Skip to main content

Advertisement

Log in

Therapeutic characteristics of Galician mineral and thermal waters (NW-Spain) ascribed to their local/regional geological setting

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Galicia is located in the NW corner of the Iberian Peninsula (Spain). From a geological point of view, the territory belongs to the Hercynian chain and, more specifically, to a large outcrop dominated by igneous and metamorphic rocks called the Hesperian Massif or Iberian Massif. In some sectors the Hesperian Massif is partially covered by more recent sedimentary deposits. The geology of Galicia is very complex due to the age of the rocks that make up its substrate and their diversity. Thus, the hydrogeological behaviour of the underground medium (hydrodynamic and hydrogeochemical characteristics) will determine the therapeutic properties of the water emanating from the surface. In Galicia, aquifers are generally shallow with low mineralization, except for those whose waters come from deep fractured mediums. The chemical characteristics of the water are directly related to the geological matrix. The groundwater flows through the geological medium and is mineralogically enriched by heterogeneous chemical reactions. Galicia turns out to be an area rich in the potential exploitation, applications and use of different water resources. These resources are thermal, mineral-natural and mineral-medicinal waters. In this work, we have developed a study that relates the geology, hydrogeological and hydrogeochemical characteristics of the Galician substrate and their potential therapeutic indications. To achieve that, we have chosen to study the exploited waters with higher flow rates, including the natural mineral waters for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(adapted from Langmuir (1996))

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baeza J, López Geta J, Ramírez A (eds.) (2001) Las Aguas Minerales en España. Instituto Geológico y Minero de España, Spain, p 454

    Google Scholar 

  • Carvalho JM (1996) Mineral water exploration and exploitation at the Portuguese Hercynian Massif. Envir Geol 27:252–258.

    Article  Google Scholar 

  • Chamorro CR, García-Cuesta JL, Mondéjara ME, Linares MM (2014) An estimation of the enhanced geothermal systems potential for the Iberian Peninsula. Renew Energy 66:1–14

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering (1). Geochim Cosmochim Acta 8:22–48

    Article  Google Scholar 

  • Comstock GW (1979) Water hardness and cardiovascular diseases. Am J Epidemiol 110(4):375–400

    Article  Google Scholar 

  • Corral MM, Ontiveros C and López-Geta JA (2012) Recent contributions of the geological survey of Spain (IGME) in mineral water. In: Medical hydrology and Balneology: environmental aspects. Balnea 6, p 226

  • Coudrain-Ribstein A, Gouze P, de Marsily G (1998) Temperatura-carbon dioxide partial pressure trends in confined aquifers. Chem Geol 145:73–89

    Article  Google Scholar 

  • Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi E (ed) Nuclear geology in geothermal areas. Proceeding International Symposium, Spoleto, Italy, Consiglio Nazionale delle Ricerche, Laboratorio di Geologic Nucleare, Pisa, Italy, pp 15–73

  • D’Amore F (1991) Application of geochemistry in geothermal reservoir development; United Nations Institute for Training and Research; UNITAR Man/10, p 408

  • Davis SN, De Wiest RJM (1966) Hydrogeology. Wiley, NY, pp 96–128

    Google Scholar 

  • Delgado J, Juncosa R, Meijide R, Vázquez A, Barrientos V (2007) Características termohidrogeoquímicas de las aguas subterráneas en Galicia. In: HI Chaminé, JM Carvalho (eds.) O valor acrescentado das Ciências da Terra no termalismo e no engarrafamento da água, Artigos seleccionados do II Fórum Ibérico de Águas Engarrafadas e Termalismo. Edição do Departamento de Engenharia Geotécnica/Laboratório de Cartografia e Geologia Aplicada, Instituto Superior de Engenharia do Porto, Porto, p. 281-299.

    Google Scholar 

  • Delgado J, Juncosa R, Hernández H, Falcón I, Vázquez A (2011) Comparative Hydrochemistry of five nested catchments located in the upper part of the Barces river watershed (A coruña, NW Spain). Appl Geochem 26:179–182. doi:10.1016/j.apgeochem.2011.03.097

    Article  Google Scholar 

  • Delgado J, Juncosa R, Falcón I, Canal J (2013) Four years of continuous monitoring of the Meirama end-pit lake and its impacts in the definition of future uses. Environ Sci Pollut Res 20(11): 7520–7533. doi:10.1007/s11356-013-1618-9

