Skip to main content

Enzymatic Glucose Biosensors Based on Nanomaterials

  • Chapter
  • First Online:
Biosensors Based on Aptamers and Enzymes

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 140))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GOx:

Glucose oxidase

AuNP:

Gold nanoparticle

QD:

Quantum dot

CNT:

Carbon nanotube

NAD:

Nicotinamide adenine dinucleotide

GDH:

Glucose dehydrogenase

PQQ:

Pyrroloquinoline quinone

FET:

Field effect transistor

SWNT:

Single-wall nanotube

SCE:

Short-channel effect

SWCNT:

Single-wall carbon nanotube

FAD:

Flavin adenine dinucleotide

CMF:

Carbon microfiber

GR:

Graphite rod

HRP:

Horseradish peroxidase

OMC:

Ordered mesoporous carbon

MCF:

Mesocellular carbon foam

NP:

Nanoparticle

SAM:

Self-assembled monolayer

LSPR:

Localized surface plasmon resonance

MNP:

Magnetic nanoparticle

NMM:

Nanostructured magnetic materials

PDDA-HCNT:

Poly(diallyldimethylammonium chloride) functionalized helical carbon nanotube

PVA-Py-GOx:

Poly(vinyl alcohol)-pyrene-GOx

FRET:

Fluorescence resonance energy transfer

References

  1. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505

    Article  CAS  Google Scholar 

  2. Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sens Basel 10(5):4558–4576

    Article  Google Scholar 

  3. Chia CW, Saudek CD (2004) Glucose sensors: toward closed loop insulin delivery. Endocrin Metab Clin 33(1):175–195

    Article  CAS  Google Scholar 

  4. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453

    Article  CAS  Google Scholar 

  5. Oliver NS, Toumazou C, Cass AEG, Johnston DG (2009) Glucose sensors: a review of current and emerging technology. Diabetic Med 26(3):197–210

    Article  CAS  Google Scholar 

  6. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  Google Scholar 

  7. Sonksen PH, Judd SL, Lowy C (1978) Home monitoring of blood-glucose—method for improving diabetic control. Lancet 1(8067):729–732

    Article  CAS  Google Scholar 

  8. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann Ny Acad Sci 102(1):29–45

    Article  CAS  Google Scholar 

  9. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214(5092):986–988

    Article  CAS  Google Scholar 

  10. Dcosta EJ, Higgins IJ, Turner APF (1986) Quinoprotein glucose-dehydrogenase and its application in an amperometric glucose sensor. Biosensors 2(2):71–87

    Article  CAS  Google Scholar 

  11. Cletonjansen AM, Goosen N, Fayet O, Vandeputte P (1990) Cloning, mapping, and sequencing of the gene encoding escherichia-coli quinoprotein glucose-dehydrogenase. J Bacteriol 172(11):6308–6315

    CAS  Google Scholar 

  12. Yamada M, Elias MD, Matsushita K, Migita CT, Adachi O (2003) Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins. BBA Proteins Proteom 1647(1–2):185–192

    Article  CAS  Google Scholar 

  13. Iswantini D, Kano K, Ikeda T (2000) Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia coli cells. Biochem J 350:917–923

    Article  CAS  Google Scholar 

  14. Oubrie A, Rozeboom HJ, Kalk KH, Olsthoorn AJJ, Duine JA, Dijkstra BW (1999) Structure and mechanism of soluble quinoprotein glucose dehydrogenase. Embo J 18(19):5187–5194

    Article  CAS  Google Scholar 

  15. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Article  CAS  Google Scholar 

  16. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Edit 43(16):2113–2117

    Article  CAS  Google Scholar 

  17. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem-Eur J 9(16):3732–3739

    Article  CAS  Google Scholar 

  18. Joshi PP, Merchant SA, Wang YD, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77(10):3183–3188

    Article  CAS  Google Scholar 

  19. Jia W, Jin C, Xia W, Muhler M, Schuhmann W, Stoica L (2012) Glucose oxidase/horseradish peroxidase Co-immobilized at a CNT-modified graphite electrode: towards potentially implantable biocathodes. Chem-Eur J 18(10):2783–2786

