LOS:

Lipooligosaccharide

LPS:

Lipopolysaccharide

MAMP:

Microbe-associated molecular pattern

MenB:

Neisseria meningitidis serogroup B

MHC:

Major histocompatibility complex

MW:

Molecular weight

NKT:

Natural killer T cell

O-PS:

O-antigen polysaccharide

OST:

Oligosaccharyltransferase

PolySia:

Polysialic acid

PRP:

Polyribosylribitol phosphate

PRR:

Pattern recognition receptor

RU:

Repeating unit

TD:

T cell-dependent

TI:

T cell-independent

TT:

Tetanus toxoid

ZPS:

Zwitterionic polysaccharide

αGalCer:

α-Galactosylceramide

References

  1. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381(9875):1405–1416

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robinson CL, Romero JR, Kempe A, Pellegrini C (2017) Advisory committee on immunization practices recommended immunization schedule for children and adolescents aged 18 years or younger — United States, 2017. MMWR Morb Mortal Wkly Rep 66(5):134–135

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A (2011) Bacterial meningitis in the United States, 1998–2007. N Engl J Med 364(21):2016–2025

    Article  CAS  PubMed  Google Scholar 

  4. Alderwick LJ, Harrison J, Lloyd GS, Birch HL (2015) The mycobacterial cell wall--peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med 5(8):a021113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fukuda T, Matsumura T, Ato M, Hamasaki M, Nishiuchi Y, Murakami Y, Maeda Y, Yoshimori T, Matsumoto S, Kobayashi K, Kinoshita T, Morita YS (2013) Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. mBio 4(1):e00472–e00412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fulton KM, Smith JC, Twine SM (2016) Clinical applications of bacterial glycoproteins. Expert Rev Proteomics 13(4):345–353

    Article  CAS  PubMed  Google Scholar 

  7. Lindenthal C, Elsinghorst EA (1999) Identification of a glycoprotein produced by enterotoxigenic Escherichia coli. Infect Immun 67(8):4084–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giersing BK, Dastgheyb SS, Modjarrad K, Moorthy V (2016) Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 34(26):2962–2966

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi M, Vekemans J, Baker CJ, Ratner AJ, Le Doare K, Schrag SJ (2016) Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries. F1000Res 5:2355

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mani S, Wierzba T, Walker RI (2016) Status of vaccine research and development for Shigella. Vaccine 34(26):2887–2894

    Article  CAS  PubMed  Google Scholar 

  11. Sunagar R, Kumar S, Franz BJ, Gosselin EJ (2016) Tularemia vaccine development: paralysis or progress? Vaccine (Auckl) 6:9–23

    CAS  Google Scholar 

  12. Heidelberger M, Avery OT (1924) The soluble specific substance of pneumococcus: second paper. J Exp Med 40(3):301–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tillett WS, Francis T (1929) Cutaneous reactions to the polysaccharides and proteins of pneumococcus in lobar pneumonia. J Exp Med 50(5):687–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82(6):445–465

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smit P, Oberholzer D, Hayden-Smith S, Koornhof HJ, Hilleman MR (1977) Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 238(24):2613–2616

    Article  CAS  PubMed  Google Scholar 

  16. Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A, Adair RK, Clemens JD (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325(21):1453–1460

    Article  CAS  PubMed  Google Scholar 

  17. Daniels CC, Rogers PD, Shelton CM (2016) A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther 21(1):27–35

    PubMed  PubMed Central  Google Scholar 

  18. Laferriere C (2011) The immunogenicity of pneumococcal polysaccharides in infants and children: a meta-regression. Vaccine 29(40):6838–6847

    Article  CAS  PubMed  Google Scholar 

  19. Weidenmaier C, McLoughlin RM, Lee JC (2010) The zwitterionic cell wall teichoic acid of Staphylococcus aureus provokes skin abscesses in mice by a novel CD4+ T-cell-dependent mechanism. PLoS One 5(10):e13227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Johnson JL, Jones MB, Cobb BA (2015) Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J Biol Chem 290(8):5007–5014

