Skip to main content

Current Issues in Cereal Crop Biodiversity

  • Chapter
  • First Online:
Biotechnological Applications of Biodiversity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVRDC:

The World Vegetable Center

BNI:

Biological Nitrification Inhibition

CIAT:

International Center for Tropical Agriculture

CGIAR:

Consultative Group on International Agricultural Research

CGRP:

Canadian Genetic Resources Programme

DNA:

Deoxyribonucleic acid

FAO:

Food and Agriculture Organization of the United Nations

GBIF:

Global Biodiversity Information Facility

GCDT:

Global Crop Diversity Trust

GEF:

Global Environment Facility

GHG:

Greenhouse gas

GM:

Genetically modified

GMO:

Genetically modified organism

IBPGR:

International Board for Plant Genetic Resources

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

IFAD:

International Fund for Agricultural Development

ILRI:

International Livestock Research Institute

IRD:

Institut de Recherche pour le Développement

ITPGRFA:

International Treaty on Plant Genetic Resources for Food and Agriculture

IUCN:

International Union for Conservation of Nature

JIRCAS:

Japan International Research Center for Agricultural Sciences

MLS:

Multilateral system

NBPGR:

National Bureau of Plant Genetic Resources (India)

NUS:

Neglected and underutilized species

ORSTOM:

Office de la Recherche Scientifique et Technique d’Outre-Mer

SINGER:

System-wide Information Network for Genetic Resources

SMTA:

Standard Material Transfer Agreement

T-DNA:

Transfer-deoxyribonucleic acid

TALENs:

Transcription activator-like effector nucleases

UNEP:

United Nations Environment Programme

UNU:

United Nations University

USDA-ARS:

United States Department of Agriculture, Agricultural Research Service

WEMA:

Water Efficient Maize for Africa

WHO:

World Health Organization

References

  1. CBD (2000) Agricultural biological diversity: review of phase I of the programme of work and adoption of a multi-year programme. http://www.cbd.int/decision/cop/?id=7147. Accessed 25 Feb 2013

  2. Bioversity International (2009) Learning agrobiodiversity the importance of agricultural biodiversity and the role of universities. http://www.bioversityinternational.org/fileadmin/bioversityDocs/Training/Agrobiodiversity_Education/Learning_agrobiodiversity.pdf. Accessed 20 Feb 2013

  3. FAO (1999) What is agrobiodiversity? http://www.fao.org/docrep/007/y5609e/y5609e01.htm#TopOfPage. Accessed 25 Feb 2013

  4. Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253. doi:10.3390/su3010238

    Google Scholar 

  5. van de Wouw M, Kik C, van Hintum T et al (2009) Genetic erosion in crops: concept, results and challenges. Plant Genet Res: Charact Utilization 8:1–15. doi:10.1017/S1479262109990062

    Google Scholar 

  6. Singh A, Singh HN, Singh J (2008) Rice biodiversity and its social implication. Int J Rural Stud 15(2)

    Google Scholar 

  7. Pistorius R (1997) Scientists, plants and politics—A history of the plant genetic resources movement. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  8. Thormann I, Gaisberger H, Mattei F et al (2012) Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genet Resour Crop Evol 59:635–644

    Google Scholar 

  9. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. http://www.fao.org/agriculture/seed/sow2/en/. Accessed 17 Apr 2013

  10. Altieri MA, Merrick LC (1987) In situ conservation of crop genetic resources through maintenance of traditional farming. Econ Bot 41:86–96

    Google Scholar 

  11. Jensen HR, Dreiseitl A, Sadiki M et al (2012) The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley. Evol Appl 5:353–367

    Google Scholar 

  12. Dulloo ME, Hunter D, Borelli T (2010) Ex situ and in situ conservation of agricultural biodiversity: major advances and research needs. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:123–135

    Google Scholar 

  13. FAO (2011a) Draft updated global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. In: Fifth session of the Intergovernmental Technical Working Group on Plant Genetic Resources for Food and Agriculture, Rome, 27–29 Apr 2011

    Google Scholar 

  14. Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:227–278

    Google Scholar 

  15. Cleveland DA, Soleri D (2007) Extending Darwin’s analogy: bridging differences in concepts of selection between farmers, biologists, and plant breeders. Econ Bot 61:121–136

