Skip to main content
Log in

Electrochemical promotion of catalytic reactions

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

An electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became possible through the use of porous metal electrodes interfaced to a solid electrolyte. The EPOC effect has been demonstrated for more than 100 reaction systems. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of the transported ionic species onto the surface of the metal electrodes. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission of ref. [5]

Fig. 2

Reprinted with permission of ref. [13]

Fig. 3

Reprinted with permission of ref.[3]

Fig. 4
Fig. 5
Fig. 6
Fig. 7

From ref. [32]

Fig. 8

Reprinted with permission of ref. [44]

Fig. 9
Fig. 10
Fig. 11

From ref. [32]

Similar content being viewed by others

References

  1. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions. Kluwer Academic/Plenum Publishers, Dordrecht

    Google Scholar 

  2. Wagner C (1970) Adsorbed atomic species as intermediates in heterogeneous catalysis. Adv Catal 21:323–381

    CAS  Google Scholar 

  3. Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627

    Article  CAS  Google Scholar 

  4. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, Lucas-Consuegra AD, Valverde J-L, Vayenas SS,CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260

    Article  CAS  Google Scholar 

  5. Vayenas CG, Promotion E (1996) Electrochem Soc Interface 5(4):34–37

    CAS  Google Scholar 

  6. Vayenas CG, Jaksic MM, Bebelis SI, Neophytides SG (1996) The electrochemical activation of catalytic reactions. Modern aspects of electrochemistry. Springer, New York, pp. 57–202

    Google Scholar 

  7. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, Inc., New York, 0-8247-0879-2

    Book  Google Scholar 

  8. Vayenas CG, Koutsodontis CG (2008) Non-Faradaic electrochemical activation of catalysis. J Chem Phys 128(18):182506

    Article  Google Scholar 

  9. Imbihl R (2010) Electrochemical promotion of catalytic reactions. Prog Surf Sci 85:241–278

    Article  CAS  Google Scholar 

  10. Rickert H (1982) Electrochemistry of solids. Springer, Heidelberg

    Book  Google Scholar 

  11. Lintz HG, Vayenas CG (1989) Solid electrolytes in heterogeneous catalysis. Angewandte Chemie Int Ed 28:708

    Article  Google Scholar 

  12. Göpel W (1994) New materials and transducers for chemical sensors. Sens Actuators B 18:1–21

    Article  Google Scholar 

  13. Bebelis S, Vayenas CG (1989) Non-Faradaic electrochemical modification of catalytic activity: 1. The case of ethylene oxidation on Pt. J Catal 118:125–146

    Article  CAS  Google Scholar 

  14. Yentekakis IV, Neophytides S, Vayenas CG (1988) The effect of electrochemical O2− pumping on the steady state and oscillatory behavior CO oxidation on polycrystalline Pt. J Catal 111:152–169

    Article  CAS  Google Scholar 

  15. Bebelis S, Vayenas CG (1992) Non-faradaic electrochemical modification of catalytic activity. 6. Ethylene epoxidation on silver deposited on stabilized zirconia. J Catal 138(2):588–610

    Article  CAS  Google Scholar 

  16. Marina OA, Yentekakis IV, Vayenas CG, Palermo A, Lambert RM (1997) In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Pt-catalyzed NO reduction by H2. J Catal 166(2):218–228

    Article  CAS  Google Scholar 

  17. Yentekakis IV, Vayenas CG (1994) In-situ controlled promotion of Pt for CO oxidation via NEMCA using CaF2 as the solid electrolyte. J Catal 149(1):238–242

    Article  CAS  Google Scholar 

  18. Ploense L, Salazar M, Gurau B, Smotkin ES (1997) Proton spillover promoted isomerization of n-butylenes on Pd-black cathodes/Nafion 117. J Am Chem Soc 119(47):11550–11551

    Article  CAS  Google Scholar 

  19. Christmann K (1991) Surface physical chemistry. Steinkopff, Darmstadt

    Google Scholar 

  20. Fleig J, Jamnik J (2005) Work function changes of polarized electrodes on solid electrolytes. J Electrochem Soc 152(4):E138–E145