    Article  CAS  PubMed  Google Scholar 

  21. Kalka-Moll WM, Tzianabos AO, Bryant PW, Niemeyer M, Ploegh HL, Kasper DL (2002) Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J Immunol 169(11):6149–6153

    Article  CAS  PubMed  Google Scholar 

  22. De Silva RA, Wang Q, Chidley T, Appulage DK, Andreana PR (2009) Immunological response from an entirely carbohydrate antigen: design of synthetic vaccines based on Tn-PS A1 conjugates. J Am Chem Soc 131(28):9622–9623

    Article  PubMed  CAS  Google Scholar 

  23. Giannini G, Rappuoli R, Ratti G (1984) The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 12(10):4063–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avci FY, Li X, Tsuji M, Kasper DL (2011) A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 17(12):1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG (2010) A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci U S A 107(40):17107–17112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang F, Zheng XJ, Huo CX, Wang Y, Zhang Y, Ye XS (2011) Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem Biol 6(3):252–259

    Article  CAS  PubMed  Google Scholar 

  27. Zheng XJ, Yang F, Zheng M, Huo CX, Zhang Y, Ye XS (2015) Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org Biomol Chem 13(22):6399–6406

    Article  CAS  PubMed  Google Scholar 

  28. Adamo R, Romano MR, Berti F, Leuzzi R, Tontini M, Danieli E, Cappelletti E, Cakici OS, Swennen E, Pinto V, Brogioni B, Proietti D, Galeotti CL, Lay L, Monteiro MA, Scarselli M, Costantino P (2012) Phosphorylation of the synthetic hexasaccharide repeating unit is essential for the induction of antibodies to Clostridium difficile PSII cell wall polysaccharide. ACS Chem Biol 7(8):1420–1428

    Article  CAS  PubMed  Google Scholar 

  29. Danieli E, Lay L, Proietti D, Berti F, Costantino P, Adamo R (2011) First synthesis of C. difficile PS-II cell wall polysaccharide repeating unit. Org Lett 13(3):378–381

    Article  CAS  PubMed  Google Scholar 

  30. Geissner A, Pereira CL, Leddermann M, Anish C, Seeberger PH (2016) Deciphering antigenic determinants of Streptococcus pneumoniae serotype 4 capsular polysaccharide using synthetic oligosaccharides. ACS Chem Biol 11(2):335–344

    Article  CAS  PubMed  Google Scholar 

  31. Berry DS, Lynn F, Lee CH, Frasch CE, Bash MC (2002) Effect of O acetylation of Neisseria meningitidis serogroup A capsular polysaccharide on development of functional immune responses. Infect Immun 70(7):3707–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajam G, Carlone GM, Romero-Steiner S (2007) Functional antibodies to the O-acetylated pneumococcal serotype 15B capsular polysaccharide have low cross-reactivities with serotype 15C. Clin Vaccine Immunol 14(9):1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jennings HJ, Roy R, Gamian A (1986) Induction of meningococcal group B polysaccharide-specific IgG antibodies in mice by using an N-propionylated B polysaccharide-tetanus toxoid conjugate vaccine. J Immunol 137(5):1708–1713

    CAS  PubMed  Google Scholar 

  34. Jennings HJ, Gamian A, Ashton FE (1987) N-propionylated group B meningococcal polysaccharide mimics a unique epitope on group B Neisseria meningitidis. J Exp Med 165(4):1207–1211

    Article  CAS  PubMed  Google Scholar 

  35. Jennings HJ, Gamian A, Michon F, Ashton FE (1989) Unique intermolecular bactericidal epitope involving the homosialopolysaccharide capsule on the cell surface of group B Neisseria meningitidis and Escherichia coli K1. J Immunol 142(10):3585–3591