    Google Scholar 

  16. Thomas M, Dawson JC, Goldringer I et al (2011) Seed exchanges, a key to analyze crop diversity dynamics in farmer-led on-farm conservation. Genet Resour Crop Evol 58:321–338

    Google Scholar 

  17. Briggs D, Walters M (1999) Evolution: some general considerations. Plant variation and evolution. 3rd edn. Cambridge University Press, Cambridge, pp 367–398

    Google Scholar 

  18. Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493

    Google Scholar 

  19. Zeven AC (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110:181–191

    Google Scholar 

  20. Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270

    Google Scholar 

  21. Bezançon G, Pham JL, Deu M et al (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236

    Google Scholar 

  22. Vigouroux Y, Glaubitz JC, Matsuoka Y et al (2008) Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Google Scholar 

  23. Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 59:523–537

    Google Scholar 

  24. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148

    Google Scholar 

  25. van Zonneveld M, Dawson I, Thomas E, et al (2013) Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In: Tuberosa. R, Adler A, Frison E (eds) Advances in genomics of plant genetic resources. Springer, New York

    Google Scholar 

  26. Guarino L, Jarvis A, Hijmans RJ et al (2002) Geographic information systems (GIS) and the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. International Plant Genetic Resources Institute (IPGRI), Rome, pp 387–404

    Google Scholar 

  27. Kiambi DK, Newbury HJ, Maxted N et al (2008) Molecular genetic variation in the African wild rice Oryza longistaminata A. Chev. et Roehr. and its association with environmental variables. Afr J Biotechnol 7:1446–1460

    Google Scholar 

  28. van Zonneveld M, Scheldeman X, Escribano P et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PloS ONE 7:e29845

    Google Scholar 

  29. Hijmans RJ, van Etten J (2012) Geographic analysis and modelling with raster data. R package “Raster”. http://cran.r-project.org/web/packages/raster/raster.pdf. Accessed 17 Apr 2013

  30. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  Google Scholar 

  31. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    CAS  Google Scholar 

  32. Thomas E, van Zonneveld M, Loo J et al (2012) Present spatial diversity patterns of Theobroma cacao L. in the Neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7:e47676

    CAS  Google Scholar 

  33. van Heerwaarden J, Doebley J, Briggs WH et al (2010) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci. doi:10.1073/pnas.1013011108

    Google Scholar 

  34. Hufford MB, Lubinksy P, Pyhäjärvi T et al (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477

    CAS  Google Scholar 

  35. Russell J, Dawson IK, Flavell AJ et al (2011) Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578

    Google Scholar 

  36. Dvorak J, Luo M-Ch, Akhunov ED (2011) N.I. Vavilov’s theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J Genet Plant Breed 47:S20–S27

    Google Scholar 

  37. Barry MB, Pham JL, Courtois B et al (2007) Rice genetic diversity at farm and village levels and genetic structure of local varieties reveal need for in situ conservation. Genet Resour Crop Evol 54:1675–1690

    CAS  Google Scholar 

  38. Jarvis D, Hodgkin T, Sthapit BR et al (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit Rev Plant Sci 30:125–176

    Google Scholar 

  39. Pusadee T, Jamjoda S, Chiang Y-C et al (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Nat Acad Sci 106:13880–13885

    CAS  Google Scholar 

  40. Rice EB, Smith ME, Mitchell SE et al (2006) Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci 46:428–436

    CAS  Google Scholar 

  41. Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437

    CAS  Google Scholar 

  42. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 227:1063–1066

    Google Scholar 

  43. Ishii T, Hiraoka T, Kanzaki T et al (2011) Evaluation of genetic variation among wild populations and local varieties of rice. Rice 4:170–177

    Google Scholar 

  44. Russell J, van Zonneveld M, Dawson IK, et al (2013) Genetic diversity and ecological niche modeling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats? PloS ONE (accepted)

    Google Scholar 

  45. National Research Council (NRC) (1996) Pearl millet. Lost Crops of Africa, vol 1, Grains. National Academy Press, Washington, pp 77–126

    Google Scholar 

  46. Yadav OP (2011) Project Coordinator’s Review (2010-11) on Pearl Millet Research. http://www.aicpmip.res.in/pcr2011.pdf. Accessed 02 May 2013