    Article  CAS  Google Scholar 

  21. Vayenas CG, Bebelis S, Yentekakis IV, Lintz HG (1992) Non-Faradaic electrochemical modification of catalytic activity: a status report. Catal Today 11(3):303–438

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications. Wiley, New York

    Google Scholar 

  23. Puglia C, Nilsson A, Hernnas B, Karis O, Bennich P, Martensson N (1995) Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surf Sci 342:119

    Article  CAS  Google Scholar 

  24. Günther S, Kaulich B, Gregoratti L, Kiskinova M (2002) Photoelectron microscopy and applications in surface and materials science. Prog Surf Sci 70:187

    Article  Google Scholar 

  25. Luerssen B, Günther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Photoelectron spectromicroscopy of electrochemically induced oxygen spillover at the Pt/YSZ interface. Chem Phys Lett 316(5–6):331–335

    Article  CAS  Google Scholar 

  26. Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) Origin of Non-Faradaic electrochemical modification of catalytic activity. J Phys Chem 97:8845–8848

    Article  CAS  Google Scholar 

  27. Toghan A, Greiner M, Knop-Gericke A, Imbihl R (2018) Identification of the surface species in electrochemical promotion: ethylene oxidation over a Pt/YSZ catalyst. J Phys Chem C (submitted)

  28. Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal-support interactions 1. 18O2 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. J Catal 222(1):192–206

    Article  CAS  Google Scholar 

  29. Vayenas CG, Ioannides A, Bebelis S (1991) Solid electrolyte cyclic voltammetry for in situ investigation of catalyst surfaces. J Catal 129(1):67–87

    Article  CAS  Google Scholar 

  30. Mutoro E, Luerssen B, Guenther S, Janek J (2009) The electrode model system Pt(O2)/YSZ: influence of impurites and electrode morphology on cyclic voltammograms. Solid State Ion 180:1019–1033

    Article  CAS  Google Scholar 

  31. Rotermund HH (1997) Imaging of dynamic processes on surfaces by light. Surf Sci Rep 29:265

    Article  CAS  Google Scholar 

  32. Luerssen B, Mutoro E, Fischer H, Guenther S, Imbihl R, Janek J (2006) In situ imaging of electrochemically induced oxygen spillover on Pt/YSZ catalysts. Angew Chem Int Ed 45:1473–1476

    Article  CAS  Google Scholar 

  33. Lewis R, Gomer R (1968) Adsorption of oxygen on platinum. Surf Sci 12:157

    Article  CAS  Google Scholar 

  34. Wintterlin J, Schuster R, Ertl G (1996) Existence of a “Hot” Atom Mechanism for the Dissociation of O2 on Pt(111). Phys Rev Lett 77:123

    Article  CAS  Google Scholar 

  35. Barth JV (2000) Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf Sci Rep 40:75–149

    Article  CAS  Google Scholar 

  36. Mutoro E, Hellwig C, Luerssen B, Guenther S, Bessler WG, Janek J (2011) Electrochemically induced oxygen spillover and diffusion on Pt(111): PEEM imaging and kinetic modelling. PCCP 13:12798–12807

    Article  CAS  Google Scholar 

  37. Vayenas CG, Archonta D, Tsiplakides D (2003) Scanning tunneling microscopy observation of the origin of electrochemical promotion and metal-support interactions. J Electroanal Chem 554–555:301–306

    Article  Google Scholar 

  38. Mross WD (1983) Catalysis Rev Sci Eng 25:591

    Article  CAS  Google Scholar 

  39. Bonzel HP, Bradshaw AM, Ertl G (eds) (1989) Physics and chemistry of alkali metal adsorption. Elsevier, Amsterdam

    Google Scholar 

  40. Kiskinova M (1992) Poisoning and promotion in catalysis based on surface science concepts. Elsevier, Amsterdam

    Google Scholar 

  41. Lambert RM (2003) Electrochemical and chemical promotion by alkalis with metal films and nanoparticles. In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, Inc., New York, pp 583–611