    CAS  PubMed  Google Scholar 

  36. Granoff DM, Bartoloni A, Ricci S, Gallo E, Rosa D, Ravenscroft N, Guarnieri V, Seid RC, Shan A, Usinger WR, Tan S, McHugh YE, Moe GR (1998) Bactericidal monoclonal antibodies that define unique meningococcal B polysaccharide epitopes that do not cross-react with human polysialic acid. J Immunol 160(10):5028–5036

    CAS  PubMed  Google Scholar 

  37. Moe GR, Dave A, Granoff DM (2005) Epitopes recognized by a nonautoreactive murine anti-N-propionyl meningococcal group B polysaccharide monoclonal antibody. Infect Immun 73(4):2123–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szewczyk B, Taylor A (1980) Immunochemical properties of Vi antigen from Salmonella typhi Ty2: presence of two antigenic determinants. Infect Immun 29(2):539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szu SC, Bystricky S, Hinojosa-Ahumada M, Egan W, Robbins JB (1994) Synthesis and some immunologic properties of an O-acetyl pectin [poly(1-->4)-alpha-D-GalpA]-protein conjugate as a vaccine for typhoid fever. Infect Immun 62(12):5545–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abdelhameed AS, Adams GG, Morris GA, Almutairi FM, Duvivier P, Conrath K, Harding SE (2016) A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate. Sci Rep 6:22208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdelhameed AS, Morris GA, Almutairi F, Adams GG, Duvivier P, Conrath K, Harding SE (2016) Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein. Sci Rep 6:35588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harding SE, Abdelhameed AS, Gillis RB, Morris GA, Adams GG (2015) Characterization of capsular polysaccharides and their glycoconjugates by hydrodynamic methods. Methods Mol Biol 1331:211–227

    Article  PubMed  Google Scholar 

  43. Brady AM, Calix JJ, Yu J, Geno KA, Cutter GR, Nahm MH (2014) Low invasiveness of pneumococcal serotype 11A is linked to ficolin-2 recognition of O-acetylated capsule epitopes and lectin complement pathway activation. J Infect Dis 210(7):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seppala I, Makela O (1989) Antigenicity of dextran-protein conjugates in mice. Effect of molecular weight of the carbohydrate and comparison of two modes of coupling. J Immunol 143(4):1259–1264

    CAS  PubMed  Google Scholar 

  45. Rondini S, Micoli F, Lanzilao L, Gavini M, Alfini R, Brandt C, Clare S, Mastroeni P, Saul A, MacLennan CA (2015) Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect Immun 83(3):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ftacek P, Nelson V, Szu SC (2013) Immunochemical characterization of synthetic hexa-, octa- and decasaccharide conjugate vaccines for Vibrio cholerae O:1 serotype Ogawa with emphasis on antigenic density and chain length. Glycoconj J 30(9):871–880

    Article  CAS  PubMed  Google Scholar 

  47. Daum RS, Hogerman D, Rennels MB, Bewley K, Malinoski F, Rothstein E, Reisinger K, Block S, Keyserling H, Steinhoff M (1997) Infant immunization with pneumococcal CRM197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administered vaccines. J Infect Dis 176(2):445–455

    Article  CAS  PubMed  Google Scholar 

  48. Laferriere CA, Sood RK, de Muys JM, Michon F, Jennings HJ (1998) Streptococcus pneumoniae type 14 polysaccharide-conjugate vaccines: length stabilization of opsonophagocytic conformational polysaccharide epitopes. Infect Immun 66(6):2441–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rana R, Dalal J, Singh D, Kumar N, Hanif S, Joshi N, Chhikara MK (2015) Development and characterization of Haemophilus influenzae type b conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 33(23):2646–2654