    Article  Google Scholar 

  • D1074/2002. Real Decreto 1074/2002, de 18 de octubre, por el que se regula el proceso de elaboración, circulación y comercio de aguas de bebida envasadas. https://www.boe.es/boe/dias/2002/10/29/pdfs/A37934-37949.pdf

  • D1798 2010 Real Decreto 1798/2010, de 30 de diciembre, por el que se regula la explotación y comercialización de aguas minerales naturales y aguas de manantial envasadas para consumo humano. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2011-971

  • Fournier RO and Potter RW II (1982) An equation correlating the solubility of quartz in waters from 25 to 900 °C at pressures up to 10.000 bars; Geochim Cosmochim Acta 46, 1.969–1.974

    Article  Google Scholar 

  • Fournier RO, Rowe JJ (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am J Sci 264:685–697

    Article  Google Scholar 

  • Gibbons W, Moreno T (eds.) (2002) The Geology of Spain. Geological Society of London, London, p 632

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed.) Geochemistry of Hydrothermal Ore Depoits, 3rd edn. Wiley, Hoboken, pp 737–796

    Google Scholar 

  • Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas discharges; Report No CD 2401. Department of Scientific and Industrial Research. Chemistry Division, Petone

    Google Scholar 

  • Harper KJ (2008) Potassium, magnesium and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens (Greenwich) 10(7 suppl 2):3–11

    Google Scholar 

  • Haselton HT, Sharp WE, Newton RC (1978) CO2 fugacity at high temperaturas and pressures from experimental decarbonation reactions. Geophys Res Lett 5(9):753–756

    Article  Google Scholar 

  • Hem JD (1991) Study and Interpretation of the chemical characteristics of natural waters. 3rd edn. US Geological Survey Water-Supply Paper 2254, p 363. (http://pubs.usgs.gov/wsp/wsp2254/)

  • Henley RW, Truesdell AH, Barton PB Jr (1984) Fluid-mineral equilibria in hydrothermal systems; society of economic geologists. Rev Econ Geol 1:267

    Google Scholar 

  • Hernández H, Padilla F, Juncosa R, Vellando P, Fernández A (2012) A numerical solution to integrated water flows: application to the flooding of an open pit mine at the Barcés river catchment—La Coruña, Spain. J Hydrol 422–473:328–339. doi:10.1016/j.jhydrol.2012.09.040

    Article  Google Scholar 

  • Hounslow AW (1995) Water quality data: analysis and interpretation. Lewis Publishers, Boca Raton, p 397

    Google Scholar 

  • Juncosa R, Meijide R, Delgado J (2011) Fontes minerais da Galicia: Características hidroxeolóxicas, físico-químicas e indicaÇoes terapéuticas. In: Alberto Lima (ed.) Termalia’11—Encontro Internacional sobre Âguas termais. Universidade do Minho, Portugal, pp 51–73

    Google Scholar 

  • Juncosa R, Delgado J, Meijide R, Álvarez-Campana J (ed.) (2012) Hidrogeología de Galicia y tipos de aguas subterráneas. In: Rio Mandeo, cuenca fluvial y desarrollo sostenible. Diputación de A Coruña, Coruña, pp 177–203

    Google Scholar 

  • Juncosa R, Delgado J, Menéndez JA, Valle R (2015) Análisis hidrogeológico de la escombrera exterior de la antigua mina de As Pontes. Ing del Agua 19(2):75–87

    Article  Google Scholar 

  • Langmuir DM (ed.) (1996) Aqueous environmental geochemistry. Prentice Hall, NJ

    Google Scholar 

  • Luft FC, Zemel MB, Sowers JA, Fineberg NS, Weinberger MH (1990) Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens 8:663–670

    Article  Google Scholar 

  • Mahon WAJ (1966) Silica in hot water discharged from drillholes at Wairakei, New Zealand. NZ J Sci 9:135–144

    Google Scholar 

  • Maraver F (2002) Vademecun de aguas mineromedicinales españolas. Instituto de Salud Carlos III: Universidad Complutense de Madrid. p 310

  • Marques JM, Carreira PM, Aires-Barros L, Graça R (2000) Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpretation. Environ Geol 40:53–63

    Article  Google Scholar 

  • Marques JM, Monteiro Santos FA, Graça R, Castro R, Aires-Barros L and Mendes Victor LA (2001) A geochemical and geophysical approach to derive a conceptual circulation model of CO2-rich mineral waters: a case study of Vilarelho da Raia, northern Portugal. Hydrogeol J 9:584–596

