Skip to main content

Coronary Venous Retroinfusion: A Novel Venue of Regional Induction of Neovascularization

  • Chapter
Therapeutic Neovascularization–Quo Vadis?

Abstract

Targeting the ischemic myocardium in the setting of coronary artery disease is usually hampered by the impaired arterial perfusion of the region of interest. Retroinfusion of the coronary veins has gained attention for therapeutic approaches which target drugs, genes or cells to ischemic myocardium. Besides anatomy of the coronary venous system, the pressure flow relationship during retroinfusion and the efficacy of pressure-regulated selective retroinfusion for targeted delivery of drugs is reported. Moreover, we describe adenoviral and liposomal gene transfer into ischemic and non-ischemic myocardium, outline studies in chronic ischemic preclinical models treated by retroinfusion of pro-angiogenic agents and discuss the impact of retroinfusion for cell-based regenerative therapy of the diseased myocardium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao Y, Hong A, Schulten H, Post MJ. Update on therapeutic neovascularization. Cardiovasc Res 2005;65:639–48.

    Article  PubMed  CAS  Google Scholar 

  2. Markkanen JE, Rissanen TT, Kivela A, Yla-Herttuala S. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart–gene therapy. Cardiovasc Res 2005;65:656–64.

    Article  PubMed  CAS  Google Scholar 

  3. Vale PR, Losordo DW, Milliken CE et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circ 2001;103:2138–43.

    CAS  Google Scholar 

  4. Raake P, von Degenfeld G, Hinkel R et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 2004;44:1124–9.

    Article  PubMed  CAS  Google Scholar 

  5. von LM. Clinical anatomy of cardiac veins, Vv. cardiacae. Surg Radiol Anat 1987;9:159–68.

    Article  Google Scholar 

  6. Boekstegers P, Giehrl W, Degenfeld Gv, Steinbeck G. Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal angioplasty. J Am Coll Cardiol 1998;31:1525–33.

    Article  PubMed  CAS  Google Scholar 

  7. Oh BH, Volpini M, Kambayashi M et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circ 1992;86:1265–79.

    CAS  Google Scholar 

  8. Meerbaum S, Lang TW, Osher JV et al. Diastolic retroperfusion of acutely ischemic myocardium. Am J Cardiol 1976;37:588–98.

    Article  PubMed  CAS  Google Scholar 

  9. Mohl W, Glogar DH, Mayr H et al. Reduction of infarct size induced by pressure-controlled intermittent coronary sinus occlusion. Am J Cardiol 1984;53:923–8.

    Article  PubMed  CAS  Google Scholar 

  10. Costantini C, Sampaolesi A, Serra CM et al. Coronary venous retroperfusion support during high risk angioplasty in patients with unstable angina: preliminary experience. J Am Coll Cardiol 1991;18:283–92.

    Article  PubMed  CAS  Google Scholar 

  11. Kar S, Drury JK, Hajduczki I et al. Synchronized coronary venous retroperfusion for support and salvage of ischemic myocardium during elective and failed angioplasty. J Am Coll Cardiol 1991;18:271–82.

    Article  PubMed  CAS  Google Scholar 

  12. O’Byrne GT, Nienaber CA, Miyazaki A et al. Positron emission tomography demonstrates that coronary sinus retroperfusion can restore regional myocardial perfusion and preserve metabolism. J Am Coll Cardiol 1991;18:257–70.

    Article  PubMed  CAS  Google Scholar 

  13. Boekstegers P, Diebold J, Weiss C. Selective ECG synchronised suction and retroinfusion of coroanry veins: first results of studies in acute myocardial ischemia in dogs. Cardiovasc Res 1990;24:456–64.

    PubMed  CAS  Google Scholar 

  14. Boekstegers P, Peter W, Degenfeld Gv et al. Preservation of regional myocardial function and myocardial oxygen tension during acute ischemia in pigs: Comparison of selective synchronized suction and retroinfusion of coronary veins to synchronized coronary venous retroperfusion. J Am Coll Cardiol 1994;23:459–69.

    Article  PubMed  CAS  Google Scholar 

  15. Degenfeld Gv, Giehrl W, Boekstegers P. Targeting of dobutamine to ischemic myocardium without systemic effects by selective suction and pressure-regulated retroinfusion. Cardiovasc Res 1997;35:233–40.

    Article  Google Scholar 

  16. Pohl T, Giehrl W, Reichart B et al. Retroinfusion-supported stenting in high-risk patients for percutaneous intervention and bypass surgery: results of the prospective randomized myoprotect I study. Catheter Cardiovasc Interv 2004;62:323–30.

    Article  PubMed  Google Scholar 

  17. Boekstegers P, von Degenfeld G, Giehrl W et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 2000;7:232–40.

    Article  PubMed  CAS  Google Scholar 

  18. Hatori N, Sjoquist PO, Regardh C, Ryden L. Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Ischemic myocardial concentrations in the left circumflex coronary arterial area using metoprolol as a tracer. Cardiovasc Drugs Ther 1991;5:1005–10.