    Article  CAS  PubMed  Google Scholar 

  50. Anderson PW, Pichichero ME, Stein EC, Porcelli S, Betts RF, Connuck DM, Korones D, Insel RA, Zahradnik JM, Eby R (1989) Effect of oligosaccharide chain length, exposed terminal group, and hapten loading on the antibody response of human adults and infants to vaccines consisting of Haemophilus influenzae type b capsular antigen unterminally coupled to the diphtheria protein CRM197. J Immunol 142(7):2464–2468

    CAS  PubMed  Google Scholar 

  51. Paoletti LC, Kasper DL, Michon F, DiFabio J, Jennings HJ, Tosteson TD, Wessels MR (1992) Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. J Clin Investig 89(1):203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arcuri M, Di Benedetto R, Cunningham AF, Saul A, MacLennan CA, Micoli F (2017) The influence of conjugation variables on the design and immunogenicity of a glycoconjugate vaccine against Salmonella Typhi. PLoS One 12(12):e0189100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gray GR (1974) The direct coupling of oligosaccharides to proteins and derivatized gels. Arch Biochem Biophys 163(1):426–428

    Article  CAS  PubMed  Google Scholar 

  54. Wessels MR, Paoletti LC, Kasper DL, DiFabio JL, Michon F, Holme K, Jennings HJ (1990) Immunogenicity in animals of a polysaccharide-protein conjugate vaccine against type III group B Streptococcus. J Clin Investig 86(5):1428–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crotti S, Zhai H, Zhou J, Allan M, Proietti D, Pansegrau W, Hu QY, Berti F, Adamo R (2014) Defined conjugation of glycans to the lysines of CRM197 guided by their reactivity mapping. ChemBioChem 15(6):836–843

    Article  CAS  PubMed  Google Scholar 

  56. Moginger U, Resemann A, Martin CE, Parameswarappa S, Govindan S, Wamhoff EC, Broecker F, Suckau D, Pereira CL, Anish C, Seeberger PH, Kolarich D (2016) Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci Rep 6:20488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hu QY, Berti F, Adamo R (2016) Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 45(6):1691–1719

    Article  CAS  PubMed  Google Scholar 

  58. Nilo A, Morelli L, Passalacqua I, Brogioni B, Allan M, Carboni F, Pezzicoli A, Zerbini F, Maione D, Fabbrini M, Romano MR, Hu QY, Margarit I, Berti F, Adamo R (2015) Anti-group B Streptococcus glycan-conjugate vaccines using pilus protein GBS80 as carrier and antigen: comparing lysine and tyrosine-directed conjugation. ACS Chem Biol 10(7):1737–1746

    Article  CAS  PubMed  Google Scholar 

  59. van der Put RM, Kim TH, Guerreiro C, Thouron F, Hoogerhout P, Sansonetti PJ, Westdijk J, Stork M, Phalipon A, Mulard LA (2016) A synthetic carbohydrate conjugate vaccine candidate against shigellosis: improved bioconjugation and impact of alum on immunogenicity. Bioconjug Chem 27(4):883–892

    Article  PubMed  CAS  Google Scholar 

  60. Cuccui J, Wren B (2015) Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. J Pharm Pharmacol 67(3):338–350

    Article  CAS  PubMed  Google Scholar 

  61. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW (2012) Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J Med Microbiol 61(7):919–926

    Article  CAS  PubMed  Google Scholar 

  62. Glover KJ, Weerapana E, Numao S, Imperiali B (2005) Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem Biol 12(12):1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102(8):3016–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kampf MM, Braun M, Sirena D, Ihssen J, Thony-Meyer L, Ren Q (2015) In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb Cell Factories 14:12