  47. Brunken JN, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Botan 31:163–174

    Google Scholar 

  48. Rai KN, AppaRao S, Reddy KN (1997) Pearl Millet In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in Trust. Cambridge University Press, Cambridge, pp 243–258

    Google Scholar 

  49. The Syngenta Foundation for Sustainable Agriculture (2006) Harnessing Modern Science in Africa to Sustain Sorghum and Pearl Millet Production for Resource poor Farmers. www.syngentafoundation.com/millet.html. Accessed 02 May 2013

  50. Linnaeus C (1753) Species plantarum. Laurentius Salvius, Stockholm

    Google Scholar 

  51. Linnaeus C (1759) Systema naturae, 10th edn, vol 2. Laurentius Salvius, Stockholm

    Google Scholar 

  52. Rechard L (1805) Pennisetum. In: Person CH (ed) Synopsis plantarum,vol l. Cotta, Tubingen

    Google Scholar 

  53. Willdenow KL (1809) Enumeratio plantarum horti regni botanici Berolinensis. Berolini, Berlin

    Google Scholar 

  54. Steudel EG (1855) Synopsis plantarum glumaceum. Stuttgart. B65.10.01. M. inscription vol. 1: Ferd Muller, M.D., Ph.D. 1987

    Google Scholar 

  55. Leeke P (1907) Untersuchunguber Abstammung and Heimat der Negerhirse (Pennisetum americanum (L.)L schum.). Z Naturwissenchaften 79:1–108

    Google Scholar 

  56. Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, Part 9. Crown Agents, London

    Google Scholar 

  57. Clayton WD, Renvoize SA (1982) Gramineae. In: Polhill RM (ed) Flora of tropical East Africa, Part 3. Balkema, Rotterdam

    Google Scholar 

  58. Gari JA (2002) Review of the African millet diversity. In: Paper for the International workshop on fonio, food security and livelihood among the rural poor in West Africa, IPGRI/IFAD, Bamako, Mali. Programme for Neglected and Underutilized Species. IPGRI, Rome, Italy, 19–22 Nov 2001

    Google Scholar 

  59. Hanna WW (1987) Utilization of wild relatives of pearl millet. In: Proceedings of the international pearl millet wokshop, ICRISAT Center, India. ICRISAT, Patancheru, Andhra Pradesh, India, 7–11 Apr 1986

    Google Scholar 

  60. Oumar I, Mariac C, Pham JL et al (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    CAS  Google Scholar 

  61. Amblard S, Pernes J (1989) The identification of the cultivated pearl millet (Pennisetum) amongst plant impressions on pottery from Oued Chebbi (Dhar Oualata, Mauritania). Afr Archaeol Rev 7:117–126

    Google Scholar 

  62. D’Andrea AC, Casey J (2002) Pearl millet and kintampo subsistence. Afr Archaeol Rev 19:147–173

    Google Scholar 

  63. D’Andrea AC, Klee M, Casey J (2001) Archaeological evidence for pearl millet (Pennisetum glaucum) in sub-saharan West Africa. Antiquity 75:341–348

    Google Scholar 

  64. Clark JD (1962) The spread of food production in sub-Saharan Africa. J Afr Hist III 2:211–228

    Google Scholar 

  65. Harlan JR (1971) Agricultural origins: centres and non-centres. Science 174:468–474

    CAS  Google Scholar 

  66. Marchais L (1994) Wild pearl millet population (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. An example from Keita (Niger). Plant Syst Evol 189:233–245

    Google Scholar 

  67. Portères R (1962) Berceaux agricolos primaries sur le continent africain. J Afr Hist III 2:195–210

    Google Scholar 

  68. Tostain S, Marchais L (1993) Wild pearl millet population (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. Plant Syst Evol 189:233–245

    Google Scholar 

  69. Khairwal IS, Rai KN, Diwakar B et al (2007) Pearl millet: crop management and seed production manual. ICRISAT, Patancheru, Andhra Pradesh, India, pp 108

    Google Scholar 

  70. Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum L.). Theor Appl Genet 83:736–742

    Google Scholar 

  71. Tostain S (1998) Le mil, une longue histoire: hypothèses sur sa domestication et ses migrations. In: Chastenet M (ed) Plantes et Paysages d’Afrique: Une Histoire à Explorer. Karthala and Centre de Recherches Africaines, Paris, pp 461–490