    Article  Google Scholar 

  • Marques JM, Espinha J, Carreira PM, Graça R, Aires-Barros L, Carvalho JM, Chaminé HI, Borges FS (2003) Geothermal fluids circulation at Caldas do Moledo area, Northern Portugal: geochemical and isotopic signatures. Geofluids 3:189–201

    Article  Google Scholar 

  • Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2010) The role of geosciences in the assessment of low-temperature geothermal resources (N Portugal): a review. Geosc J 14(4):423–442

    Article  Google Scholar 

  • Marques JM, Carreira PM, Goff F, Eggenkamp HGM, Antunes da Silva M (2012) Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal). Appl Geochem 27:1471–1481

    Article  Google Scholar 

  • Martínez Catalán JR, Aller J, Alonso JL, Bastida F (2008) The Iberian Variscan Orogen. In García-Cortés A, Suárez-Valgrande JP, Salvador-González CI (eds.), Spanish Geological Frameworks and Geosites: an approach to Spanish geological heritage of international relevance. Instituto Geológico y Minero de España, Madrid, pp 15–30

    Google Scholar 

  • Martínez-Pledel B, Ontiveros B and Corral M (2012) Galicia. Mineral and thermal waters. In: medical hydrology and balneology: environmental aspects. Balnea 6. 4, p 457

  • Matz H, Orion E, Wolf R (2003) Balneotherapy in dermatology. Dermatol ther 16(2):132–140

    Article  Google Scholar 

  • Meyniel, G. (1975) Traité de médicine nucléaire. Explorations fonctionnelles. Vol 2. Flammarion Éditeurs, pp. 260–263

  • Michard G, Beucaire C (1993) Les eaux thermales des granites de Galice (Espagne): des eaux carbogazeuses aux eaux alcalines. Chem Geol 110:345–360

    Article  Google Scholar 

  • Morris RW, Walker M, Lennon LT, Shaper AG, Whincup PH (2008) Hard drinking water does not protect against cardiovascular disease: new evidence from the British Regional Heart Study. Eur J Cardiovasc Prev Rehabil 15(2):185–189

    Article  Google Scholar 

  • Rey D, Rubio B, Bernabeu AM, Vilas F (2004) Formation, exposure and evolution of a high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sediment Geol 169:93–105

    Article  Google Scholar 

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics, 26:TC6009

    Article  Google Scholar 

  • SITGA (http://sitga.xunta.es/)

  • Souto MG (1990) Estudio químico-analítico de las aguas minero-termales de la provincia de Orense. Tesis Doctoral. Universidad de Santiago de Compostela, p 398

  • Stumm W, Morgan JJ (1995) Aquatic Chemistry, 3rd edn, Wiley, NY, p 1024

    Google Scholar 

  • Valitutti S, Castellino F, Musiani P (1990) Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Ann Allergy 65(6):463–468

    Google Scholar 

  • Vera JA (ed.) (2004) Geología de España; Sociedad Geológica de España. Instituto Geológico y Minero de España, p 884

  • Vidal Romaní JR, Yepes J (2001) Las terrazas del río Miño en el tramo Chantada-As Neves (límite de Galicia-Portugal). Acta Geol Hisp 36:149–164

    Google Scholar 

  • Winter TC, Harvey JW, Lehn O, Alley WM (1998) Ground Water and Surface Water. A Single Resource; U.S. Geological Survey Circular 1.13; p87. (http://pubs.usgs.gov/circ/circ1139/).

  • Young ED (1995) Fluid flow in metamorphic environments. In: U.S. National Report to International Union of Geodesy and Geophysics 1991–1994; reviews in Geophysics 33 Suppl. (http://www.agu.org/journals/rg/rg9504S/95RG00601/).

Download references

Acknowledgements

We want to give special thanks to Helder Chaminé for the invitation to write this article and to publish in Sustainable Water Resources Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Juncosa Rivera.

Additional information

This article is part of the special issue on Sustainable Resource Management: Water Practice Issues.

The original version of this article was revised: the name of Jorge Delgado Martin has been published incorrectly. The error in the author’s name is now corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juncosa Rivera, R., Meijide Failde, R. & Delgado Martin, J. Therapeutic characteristics of Galician mineral and thermal waters (NW-Spain) ascribed to their local/regional geological setting. Sustain. Water Resour. Manag. 5, 83–99 (2019). https://doi.org/10.1007/s40899-017-0112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0112-9

Keywords

Navigation