    Article  CAS  Google Scholar 

  65. Pan C, Sun P, Liu B, Liang H, Peng Z, Dong Y, Wang D, Liu X, Wang B, Zeng M, Wu J, Zhu L, Wang H (2016) Biosynthesis of conjugate vaccines using an O-linked glycosylation system. mBio 7(2):e00443–e00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ihssen J, Haas J, Kowarik M, Wiesli L, Wacker M, Schwede T, Thony-Meyer L (2015) Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering. Open Biol 5(4):140227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ollis AA, Chai Y, Natarajan A, Perregaux E, Jaroentomeechai T, Guarino C, Smith J, Zhang S, DeLisa MP (2015) Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences. Sci Rep 5:15237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nilo A, Passalacqua I, Fabbrini M, Allan M, Usera A, Carboni F, Brogioni B, Pezzicoli A, Cobb J, Romano MR, Margarit I, Hu QY, Berti F, Adamo R (2015) Exploring the effect of conjugation site and chemistry on the immunogenicity of an anti-group B Streptococcus glycoconjugate vaccine based on GBS67 pilus protein and type V polysaccharide. Bioconjug Chem 26(8):1839–1849

    Article  CAS  PubMed  Google Scholar 

  69. Zhang F, Lu YJ, Malley R (2013) Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci U S A 110(33):13564–13569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thanawastien A, Cartee RT, Griffin TJ, Killeen KP, Mekalanos JJ (2015) Conjugate-like immunogens produced as protein capsular matrix vaccines. Proc Natl Acad Sci U S A 112(10):E1143–E1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Broker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R (2011) Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 39(4):195–204

    Article  PubMed  CAS  Google Scholar 

  72. Pecetta S, Lo Surdo P, Tontini M, Proietti D, Zambonelli C, Bottomley MJ, Biagini M, Berti F, Costantino P, Romano MR (2015) Carrier priming with CRM 197 or diphtheria toxoid has a different impact on the immunogenicity of the respective glycoconjugates: biophysical and immunochemical interpretation. Vaccine 33(2):314–320

    Article  CAS  PubMed  Google Scholar 

  73. Pecetta S, Tontini M, Faenzi E, Cioncada R, Proietti D, Seubert A, Nuti S, Berti F, Romano MR (2016) Carrier priming effect of CRM197 is related to an enhanced B and T cell activation in meningococcal serogroup A conjugate vaccination. Immunological comparison between CRM197 and diphtheria toxoid. Vaccine 34(20):2334–2341

    Article  CAS  PubMed  Google Scholar 

  74. Dagan R, Poolman J, Siegrist CA (2010) Glycoconjugate vaccines and immune interference: a review. Vaccine 28(34):5513–5523

    Article  CAS  PubMed  Google Scholar 

  75. Findlow H, Borrow R (2016) Interactions of conjugate vaccines and co-administered vaccines. Hum Vaccin Immmunother 12(1):226–230

    Article  CAS  Google Scholar 

  76. Ladhani SN, Andrews NJ, Waight P, Hallis B, Matheson M, England A, Findlow H, Bai X, Borrow R, Burbidge P, Pearce E, Goldblatt D, Miller E (2015) Interchangeability of meningococcal group C conjugate vaccines with different carrier proteins in the United Kingdom infant immunisation schedule. Vaccine 33(5):648–655

    Article  CAS  PubMed  Google Scholar 

  77. Dagan R, Poolman JT, Zepp F (2008) Combination vaccines containing DTPa-Hib: impact of IPV and coadministration of CRM197 conjugates. Expert Rev Vaccines 7(1):97–115

    Article  CAS  PubMed  Google Scholar 

  78. Broker M, Berti F, Schneider J, Vojtek I (2017) Polysaccharide conjugate vaccine protein carriers as a “neglected valency” - potential and limitations. Vaccine 35(25):3286–3294