    Google Scholar 

  72. Klee M, Zach B, Stika HP (2004) Four thousand years of plant exploitation in the Lake Chad basin (Nigeria), part III: plant impressions in postherds from the final stone age Gajiganna culture. Veg Hist Archaeobotony 13:131–142

    Google Scholar 

  73. Tostain S, Riandey MF, Marchais L (1987) Enzyme diversity in pearl millet (Pennisetum glaucum) I. West Africa. Theor Appl Genet 74:188–193

    CAS  Google Scholar 

  74. Upadhyaya HD, Reddy KN, Gowda CLL (2007) Pearl millet germplasm at ICRISAT genebank—status and impact. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India

    Google Scholar 

  75. IBPGR and ICRISAT (1993) Descriptors for Pearl Millet. International Plant genetic resources Institute, Rome

    Google Scholar 

  76. Mathur PN, Rana RS, Aggarwal RC (1993) Evaluation of pearl millet germplasm part I. National Bureau of Plant Genetic Resources, New Delhi

    Google Scholar 

  77. Mathur PN, Rana RS, Aggarwal RC (1993) Evaluation of pearl millet germplasm part II. National Bureau of Plant Genetic Resources, New Delhi

    Google Scholar 

  78. Andrews DJ, Anand Kumar K (1996) Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Genet Resour Newsl 105:15–22

    Google Scholar 

  79. Bioversity International (2010) Key access and utilization descriptors for pearl millet genetic resources. Bioversity International, Rome, Italy. http://www.bioversityinternational.org/index.php?id=19&user_bioversitypublications_pi1%5BshowUid%5D=3376. Accessed 02 May 2013

  80. Maxted N, Kell SP (2009) Establishment of a global network for the In Situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, p 266

    Google Scholar 

  81. Mujica A (1992) Granos y leguminosas andinas. In: Hernandez J, Bermejo J, Leon J (eds) Cultivos marginados: otra perspectiva de 1492. Organización de la Naciones Unidas para la Agricultura y la Alimentación (FAO), Roma

    Google Scholar 

  82. Rojas W, Pinto M, Soto JL (2010a) Distribución geográfica y variabilidad genética de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  83. Aroni G, Pinto M, Rojas W (2012) Small-scale quinoa processing technology in the southernAltiplano of Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, Rome

    Google Scholar 

  84. Carrasco E, Soto JL (2010) Importancia de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S(eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  85. Pinto M, Alarcón V, Soto JL, Rojas W (2010a) Usos tradicionales, no tradicionales e innovaciones agroindustriales de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  86. FAO (2011b) La Quinua: cultivo milenario para contribuir a la seguridad alimentaria mundial. FAO, Oficina Regional para América Latina y el Caribe, La Paz

    Google Scholar 

  87. Rojas W, Pinto M, Soto JL, Alcocer E (2010b) Valor nutricional, agroindustrial y funcional de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  88. FAO, WHO, UNU (1985) Necesidades de energía y proteínas. Informes Técnicos. OMS, Ginebra

    Google Scholar 

  89. Astudillo D (2012) Livelihoods of quinoa producers in southern Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, Italy

    Google Scholar 

  90. Hunter D, Heywood V (eds) (2011) Crop wild relatives: a manual of in situ conservation, 1st edn. Earthscan, London

    Google Scholar 

  91. Jacobsen SE (2003) The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Google Scholar 

  92. Apaza V, Estrada R, Quispe MG (2010b) Identificación y selección participativa de material genético promisorio. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Roma

    Google Scholar 

  93. Mujica A, Izquierdo J, Marathee JP (2001) Origen y Descripción de la Quinua. In: Mujica A, Jacobsen SE, Izquierdo J, Marathee JP. Quinua (Chenopodium quinoa Willd.). Ancestral Cultivo Andino, Alimento del Presente y Futuro. FAO. Santiago

    Google Scholar 

  94. Bonifacio A, Aroni G, Villca M (2012) Catálogo Etnobotánico de la Quinua Real. PROINPA, Cochabamba

    Google Scholar 

  95. Ministerio de Medio Ambiente y Agua (MMAyA), Viceministerio de Medio Ambiente, Biodiversidad y Cambios Climáticos (VMABCC), Bioversity International (2009) Libro Rojo de Parientes Silvestres de Cultivos de Bolivia. VMABCC-Bioversity International, La Paz

