Skip to main content
Log in

A note on multivariable \((\varphi ,\Gamma )\)-modules

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let \(F/{\mathbb Q}_p\) be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group \(\Phi \) for F and let \(\Gamma _{\bullet }=\Gamma \times \cdots \times \Gamma \) with \(\Gamma ={\mathcal O}_F^{\times }\) act on \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\) by letting \(\gamma _i\) (in the i-th factor \(\Gamma \)) act on \(t_i\) by insertion of \(t_i\) into the power series attached to \(\gamma _i\) by \(\Phi \). We show that \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\) admits no non-trivial ideal stable under \(\Gamma _{\bullet }\), thereby generalizing a result of Zábrádi (who had treated the case where \(\Phi \) is the multiplicative group). We then discuss applications to \((\varphi ,\Gamma )\)-modules over \(k[[t_1,\ldots ,t_n]][\prod _it_i^{-1}]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that we do not require \(\psi _{d}(1)=1\).

  2. For a \(k[[t_{\bullet }]]\)-module X, resp. a \(k((t_{\bullet }))\)-module X, we call \(\mathrm{dim}_{\mathrm{Frac}(k[[t_{\bullet }]])}X\otimes _{k[[t_{\bullet }]]} \mathrm{Frac}(k[[t_{\bullet }]])\), resp. \(\mathrm{dim}_{\mathrm{Frac}(k[[t_{\bullet }]])}X\otimes _{k((t_{\bullet }))} \mathrm{Frac}(k[[t_{\bullet }]])\), the generic rank of X, where \(\mathrm{Frac}(k[[t_{\bullet }]])\) denotes the fraction field of \(k[[t_{\bullet }]]\).

References

  1. Berger, L., Fourquaux, L.: Iwasawa theory and \(F\)-analytic Lubin–Tate \((\varphi,\Gamma )\)-modules. Doc. Math. 22, 999–1030 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Breuil, C.: Induction parabolique et \((\varphi,\Gamma )\)-mdoules. Algebra Number Theory 9, 2241–2291 (2015)

    Article  MathSciNet  Google Scholar 

  3. Fourquaux, L., Xie, B.: Triangulable \({\cal{O}}_F\)-analytic \((\varphi, \Gamma )\)-modules of rank \(2\). Algebra Number Theory 7(10), 2545–2592 (2013)

    Article  MathSciNet  Google Scholar 

  4. Grosse-Klönne, E.: Supersingular Hecke modules as Galois representations, preprint (2017)

  5. Kisin, M., Ren, W.: Galois representations and Lubin–Tate groups. Doc. Math. 14, 441–461 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Schneider, P.: Galois representations and \((\varphi ,\Gamma )\)-modules, course at Münster in 2015. In: Cambridge Studies in Advanced Mathematics (2017)

  7. Schneider, P., Venjakob, O.: Coates–Wiles homomorphisms and Iwasawa cohomology for Lubin–Tate extensions. In: Elliptic Curves, Modular Forms and Iwasawa Theory. Springer Proc. Math. Stat. 188, 401–468 (2016)

  8. Zábrádi, G.: Multivariable \((\varphi ,\Gamma )\)-modules and products of Galois groups. Math. Res. Lett. (2016)

  9. Zábrádi, G.: Multivariable \((\varphi,\Gamma )\)-modules and smooth \(o\)-torsion representations. Sel. Math. 24(2), 935–995 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowlegements

I thank Gergely Zábrádi for his careful reading of an earlier draft of the proof of Theorem 1 and for further discussions on the topic. I thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Grosse-Klönne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosse-Klönne, E. A note on multivariable \((\varphi ,\Gamma )\)-modules. Res. number theory 5, 6 (2019). https://doi.org/10.1007/s40993-018-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0144-8

Navigation