    Article  PubMed  CAS  Google Scholar 

  79. Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19(17–19):2688–2691

    Article  CAS  PubMed  Google Scholar 

  80. Brett PJ, Woods DE (1996) Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect Immun 64(7):2824–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, Samuel JE, Titball RW, Torres AG (2017) The use of reverse vaccinology in the design and construction of nano-glycoconjugate vaccines against Burkholderia pseudomallei. Clin Vaccine Immunol 24(11):e00206–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Broecker F, Hanske J, Martin CE, Baek JY, Wahlbrink A, Wojcik F, Hartmann L, Rademacher C, Anish C, Seeberger PH (2016) Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat Commun 7:11224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pozsgay V, Chu C, Pannell L, Wolfe J, Robbins JB, Schneerson R (1999) Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1. Proc Natl Acad Sci U S A 96(9):5194–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adamo R, Hu Q-Y, Torosantucci A, Crotti S, Brogioni G, Allan M, Chiani P, Bromuro C, Quinn D, Tontini M, Berti F (2014) Deciphering the structure-immunogenicity relationship of anti-Candida glycoconjugate vaccines. Chem Sci 5(11):4302–4311

    Article  CAS  Google Scholar 

  85. Alonso de Velasco E, Verheul AF, van Steijn AM, Dekker HA, Feldman RG, Fernandez IM, Kamerling JP, Vliegenthart JF, Verhoef J, Snippe H (1994) Epitope specificity of rabbit immunoglobulin G (IgG) elicited by pneumococcal type 23F synthetic oligosaccharide- and native polysaccharide-protein conjugate vaccines: comparison with human anti-polysaccharide 23F IgG. Infect Immun 62(3):799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reason DC, Zhou J (2004) Correlation of antigenic epitope and antibody gene usage in the human immune response to Streptococcus pneumoniae type 23F capsular polysaccharide. Clin Immunol 111(1):132–136

    Article  CAS  PubMed  Google Scholar 

  87. Menova P, Sella M, Sellrie K, Pereira C, Seeberger PH (2018) Identification of the minimal glycotope of Streptococcus pneumoniae 7F capsular polysaccharide using synthetic oligosaccharides. Chem Eur J 24(16):4181–4187

    Article  CAS  PubMed  Google Scholar 

  88. Wang CH, Li ST, Lin TL, Cheng YY, Sun TH, Wang JT, Cheng TJ, Mong KK, Wong CH, Wu CY (2013) Synthesis of Neisseria meningitidis serogroup W135 capsular oligosaccharides for immunogenicity comparison and vaccine development. Angew Chem Int Ed Engl 52(35):9157–9161

    Article  CAS  PubMed  Google Scholar 

  89. Martin CE, Broecker F, Oberli MA, Komor J, Mattner J, Anish C, Seeberger PH (2013) Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 135(26):9713–9722

    Article  CAS  PubMed  Google Scholar 

  90. Villeneuve S, Souchon H, Riottot MM, Mazie JC, Lei P, Glaudemans CP, Kovac P, Fournier JM, Alzari PM (2000) Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Proc Natl Acad Sci 97(15):8433–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vulliez-Le Normand B, Saul FA, Phalipon A, Belot F, Guerreiro C, Mulard LA, Bentley GA (2008) Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci U S A 105(29):9976–9981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brisson JR, Uhrinova S, Woods RJ, van der Zwan M, Jarrell HC, Paoletti LC, Kasper DL, Jennings HJ (1997) NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives. Biochemistry 36(11):3278–3292

    Article  CAS  PubMed  Google Scholar 

  93. Gonzalez-Outeirino J, Kadirvelraj R, Woods RJ (2005) Structural elucidation of type III group B Streptococcus capsular polysaccharide using molecular dynamics simulations: the role of sialic acid. Carbohydr Res 340(5):1007–1018

    Article  CAS  PubMed  Google Scholar 

  94. Zou W, Mackenzie R, Therien L, Hirama T, Yang Q, Gidney MA, Jennings HJ (1999) Conformational epitope of the type III group B Streptococcus capsular polysaccharide. J Immunol 163(2):820–825