    Google Scholar 

  96. Apaza V, Catacora P, Quispe MG (2010a) Distribución geográfica y variabilidad genética de los granos andinos. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds). Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Roma

    Google Scholar 

  97. Rojas W, Pinto M (2010) Colecta de germoplasma. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  98. Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) (2010) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Roma

    Google Scholar 

  99. Jaeger M (2012) Novel products, markets and partnerships in value chains for Andean grains in Peru and Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, Rome

    Google Scholar 

  100. Bravo R, Catacora P (2010) Situación actual de los bancos nacionales de germoplasma. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Roma

    Google Scholar 

  101. Reay SD, Davidson EA, Smith KA et al (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416. doi:10.1038/nclimate1458

    CAS  Google Scholar 

  102. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    CAS  Google Scholar 

  103. Wuebbles DJ (2009) Nitrous oxide: no laughing matter. Science 326:56–57

    CAS  Google Scholar 

  104. Philippot L, Hallin S (2011) Towards food, feed and energy crops mitigating climate change. Trends Plant Sci 16:476–480

    CAS  Google Scholar 

  105. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    CAS  Google Scholar 

  106. Subbarao GV, Nakahara K, Hurtado MP et al (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–17307

    CAS  Google Scholar 

  107. Subbarao GV, Sahrawat KL, Nakahara K et al (2012) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot. doi:10.1093/aob/mcs230

    Google Scholar 

  108. Subbarao GV, Rondon M, Ito O et al (2007) Biological nitrification inhibition (BNI)—Is it a widespread phenomenon? Plant Soil 294:5–18

    CAS  Google Scholar 

  109. Tanaka JP, Nardi P, Wissuwa M (2010) Nitrification inhibition activity, a novel trait in root exudates of rice. AoB Plants 2010:1–11

    Google Scholar 

  110. Subbarao GV, Ban T, Masahiro K et al (2007) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64

    CAS  Google Scholar 

  111. Zahn LM (2007) A boost from wild wheat. Science 318:171. doi:10.1126/science.318.5848.171c

    Google Scholar 

  112. Hossain AKMZ, Subbarao GV, Pearse SJ et al (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451

    Google Scholar 

  113. Subbarao GV, Nakahara K, Ishikawa T et al (2013) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259

    CAS  Google Scholar 

  114. Nimbal CI, Pedersen JF, Yerkes CN et al (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum. J Agric Food Chem 44:1343–1347

    CAS  Google Scholar 

  115. Dobermann A, Cassman KG (2005) Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Sci China Life Sci 48:745–758

    CAS  Google Scholar 

  116. Phoenix GK, Hicks WK, Cinderby S et al (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476

    Google Scholar 

  117. Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  Google Scholar 

  118. Zhou Z, Sun OJ, Huang J et al (2006) Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct Ecol 20:753–762

    Google Scholar 

  119. Cox RM (1992) Air pollution effects on plant reproductive processes and possible consequences to their population ecology. In: Barker JR, Tingey DT (eds) Air pollution effects on biodiversity. Springer, New York, pp 131–158

    Google Scholar 

  120. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    CAS  Google Scholar 

  121. Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 41:167–174

    Google Scholar 

  122. Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67

    Google Scholar 

  123. Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multi-model evaluation. Glob Biogeochem Cycles 20:GB4003. doi: 10.1029/2005GB002672

    Google Scholar 

  124. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  125. Lu X, Mo J, Gilliam FS, Zhou G et al (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Glob Chang Biol 16:2688–2700

    Google Scholar 

  126. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    CAS  Google Scholar 

  127. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    CAS  Google Scholar 

  128. Gilliam FS, Hockenberry AW, Adams MB (2006) Effects of atmospheric nitrogen deposition on the herbaceouslayer of a central Appalachian hardwood forest. J Torrey Bot Soc 133:240–254

    Google Scholar 

  129. Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic-resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    CAS  Google Scholar 

  130. Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80:4803–4807

    CAS  Google Scholar 

  131. Herrera-Estrella L, Depicker A, Van Montagu M et al (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    CAS  Google Scholar 

  132. Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    CAS  Google Scholar 

  133. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    CAS  Google Scholar 

  134. Hoekema A, Hirsch PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Google Scholar 

  135. Chilton MD, Tepfer DA, Petit A et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    CAS  Google Scholar 

  136. Draper J, Davey MR, Freeman JP et al (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid transformed petunia protoplasts. Plant Cell Physiol 23:451–458

