Skip to main content
Log in

Electrochromism: a fascinating branch of electrochemistry

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This lecture on electrochromism and electrochromic devices starts with a short introduction to the field. This is followed by an overview of the different classes of electrochromic materials, in which each class is illustrated by some typical examples. The third part deals with some basic parameters to assess electrochromic compounds and devices. After this, we discuss the different types of electrochromic devices or elements, again always illustrated by some examples. Manufacturing considerations and real-world practical application examples of electrochromics are the topics of the last two parts of this lecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(source: [35], reprinted with permission from Synthetic Metals. Copyright 2005 Elsevier)

Fig. 6

(source: [37], reprinted with permission from Chemistry of Materials. Copyright 2004 American Chemical Society)

Fig. 7
Fig. 8

(source: reproduced from Ref. [43] with permission from The Royal Society of Chemistry, the Prussian blue-coated glass was added to this figure)

Fig. 9

(source: [60])

Fig. 10

(source: Wikimedia Commons)

Fig. 11

(source: Wikimedia Commons)

Fig. 12

(source: from the laboratory of Gesimat GmbH, Berlin, Germany)

Fig. 13
Fig. 14

(source: from the laboratory of Gesimat GmbH, Berlin, Germany)

Fig. 15

(source: photo by the author, 2001)

Fig. 16

(source: Wikimedia Commons)

Similar content being viewed by others

Notes

  1. Historically, electrochromism refered to changes in optical absorption of a material due to an external electrical field without any redox reaction (Stark effect). What we now call electrochromism was sometimes termed electrochemichromism to distinguish it from the physical effect. However, today mostly the electrochemically induced optical absorption change is denoted with the term electrochromism.

References

  1. Rauh RD (1999) Electrochromic windows: an overview. Electrochim Acta 44:3165–3176

    Article  CAS  Google Scholar 

  2. Deb SK (1995) Reminiscences on the discovery of electrochromic phenomena in transition metal oxides. Sol Energy Mater Sol Cells 39:191–201

    Article  CAS  Google Scholar 

  3. Schoot CJ, Ponjee JJ, van Dam HT, van Doorn RA, Bolwijn PT (1973) New electrochromic memory display. Appl Phys Lett 23:64–65

    Article  CAS  Google Scholar 

  4. Kaufman FB, Schroeder AH, Engler EM, Patel VV (1980) Polymer-modified electrodes: a new class of electrochromic materials. Appl Phys Lett 36:422–425

    Article  CAS  Google Scholar 

  5. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125:886–887

    Article  CAS  Google Scholar 

  6. Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mater 11:1–27

    Article  CAS  Google Scholar 

  7. Svensson JSEM, Granqvist CG (1984) Electrochromic tungsten oxide films for energy efficient windows. Sol Energy Mater 11:29–34

    Article  CAS  Google Scholar 

  8. Casini M (2018) Active dynamic windows for buildings: a review. Renew Energy 119:923–934

    Article  Google Scholar 

  9. Granqvist CG, Arvizu MA, Bayrak Pehlivan I, Qu H-Y, Wen R-T, Niklasson GA (2018) Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim Acta 259:1170–1182

    Article  CAS  Google Scholar 

  10. Baucke FGK, Bange K, Gambke T (1988) Reflecting electrochromic devices. Displays 9:179–187

    Article  CAS  Google Scholar 

  11. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces 7:1413–1421

    Article  PubMed  CAS  Google Scholar 

  12. Hein A, Kortz C, Oesterschulze E (2018) Electrochromic tunable filters based on nanotubes with viologen incorporation. In: Proc SPIE 10679, optics, photonics, and digital technologies for imaging applications V, 106791U

  13. Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Printed, flexible electrochromic displays using interdigitated electrodes. Sol Energy Mater Sol Cells 56:395–418

    Article  CAS  Google Scholar 

  14. Saricayir H, Üce M, Koca A (2010) In situ techniques for monitoring electrochromism. An advanced laboratory experiment. J Chem Educ 87:205–207

    Article  CAS  Google Scholar 

  15. Bange K (1999) Colouration of tungsten oxide films: a model for optically active coatings. Sol Energy Mater Sol Cells 58:1–131

    Article  CAS  Google Scholar 

  16. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells 60:201–262

    Article  CAS  Google Scholar 

  17. Gottesfeld S, McIntyre JDE, Beni G, Shay JL (1978) Electrochromism in anodic iridium oxide films. Appl Phys Lett 33:208–210

    Article  CAS  Google Scholar 

  18. Gavrilyuk AI, Chudnovskii FA (1977) Electrochromism in V2O5 films (in Russian). Pisma Zh Tekh Fiz 3:174–177

    CAS  Google Scholar 

  19. Dyer CK, Leach JSL (1978) Reversible optical changes within anodic oxide films on titanium and niobium. J Electrochem Soc 125:23–29

    Article  CAS  Google Scholar 

  20. Passerini S, Scrosati B, Gorenstein A (1990) The intercalation of lithium in nickel oxide and its electrochromic properties. J Electrochem Soc 137:3297–3300