    Article  PubMed  CAS  Google Scholar 

  19. Ryden L, Tadokoro H, Sjoquist PO et al. Pharmacokinetic analysis of coronary venous retroinfusion: a comparison with anterograde coronary artery drug administration using metoprolol as a tracer. J Am Coll Cardiol 1991;18:603–12.

    Article  PubMed  CAS  Google Scholar 

  20. Katircioglu SF, Iscan HZ, Ulus T, Saritas Z. Myocardial preservation in acute coronary artery occlusion with coronary sinus retroperfusion and carnitine. J Cardiovasc Surg (Torino) 2000;41:45–50.

    CAS  Google Scholar 

  21. Karagueuzian HS, Ohta M, Drury JK et al. Coronary venous retroinfusion of procainamide: a new approach for the management of spontaneous and inducible sustained ventricular tachycardia during myocardial infarction. J Am Coll Cardiol 1986;7:551–63.

    Article  PubMed  CAS  Google Scholar 

  22. Miyazaki A, Hatori N, Tadokoro H, Ryden L, Corday E, Drury J. More rapid thrombolysis with coronary venous retroinfusion of streptokinase compared with intravenous administration. An experimental study in canines. Eur Heart J 1990;11:936–44.

    PubMed  CAS  Google Scholar 

  23. Miyazaki A, Tadokoro H, Drury JK, Ryden L, Haendchen RV, Corday E. Retrograde coronary venous administration of recombinant tissue-type plasminogen activator: a unique and effective approach to coronary artery thrombolysis. J Am Coll Cardiol 1991;18:613–20.

    Article  PubMed  CAS  Google Scholar 

  24. Hatori N, Miyazaki A, Tadokoro H et al. Beneficial effects of coronary venous retroinfusion of superoxide dismutase and catalase on reperfusion arrhythmias, myocardial function, and infarct size in dogs. J Cardiovasc Pharmacol 1989;14:396–404.

    Article  PubMed  CAS  Google Scholar 

  25. Kupatt C, Hinkel R, Horstkotte J et al. Selective Retroinfusion of GSH and Cariporide Attenuates Myocardial Ischemia-Reperfusion Injury in a Preclinical Pig Model. Cardiovasc Res 2004;61: 530–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kupatt C, Wichels R, Deiss M et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs. Gene Ther 2002;9:518–26.

    Article  PubMed  CAS  Google Scholar 

  27. Kupatt C, Hinkel R, Vachenauer R et al. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 2003;17:705–7.

    PubMed  CAS  Google Scholar 

  28. Kupatt C, Dessy C, Hinkel R et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 2004;24:1435–41.

    Article  PubMed  CAS  Google Scholar 

  29. Feldman LJ, Steg G. Optimal techniques for arterial gene transfer. Cardiovasc Res 1997;35:391–404.

    Article  PubMed  CAS  Google Scholar 

  30. Steg PG, Feldman LJ, Scoazec JY et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circ 1994;90:1648–56.

    CAS  Google Scholar 

  31. Lamping KG, Rios CD, Chun JA, Ooboshi H, Davidson BL, Heistad DD. Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 1997;272:H310–H317.

    PubMed  CAS  Google Scholar 

  32. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999;22:I23–I29.

    Article  PubMed  CAS  Google Scholar 

  33. Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH. Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca2+ -ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circ 1997;96:400–3.

    CAS  Google Scholar 

  34. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circ 1997;95:423–9.

    CAS  Google Scholar 

  35. Rothmann T, Katus HA, Hartong R, Perricaudet M, Franz WM. Heart muscle-specific gene expression using replication defective recombinant adenovirus. Gene Ther 1996;3:919–26.

    PubMed  CAS  Google Scholar 

  36. French BA, Mazur W, Ali NM et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circ 1994;90:2402–13.

    CAS  Google Scholar 

  37. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circ 1994;90:2414–24.

    CAS  Google Scholar 

  38. Fuchs S, Baffour R, Zhou YF et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726–32.

    Article  PubMed  CAS  Google Scholar 

  39. Kornowski R, Fuchs S, Leon MB, Epstein SE. Delivery Strategies to Achieve Therapeutic Myocardial Angiogenesis. Circ 2000;101:454–8.

    CAS  Google Scholar 

  40. Kornowski R, Leon MB, Fuchs S et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000;35:1031–9.

    Article  PubMed  CAS  Google Scholar 

  41. Losordo DW, Vale PR, Hendel RC et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circ 2002;105:2012–8.

    Article  CAS  Google Scholar 

  42. Giordano FJ. Retrograde coronary perfusion: a superior route to deliver therapeutics to the heart? * . J Am Coll Cardiol 2003;42:1129–31.

    Article  PubMed  Google Scholar 

  43. Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circ 1998;97:645–50.