    CAS  Google Scholar 

  137. Krens FA, Molendijk L, Wullems GJ et al (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    CAS  Google Scholar 

  138. Paszkowski J, Shillito RD, Saul M et al (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    CAS  Google Scholar 

  139. Sanford JC, Klein TM, Wolf ED et al (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37

    CAS  Google Scholar 

  140. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  141. Bajaj YPS (1991) Biotechnology in rice improvement. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 14. Rice. Springer, Berlin, pp 1–15

    Google Scholar 

  142. Shimammoto K, Tareda R, Izawa H (1989) Fertile transgenic rice plants regenerated from transformed protoplast. Nature 338:274–276

    Google Scholar 

  143. Bajaj YPS (1994) Biotechnology in maize improvement. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry vol. 25. Maize. Springer, Berlin, pp 1–17

    Google Scholar 

  144. Gordon-Kamm WJ, Spencer TM, Mangano ML et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    CAS  Google Scholar 

  145. Bajaj YPS (ed) (1990) Biotechnology in agriculture and forestry, vol. 13. Wheat. Springer, Berlin

    Google Scholar 

  146. Vasil V, Castillo AM, From ME et al (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectil bombardment of regenerable embryogenic callus. Biotechnol 10:667–674

    CAS  Google Scholar 

  147. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  Google Scholar 

  148. Ishida V, Saito H, Ohta O et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 6:745–750

    Google Scholar 

  149. Cheng M, Fry JE, Pang S et al (1997) Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  Google Scholar 

  150. Afolabi AS, Worland B, Snape JW et al (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826

    CAS  Google Scholar 

  151. Ingham DJ, Beer S, Money S et al (2001) Quantitative Real-Time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  Google Scholar 

  152. Vain P, Afolabi AS, Worland B et al (2003) Transgene behavior in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107:210–217

    CAS  Google Scholar 

  153. Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 83:8447–8451

    CAS  Google Scholar 

  154. Carrer H, Hockenberry TN, Svab Z et al (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    CAS  Google Scholar 

  155. Waldron C, Murphy EB, Roberts JL et al (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108

    CAS  Google Scholar 

  156. Miki B, McHugh S (2003) Selectable marker genes in transgenic plants: application, alternatives and biosafety. J Biotechnol 107:193–232

    Google Scholar 

  157. Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213

    CAS  Google Scholar 

  158. Sundar IK, Sakthitel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698–1716

    CAS  Google Scholar 

  159. Komari T, Hiei Y, Saito Y et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    CAS  Google Scholar 

  160. Miller M, Tagliani L, Wang N et al (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    CAS  Google Scholar 

  161. Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    CAS  Google Scholar 

  162. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    CAS  Google Scholar 

  163. Zambryski P (1992) Chronicles from the Agrobacterium–plant cell DNA transfer story. Ann Rev Plant Physiol Mol Biol 43:4645–4690

    Google Scholar 

  164. Gelvin SB (2010) Plant proteins involved in Agrobacterium mediated genetic transformation. Ann Rev Phytopatol 48:45–68

    CAS  Google Scholar 

  165. Gelvin SB (2010b) Finding the way to the nucleus.Curr Opin Microbiol 13:53–58

    Google Scholar 

  166. Vain P (2005) Plant transgenic science knowledge. Nat Biotechnol 23:1348–1349

    CAS  Google Scholar 

  167. Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    CAS  Google Scholar 

  168. Areal FJ, Riesgo L, Rodríguez-Cerezo E (2011) Attitudes of European farmers towards GM crop adoption. Plant Biotechnol J 9:945–957

    Google Scholar 

  169. EU Commission (2010) A decade of EU funded GMO research (2001–2010). ftp://cordis.europa.eu/pub/fp7/kbbe/docs/a-decade-of-eu-funded-gmo-research_en.pdf. Accessed 02 May 2013

  170. European Policy Evaluation Consortium (EPEC) (2011) The Evaluation of the EU legislative framework in the field of cultivation of GMOs under Directive 2001/18/EC. http://ec.europa.eu/food/food/biotechnology/evaluation/docs/gmo_cultivation_report_en.pdf. Accessed 02 May 2013