    CAS  PubMed  Google Scholar 

  95. Carboni F, Adamo R, Fabbrini M, De Ricco R, Cattaneo V, Brogioni B, Veggi D, Pinto V, Passalacqua I, Oldrini D, Rappuoli R, Malito E, Margarit IYR, Berti F (2017) Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide. Proc Natl Acad Sci U S A 114(19):5017–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnson MA, Jaseja M, Zou W, Jennings HJ, Copie V, Pinto BM, Pincus SH (2003) NMR studies of carbohydrates and carbohydrate-mimetic peptides recognized by an anti-group B Streptococcus antibody. J Biol Chem 278(27):24740–24752

    Article  CAS  PubMed  Google Scholar 

  97. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    Article  CAS  PubMed  Google Scholar 

  98. Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2011) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13(1):35–43

    Article  PubMed  CAS  Google Scholar 

  99. King IL, Fortier A, Tighe M, Dibble J, Watts GF, Veerapen N, Haberman AM, Besra GS, Mohrs M, Brenner MB, Leadbetter EA (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13(1):44–50

    Article  PubMed  CAS  Google Scholar 

  100. Bai L, Deng S, Reboulet R, Mathew R, Teyton L, Savage PB, Bendelac A (2013) Natural killer T (NKT)-B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides. Proc Natl Acad Sci U S A 110(40):16097–16102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cavallari M, Stallforth P, Kalinichenko A, Rathwell DC, Gronewold TM, Adibekian A, Mori L, Landmann R, Seeberger PH, De Libero G (2014) A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol 10(11):950–956

    Article  CAS  PubMed  Google Scholar 

  102. Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510

    Article  CAS  PubMed  Google Scholar 

  103. Collins AM (2016) IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol 94(10):949–954

    Article  CAS  PubMed  Google Scholar 

  104. Zhou Z, Mandal SS, Liao G, Guo J, Guo Z (2017) Synthesis and evaluation of GM2-monophosphoryl lipid A conjugate as a fully synthetic self-adjuvant cancer vaccine. Sci Rep 7(1):11403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Dreisbach VC, Cowley S, Elkins KL (2000) Purified lipopolysaccharide from Francisella tularensis live vaccine strain (LVS) induces protective immunity against LVS infection that requires B cells and gamma interferon. Infect Immun 68(4):1988–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang Z, Lazinski DW, Camilli A (2017) Immunity provided by an outer membrane vesicle cholera vaccine is due to O-antigen-specific antibodies inhibiting bacterial motility. Infect Immun 85(1):e00626–e00616

    Article  CAS  PubMed  Google Scholar 

  107. Chen L, Valentine JL, Huang CJ, Endicott CE, Moeller TD, Rasmussen JA, Fletcher JR, Boll JM, Rosenthal JA, Dobruchowska J, Wang Z, Heiss C, Azadi P, Putnam D, Trent MS, Jones BD, DeLisa MP (2016) Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc Natl Acad Sci U S A 113(26):E3609–E3618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, Feldman MF (2016) Glycoengineered outer membrane vesicles: a novel platform for bacterial vaccines. Sci Rep 6:24931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valentine JL, Chen L, Perregaux EC, Weyant KB, Rosenthal JA, Heiss C, Azadi P, Fisher AC, Putnam D, Moe GR, Merritt JH, DeLisa MP (2016) Immunization with outer membrane vesicles displaying designer glycotopes yields class-switched, glycan-specific antibodies. Cell Chem Biol 23(6):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Valguarnera E, Feldman MF (2017) Glycoengineered outer membrane vesicles as a platform for vaccine development. Methods Enzymol 597:285–310

    Article  CAS  PubMed  Google Scholar 

  111. Weyant KB, Mills DC, DeLisa MP (2018) Engineering a new generation of carbohydrate-based vaccines. Curr Opin Chem Eng 19:77–85

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. DeLisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moeller, T.D., Weyant, K.B., DeLisa, M.P. (2018). Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. In: Rapp, E., Reichl, U. (eds) Advances in Glycobiotechnology. Advances in Biochemical Engineering/Biotechnology, vol 175. Springer, Cham. https://doi.org/10.1007/10_2018_71

Download citation

Publish with us

Policies and ethics