Skip to main content

Advertisement

Log in

Demonstrative actions of spring restoration and groundwater protection in rural areas of Abegondo (Galicia, Spain)

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

There is an increasing concern about the chemical and microbiological quality of spring waters in Galicia (Spain) due to bacteriological and nitrate contamination. Demonstrative actions of spring restoration and groundwater protection were implemented in five selected springs and fountains in the municipality of Abegondo. These actions include the cleaning and disinfection of the fountains, the restoration of the spring catchments and the definition and the implementation of the spring protection zones. Available topographic, geological, meteorological, hydrological, hydrogeological and hydrochemical data of the area were used to: (1) elaborate the hydrogeological conceptual model of the study area; (2) assess the groundwater chemical and microbial status; and (3) define the spring protection zones with a numerical groundwater flow and solute transport model solved with the CORE2D code. Spring protection zones include: (1) an immediate zone of absolute restrictions around the spring with a radius of 3 m; (2) an intermediate zone of maximum restrictions where potential contamination activities are restricted; this zone has a radius of 30 m and is defined on the basis of a 50 days transit time; and (3) a remote zone which includes the rest of the contributing groundwater basin where restrictions are moderate. The protection zones defined in the project were included in the general development plan of the municipality. The chemical and microbial data of the springs were monitored during 3 years after the restoration actions. The cleaning and disinfection of the fountains and spring catchments were efficient in dropping noticeably the microbiological contamination and reducing mildly the nitrate concentrations (from 10 to 20%). The efficiency of the restoration measures was partially reduced by: (1) the low frequency of the cleaning and disinfection of the fountains; and (2) the lack of actions to enforce the restrictions in the protection zones to prevent the excessive use of manure as fertilizer in the surroundings of some springs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AEMET and IM (2011) Iberian Climate Atlas. Air temperature and precipitation (1971–2000). In: Agencia Estatal de Meteorología de España (AEMET) of Ministerio de Medio Ambiente y Medio Rural y Marino and Instituto de Meteorología de Portugal (IM). ISBN: 978-84-7837-079-5. AEMET website. http://www.aemet.es/documentos/es/divulgacion/publicaciones/Atlas-climatologico/Atlas.pdf. Accessed 24 July 2017

  • Ameijenda C, Martínez A, Giménez M, Manteiga I, Manteiga A, Iglesias MC, Santiso JA (2013) Traditional washing places and fountains in Abegondo municipality. Legal Deposit: C-563-2013 (in Spanish)

  • Aqua Plann (2011) Diagnosis and detailed study of the current state of groundwater quality in the Mero-Barcés basin. Proyecto Aqua Plann Porject. Final Report of Activity A.3-Municipality of Abegondo (in Spanish)

  • Carvalho JM, Chaminé HI, Plasencia N (2003) Caracterização dos recursos hídricos subterrâneos do maciço cristalino do Norte de Portugal: implicações para o desenvolvimento regional. In: A Geologia de Engenharia e os Recursos Geológicos: recursos geológicos e formação. Volume de Homenagem ao Prof. Doutor Cotelo Neiva. Série Investigação Imprensa da Universidade de Coimbra, vol 2, pp 245–264. ISBN: 972-8704-15-1. doi:http://dx.doi.org/10.14195/978-989-26-0322-3_18 (in Portuguese)

  • Chin DA, Chittaluru PVK (1994) Risk management in wellhead protection. J Water Resour Plann Manag 120(3):294–315

    Article  Google Scholar 

  • Dai Z, Samper J (2004) Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour Res 40:W07407. doi:10.1029/2004WR003248

    Article  Google Scholar 

  • Dai Z, Samper J (2006) Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J Hydrol 327(3–4):447–461

    Article  Google Scholar 

  • EC (2010) Report from the Commission in accordance with Article 3.7 of the Groundwater Directive 2006/118/EC on the establishment of groundwater threshold values. 5.3.2010 C, 1096 final, European Commission, Brussels

  • Galán J, Aldaya F, Ruiz F, Huerga A (1978) Mapa geológico y Memoria de la Hoja nº 45 (5-5) Betanzos. Mapa Geológico de España, E. 1:200.000, ITGE. Legal Deposit: M-24423-1989. NIPO: 232-89-011-1

  • Lubczynski MW, Gurwin J (2005) Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. J Hydrol 306:71–96

    Article  Google Scholar 

  • Molinero J, Samper J (2004) Groundwater flow and solute transport in fracture zones: an improved model for a large-scale field experiment at Äspö (Sweden). J Hydraul Res 42:57–172

    Article  Google Scholar 

  • Mon A, Samper J, Montenegro L, Naves A, Fernández J (2017) Long-term nonisothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay. J Contam Hydrol 197:1–16

    Article  Google Scholar 

  • Okkonen J, Neupauer RM (2016) Capture zone delineation methodology based on the maximum concentration: preventative groundwater well protection areas for heat exchange fluid mixtures. Water Resour Res 52:4043–4060

    Article  Google Scholar 

  • Paradis D, Martel R (2007) HYBRID: a wellhead protection delineation method for aquifers of limited extent. Tech. Note 1. Geological Survey of Canada, Ottawa