  171. Lusser M, Rodríguez-Cerezo E (2012) Comparative regulatory approaches for new plant breeding techniques. Workshop proceedings European Commission, JRC Technical Report EUR 25237 EN (2012)

    Google Scholar 

  172. Phillips PWB (2002) Biotechnology in the global agri-food systems. Trends Biotechnol 20:376–381

    Google Scholar 

  173. Park JR, McFarlane I, Phipps RH et al (2011) The role of transgenic crops in sustainable development. Plant Biotechol J 9:2–21

    Google Scholar 

  174. Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263

    CAS  Google Scholar 

  175. Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci 12:265–269

    Google Scholar 

  176. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    CAS  Google Scholar 

  177. Reynolds A, Leake D, Boese Q et al (2004) Rational sRNAi design for RNA interterference. Nat Biotechnol 22:326–330

    CAS  Google Scholar 

  178. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    CAS  Google Scholar 

  179. Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  Google Scholar 

  180. Boch J, Scholze H, Schornack S (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  Google Scholar 

  181. Bogdanove AJ, Voytas JF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    CAS  Google Scholar 

  182. Podevin N, Davies HV, Hartung F (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. doi:10.1016/j.tibtech.2013.03.004

    Google Scholar 

  183. Chen H, Lin Y, Zhang Q (2010) Rice. In: Kempker F, Jung Ch (eds) Genetic modification of plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, p 423–451

    Google Scholar 

  184. Hirano HY, Hirai A, Sano Y, Sasaki T (eds) (2008) Rice Biology in the Genomics era. Biotechnol in Agriculture and Forestry, vol 62. Springer, Berlin

    Google Scholar 

  185. Serraj R, Bennett J, Hardy B (eds) (2008) Drought frontiers in rice: crop improvement for increased rainfed production. World Scientific Publishing, Singapore

    Google Scholar 

  186. Sheehy JE, Mitchell PL, Hardy B (eds) (2007) Charting new pathways to C4 rice. IRRI, World Scientific, Los Banos

    Google Scholar 

  187. FAOSTAT (2013) http://faostat.fao.org. Accessed 05 Mar 2013

  188. Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci 16:16402–16409

    Google Scholar 

  189. James C (2012) Global status of commercialized Biotech/GMO crops: 2012. ISAAA Briefs No. 44. ISAAA, Ithaca, NY

    Google Scholar 

  190. Datta SK, Datta K, Parkhi V et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278

    Google Scholar 

  191. D’Halluin K, Vanderstraeten Ch, Stals E et al (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102

    Google Scholar 

  192. Duan Y, Zhai Ch, Li H (2012) An efficient and high-throughput protocol for Agrobacterium mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep 31:1611–1624

    CAS  Google Scholar 

  193. Water Efficient Maize for Africa (2011) Water efficient maize for Africa: pushing GMO crops onto Africa. The African Center for Biosafety. http://www.monsanto.com/improvingagriculture/Pages/water-efficient-maize-for-africa.aspx. Accessed 10 May 2013

  194. Carpenter JE (2011) Impact of GM crops on biodiversity. GM Crops 2:7–23

    Google Scholar 

  195. Aroni J, Aroni G, Quispe R, Bonifacio A (2003) Catálogo de Quinoa Real. Fundación PROINPA, La Paz

    Google Scholar 

  196. Pinto M, Marin W, Rojas W (2010b) Estrategias para la conservación y promoción de los granos andinos: ferias y concursos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  197. Soto JL (2010) Tecnología del cultivo de granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Roma

    Google Scholar 

  198. Knudsen H (ed) (2000) Directorio de Colecciones de Germoplasma en América Latina y el Caribe, 1st edn. International Plant Genetic Resources Institute (IPGRI), Roma

    Google Scholar 

  199. Mazón N, Rivera M, Peralta E, Estrella J, Tapia C (2002) Catálogo del banco de germoplasma de quinua (Chenopodium quinoa Willd.) del INIAP—Ecuador. Programa Nacional de Leguminosas y Granos Andinos, Departamento Nacional de Recursos Fitogenéticos y Biotecnología, Estación Experimental Santa Catalina. Quito

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo E. Moreta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreta, D.E. et al. (2013). Current Issues in Cereal Crop Biodiversity. In: Mukherjee, J. (eds) Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_263

Download citation

Publish with us

Policies and ethics