    Article  CAS  Google Scholar 

  20. Cao HM, Sun XM, Zhang Y, Hu CY, Jia NQ (2012) Electrochemical sensing based on hemin-ordered mesoporous carbon nanocomposites for hydrogen peroxide. Anal Methods UK 4(8):2412–2416

    Article  CAS  Google Scholar 

  21. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746

    Article  CAS  Google Scholar 

  22. Lee D, Lee J, Kim J, Kim J, Na HB, Kim B, Shin CH, Kwak JH, Dohnalkova A, Grate JW, Hyeon T, Kim HS (2005) Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Adv Mater 17(23):2828–2833

    Article  CAS  Google Scholar 

  23. Wang LX, Bai J, Bo XJ, Zhang XL, Guo LP (2011) A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites. Talanta 83(5):1386–1391

    Article  CAS  Google Scholar 

  24. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614):1877–1881

    Article  CAS  Google Scholar 

  25. Zayats M, Katz E, Baron R, Willner I (2005) Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. J Am Chem Soc 127(35):12400–12406

    Article  CAS  Google Scholar 

  26. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5(1):21–25

    Article  CAS  Google Scholar 

  27. Rodriguez-Lorenzo L, de la Rica R, Alvarez-Puebla RA, Liz-Marzan LM, Stevens MM (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11(7):604–607

    Article  CAS  Google Scholar 

  28. Lee J, Lee D, Oh E, Kim J, Kim YP, Jin S, Kim HS, Hwang Y, Kwak JH, Park JG, Shin CH, Kim J, Hyeon T (2005) Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew Chem Int Edit 44(45):7427–7432

    Article  CAS  Google Scholar 

  29. Cui RJ, Han ZD, Pan J, Abdel-Halim ES, Zhu JJ (2011) Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes. Electrochim Acta 58:179–183

    Article  CAS  Google Scholar 

  30. Basore JR, Lavrik NV, Baker LA (2012) Magnetically gated microelectrodes. Chem Commun 48(7):1009–1011

    Article  CAS  Google Scholar 

  31. Trettnak W, Wolfbeis OS (1989) Fully reversible fibre-optic glucose biosensor based on the intrinsic fluorescence of glucose-oxidase. Anal Chim Acta 221(2):195–203

    Article  CAS  Google Scholar 

  32. de Marcos S, Galindo J, Sierra JF, Galban J, Castillo JR (1999) An optical glucose biosensor based on derived glucose oxidase immobilised onto a sol–gel matrix. Sensor Actuat B Chem 57(1–3):227–232

    Article  Google Scholar 

  33. Sierra JF, Galban J, De Marcos S, Castillo JR (2000) Direct determination of glucose in serum by fluorimetry using a labeled enzyme. Anal Chim Acta 414(1–2):33–41

    Article  CAS  Google Scholar 

  34. Xu H, Aylott JW, Kopelman R (2002) Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging. Analyst 127(11):1471–1477

    Article  CAS  Google Scholar 

  35. Rosenzweig Z, Kopelman R (1996) Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor. Anal Chem 68(8):1408–1413

    Article  CAS  Google Scholar 

  36. Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380(4):606–613

    Article  CAS  Google Scholar 

  37. Odaci D, Gacal BN, Gacal B, Timur S, Yagci Y (2009) Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromolecules 10(10):2928–2934

    Article  CAS  Google Scholar 

  38. Cao LH, Ye J, Tong LL, Tang B (2008) A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Chem-Eur J 14(31):9633–9640

    Article  CAS  Google Scholar 

  39. Li XY, Zhou YL, Zheng ZZ, Yue XL, Dai ZF, Liu SQ, Tang ZY (2009) Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 25(11):6580–6586

    Article  CAS  Google Scholar 

  40. Bahshi L, Freeman R, Gill R, Willner I (2009) Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small 5(6):676–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-2012-G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Pil Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lim, B., Kim, YP. (2013). Enzymatic Glucose Biosensors Based on Nanomaterials. In: Gu, M., Kim, HS. (eds) Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_230

Download citation

Publish with us

Policies and ethics