    Book  Google Scholar 

  • Paradis D, Martel R, Karanta G, Lefebvre R, Michaud Y, Therrien R, Nastev M (2007) Comparative study of methods for WHPA delineation. Ground Water 45(2):258–267

    Article  Google Scholar 

  • Samper J, Lu C, Montenegro L (2008) Reactive transport model of interactions of corrosion products and bentonite. Phys Chem Earth 33(Suppl 1):S306–S316. doi:10.1016/j.pce.2008.10.009

    Article  Google Scholar 

  • Samper J, Xu T, Yang C (2009) A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Comput Geosci. doi:10.1007/s10596-008-9119-5

    Google Scholar 

  • Samper J, Mon A, Naves A, Pisani B (2011a) Obras de protección y mejora de las fuentes y manantiales de Abegondo. Proyecto constructivo para Aguas de Galicia. Grupo de hidrología superficial y del subsuelo, ETSI Caminos, Canales y Puertos, Universidade da Coruña (in Spanish)

  • Samper J, Yang C, Zheng L, Montenegro L, Xu T, Dai Z, Zhang G, Lu C, Moreira S (2011b) CORE2D V4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes, chapter 7. In: Zhang F, Yeh G-T, Parker C, Shi X (eds) Electronic book groundwater reactive transport models. Bentham Science Publishers, Sharjah, pp 161–186

    Google Scholar 

  • Samper J, Li Y, Pisani B (2015) An evaluation of climate change impacts on groundwater flow in the La Plana de la Galera and Tortosa alluvial aquifers (Spain). Environ Earth Sci 73:2595–2608

    Article  Google Scholar 

  • Samper J, Naves A, Montenegro L, Mon A (2016) Reactive transport modelling of the long-term interactions of corrosion products and compacted bentonite in a HLW repository in granite: uncertainties and relevance for performance assessment. Appl Geochem 67:42–51

    Article  Google Scholar 

  • Stigter TY, Nunes JP, Pisani B, Fakir Y, Hugman R, Li Y, Tomé S, Ribeiro L, Samper J, Oliveira R, Monteiro JP, Silva A, Tavares PCF, Shapouri M, Cancela da Fonseca L, Himer El (2014) Comparative assessment of climate change impacts on coastal groundwater resources and dependent ecosystems in the Mediterranean. Reg Environ Change 14(Suppl 1):S41–S56

    Article  Google Scholar 

  • Tosco T, Sethi R (2010) Comparison between backward probability and particle tracking methods for the delineation of well head protection areas. Environ Fluid Mech 10:77–90

    Article  Google Scholar 

  • Uffink GJM (1989) Application of Kolmogorov’s backward equation in random walk simulations of groundwater contaminant transport. In: Kobus HE, Kinzelbach W (eds) Contaminant transport in groundwater. A. A. Balkema, Brookfield, pp 283–289

    Google Scholar 

  • U.S. EPA (1994) Handbook: ground water and wellhead protection, EPA/625R94001. U.S. Environmental Protection Agency, Wash

    Google Scholar 

  • Yang C, Samper J, Molinero J, Bonilla M (2007) Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. J Contam Hydrol 93:130–148

    Article  Google Scholar 

  • Yang C, Samper J, Molinero J (2008) Inverse microbial and geochemical reactive transport models in porous media. Phys Chem Earth 33(12–13):1026–1034. doi:10.1016/j.pce.2008.05.016

    Article  Google Scholar 

  • Yang C, Hovorka SD, Treviño RH, Delgado-Alonso J (2015) Integrated framework for assessing impacts of CO2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO2 enhanced oil recovery site. Environ Sci Technol 49(14):8887–8898

    Article  Google Scholar 

  • Yllera A, Hernández A, Mingarro M, Quejido A, Sedano LA, Soler JM, Samper J, Molinero J, Barcala JM, Martín PL, Fernández M, Wersin P, Rivas P, Hernán P (2004) DI-B Experiment: planning, design and performance of an in situ diffusion experiment in the opalinus clay formation. Appl Clay Sci 26:181–196

    Article  Google Scholar 

  • Zheng L, Samper J, Montenegro L, Fernández AM (2010) A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite. J Hydrol 386:80–94

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the AQUA PLANN Project of the LIFE+ Programme (07/ENV/E/000826) funded by the European Commission. We acknowledge the support provided by Carlos Ameijenda from the Secretariat of the Project in the Municipality of Abegondo and Roberto Arias from Aguas de Galicia (Xunta de Galicia). This work was also partly funded by the Spanish Ministry of Economy and Competitiveness (Project CGL2016-78281), FEDER funds and the Galician Regional Government, Xunta de Galicia (Fund 2012/181 from “Consolidación e estruturación de unidades de investigación competitivas”, Grupos de referencia competitiva). We thank the comments, corrections and suggestions of the two anonymous reviewers of the manuscript which contributed to improving it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Samper.

Additional information

This article is part of the special issue on Sustainable Resource Management: Water Practice Issues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naves, A., Samper, J., Mon, A. et al. Demonstrative actions of spring restoration and groundwater protection in rural areas of Abegondo (Galicia, Spain). Sustain. Water Resour. Manag. 5, 175–186 (2019). https://doi.org/10.1007/s40899-017-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0169-5

Keywords

Navigation