    Google Scholar 

  42. Lambert RM, Palermo A, Williams FJ, Tikhov MS (2000) Electrochemical promotion of catalytic reactions using alkali ion conductors. Solid State Ion 136–137:677–685

    Article  Google Scholar 

  43. Lambert RM, Williams FJ, Palermo A, Tikhov MS (2000) Modelling alkali promotion in heterogeneous catalysis: in situ electrochemical control of catalytic reactions. Top Catal 13:91–98

    Article  CAS  Google Scholar 

  44. Williams FJ, Palermo A, Tikhov MS, Lambert RM (2000) Electrochemical promotion by sodium of the rhodium-catalyzed NO+CO reaction. J Phys Chem B 104(50):11883–11890

    Article  CAS  Google Scholar 

  45. Williams FJ, Palermo A, Tracey S, Tikhov MS, Lambert RM (2002) Electrochemical promotion by potassium of the selective hydrogenation of acetylene on platinum: reaction studies and XP spectroscopy. J Phys Chem B 106(22):5668–5672

    Article  CAS  Google Scholar 

  46. Janek J, Rohnke M, Luerßen B, Imbihl R (2000) Promotion of catalytic reactions by electrochemical polarization. Phys Chem Chem Phys 2:1935–1941

    Article  CAS  Google Scholar 

  47. Pöpke H, Mutoro E, Raiß C, Luerßen B, Amati M, Abyaneh MK, Gregoratti L, Janek J (2011) The role of platinum oxide in the electrode system Pt(O2)/yttria-stabilized zirconia. Electrochim Acta 56:10668–10675

    Article  Google Scholar 

  48. Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B 68(3–4):109–124

    Article  CAS  Google Scholar 

  49. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937

    Article  Google Scholar 

  50. Schloegl R, Schoonmaker RC, Muhler M, Ertl G (1988) Bridging the “material gap” between single crystal studies and real catalysis. Catal Lett 1:237–242

    Article  CAS  Google Scholar 

  51. Imbihl R, Behm RJ, Schlögl R (2006) Vom Idealen zum Realen System: Druck- und Material-Lücke in der Heterogenen Katalyse. Bunsenblätter 2:23–26

    Google Scholar 

  52. Prieto G, Schüth F (2015) Bridging the gap between insightful simplicity and successful complexity: from fundamental studies on model systems to technical catalysts. J Catal 328:59–71

    Article  CAS  Google Scholar 

  53. Mikhailov AS (1991) Foundations of synergetics. Springer, Berlin

    Book  Google Scholar 

  54. Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697

    Article  CAS  Google Scholar 

  55. Toghan A, Rösken LM, Imbihl R (2010) Origin of non-Faradayicity in electrochemical promotion of catalytic ethylene oxidation. PCCP 12:9811–9815

    Article  CAS  Google Scholar 

  56. Kellow JC, Wolf EE (1990) Infrared thermography and FTIR studies of catalyst preparation effects on surface reaction dynamics during CO and ethylene oxidation on Rh/SiO2 catalysts. Chem Eng Sci 45:2597–2602

    Article  CAS  Google Scholar 

  57. Kellow JC, Wolf EE (1991) Propagation of oscillations during ethylene oxidation on a Rh/SiO2 catalyst. AIChE J 37:1844–1848

    Article  CAS  Google Scholar 

  58. Imbihl R, Toghan A (2011) Reply to comment by C. G. Vayenas, P. Vernoux. ChemPhysChem 12:1764

    Article  CAS  Google Scholar 

  59. Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28(3):223–226

    Article  CAS  Google Scholar 

  60. Marwood M, Vayenas CG (1997) Electrochemical promotion of electronically isolated Pt catalysts on stabilized zirconia. J Catal 168(2):538–542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Imbihl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbihl, R. Electrochemical promotion of catalytic reactions. ChemTexts 5, 2 (2019). https://doi.org/10.1007/s40828-018-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-018-0077-9

Keywords

Navigation