    CAS  Google Scholar 

  44. Battler A, Scheinowitz M, Bor A et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993;22:2001–6.

    Article  PubMed  CAS  Google Scholar 

  45. Unger EF, Banai S, Shou M et al. A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res 1993;27:785–91.

    Article  PubMed  CAS  Google Scholar 

  46. Lopez JJ, Laham RJ, Stamler A et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998;40:272–81.

    Article  PubMed  CAS  Google Scholar 

  47. Simons M, Bonow RO, Chronos NA et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary. Circ 2000;102:E73–E86.

    CAS  Google Scholar 

  48. Mack CA, Patel SR, Schwarz EA et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168–76; discus.

    Article  PubMed  CAS  Google Scholar 

  49. Giordano FJ, Ping P, McKirnan MD et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–9.

    Article  PubMed  CAS  Google Scholar 

  50. Magovern CJ, Mack CA, Zhang J, Rosengart TK, Isom OW, Crystal RG. Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 1997;8:215–27.

    PubMed  CAS  Google Scholar 

  51. Muhlhauser J, Merrill MJ, Pili R et al. VEGF165 Expressed by a Replication-Deficient Recombinant Adenovirus Vector Induces Angiogenesis In Vivo. Circ Res 1995;77:1077–86.

    PubMed  CAS  Google Scholar 

  52. Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694–701.

    Article  PubMed  CAS  Google Scholar 

  53. Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 1995;73:333–46.

    Article  PubMed  CAS  Google Scholar 

  54. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–4.

    PubMed  CAS  Google Scholar 

  55. Fearon WF, Ikeno F, Bailey LR et al. Evaluation of high-pressure retrograde coronary venous delivery of FGF-2 protein. Catheter Cardiovasc Interv 2004;61:422–8.

    Article  PubMed  Google Scholar 

  56. von Degenfeld G, Raake P, Kupatt C et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003;42:1120–8.

    Article  CAS  Google Scholar 

  57. Kupatt C, Hinkel R, von Bruehl ML et al. Endothelial Nitric Oxide Synthase Overexpression Provides a Functionally Relevant Angiogenic Switch in Hibernating Pig Myocardium. J Am Coll Cardiol 2006;in press.

    Google Scholar 

  58. Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–6.

    Article  PubMed  Google Scholar 

  59. Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circ 2002;106:1913–8.

    Article  Google Scholar 

  60. Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210–21.

    Article  PubMed  CAS  Google Scholar 

  61. Lunde K, Solheim S, Aakhus S et al. Intracoronary Injection of Mononuclear Bone Marrow Cells in Acute Myocardial Infarction. New Engl J Med 2006;355:1199–209.

    Article  PubMed  CAS  Google Scholar 

  62. Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circ 2006;113:1287–94.

    Article  Google Scholar 

  63. Kawamoto A, Gwon H-C, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circ 2001;103:634–7.

    CAS  Google Scholar 

  64. Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circ 2004;109:1543–9.

    Article  CAS  Google Scholar 

  65. Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678–85.

    Article  PubMed  CAS  Google Scholar 

  66. Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370–6.

    Article  PubMed  CAS  Google Scholar 

  67. Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625–37.

    Article  PubMed  CAS  Google Scholar 

  68. Sbaa E, DeWever J, Martinive P et al. Caveolin Plays a Central Role in Endothelial Progenitor Cell Mobilization and Homing in SDF-1-Driven Postischemic Vasculogenesis. Circ Res 2006;98:1219–27.

    Article  PubMed  CAS  Google Scholar 

  69. De Falco E, Porcelli D, Torella AR et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004;2003–12.

    Google Scholar 

  70. Qin G, Ii M, Silver M et al. Functional disruption of α4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J Exp Med 2006;203:153–63.

    Article  PubMed  CAS  Google Scholar 

  71. Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G. Role of L-Selectin in the Vascular Homing of Peripheral Blood-Derived Endothelial Progenitor Cells. J Immunol 2004;173:5268–74.

    PubMed  CAS  Google Scholar 

  72. Chavakis E, Aicher A, Heeschen C et al. Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 2005;201:63–72.

    Article  PubMed  CAS  Google Scholar 

  73. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998;125:1457–68.

    PubMed  CAS  Google Scholar 

  74. Kupatt C, Horstkotte J, Vlastos GA et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 2005;04–3282fje.

    Google Scholar 

  75. Kupatt C, Hinkel R, Lamparter M et al. Retroinfusion of Embryonic Endothelial Progenitor Cells Attenuates Ischemia-Reperfusion Injury in Pigs: Role of Phosphatidylinositol 3-Kinase/AKT Kinase. Circ 2005;112:I–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Boekstegers, P., Kupatt, C. (2007). Coronary Venous Retroinfusion: A Novel Venue of Regional Induction of Neovascularization. In: Deindl, E., Kupatt, C. (eds) Therapeutic Neovascularization–Quo Vadis?. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5955-8_6

Download citation

Publish with us

Policies and ethics