    Article  CAS  Google Scholar 

  21. Monk PMS, Akhtar SP, Boutevin J, Duffield JR (2001) Toward the tailoring of electrochromic bands of metal-oxide mixtures. Electrochim Acta 46:2091–2096

    Article  CAS  Google Scholar 

  22. Runnerstrom EL, Llorde A, Lounisac SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50:10555–10572

    Article  CAS  Google Scholar 

  23. Barawi M, De Trizio L, Giannuzzi R, Veramonti G, Manna L, Manca M (2017) Dual band electrochromic devices based on Nb-doped TiO2 nanocrystalline electrodes. ACS Nano 11:3576–3584

    Article  CAS  PubMed  Google Scholar 

  24. Manos P (1969) Electrochromic device. US Patent US3451741

  25. Bird CL, Kuhn AT (1981) Electrochemistry of the viologens. Chem Soc Rev 10:49–82

    Article  CAS  Google Scholar 

  26. Striepe L, Baumgartner T (2017) Viologens and their application as functional materials. Chem Eur J 23:16924–16940

    Article  CAS  PubMed  Google Scholar 

  27. Byker HJ (1991) Bipyridinium salt solutions. US Patent US5294376

  28. Inzelt G (2012) Conducting polymers—a new era in electrochemistry, 2nd edn. Springer Verlag, Berlin

    Book  Google Scholar 

  29. Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem 149:101–113

    Article  CAS  Google Scholar 

  30. Yoshino K, Kaneto K, Inuishi Y (1983) Proposal of electro-optical switching and memory devices utilizing doping and undoping processes of conducting polymers. Jpn J Appl Phys 22:L157–L158

    Article  Google Scholar 

  31. Kobayashi T, Yoneyama H, Tamura T (1984) Polyaniline film-coated electrodes as electrochromic display devices. J Electroanal Chem 161:419–423

    Article  CAS  Google Scholar 

  32. Kitani A, Yano J, Sasaki K (1986) ECD materials for the three primary colors developed by polyanilines. J Electroanal Chem 209:227–232

    Article  CAS  Google Scholar 

  33. Dinh HN, Ding J, Xia SJ, Birss VI (1998) Multi-technique study of the anodic degradation of polyaniline films. J Electroanal Chem 459:45–56

    Article  CAS  Google Scholar 

  34. Heuer HW, Wehrmann R, Kirchmeyer S (2002) Electrochromic window based on conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Adv Funct Mater 12:89–94

    Article  CAS  Google Scholar 

  35. Lim JY, Ko HC, Lee H (2005) Systematic prediction of maximum electrochromic contrast of an electrochromic material. Synth Met 15:595–598

    Article  CAS  Google Scholar 

  36. Thompson BC, Schottland P, Zong K, Reynolds JR (2000) In situ colorimetric analysis of electrochromic polymers and devices. Chem Mater 12:1563–1571

    Article  CAS  Google Scholar 

  37. Argun AA, Aubert P-H, Thompson BC, Schwendeman I, Gaupp CL, Hwang J, Pinto NJ, Tanner DB, MacDiarmid AG, Reynolds JR (2004) Multicolored electrochromism in polymers: structures and devices. Chem Mater 16:4401–4412

    Article  CAS  Google Scholar 

  38. Bulloch RH, Kerszulis JA, Dyer AL, Reynolds JR (2015) An electrochromic painter’s palette: color mixing via solution co-processing. ACS Appl Mater Interfaces 7:1406–1412

    Article  CAS  PubMed  Google Scholar 

  39. Lee K-R, Sotzing GA (2013) Color tuning of black for electrochromic polymers using precursor blends. Chem Commun 49:5192–5194

    Article  CAS  Google Scholar 

  40. Savagian LR, Österholm AM, Shen DE, Christiansen DT, Kuepfert M, Reynolds JR (2018) Conjugated polymer blends for high contrast black-to-transmissive electrochromism. Adv Opt Mater 6:1800594

    Article  CAS  Google Scholar 

  41. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168

    Article  CAS  Google Scholar 

  42. Kraft A (2018) What a chemistry student should know about the history of Prussian blue. ChemTexts 4:16

    Article  CAS  Google Scholar 

  43. Mortimer RJ, Reynolds JR (2005) In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. J Mater Chem 15:2226–2233

    Article  CAS  Google Scholar 

  44. Garcia-Jareno JJ, Benito D, Navarro-Laboulais J, Vicente F (1998) Electrochemical behavior of electrodeposited Prussian blue films on ITO electrode: an attractive laboratory experience. J Chem Educ 75:881–884

    Article  CAS  Google Scholar 

  45. de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization and applications. Chem Mater 15:3046–3062

    Article  CAS  Google Scholar 

  46. Moskalev PN, Kirin IS (1970) Effect of the electrode potential on the absorption spectrum of a rare-earth diphthalocyanine layer (in Russian). Opt i Spektrosk 29:414–415

    CAS  Google Scholar 

  47. Lin C-L, Lee C-C, Ho K-C (2002) Spectroelectrochemical studies of manganese phthalocyanine thin films for applications in electrochromic devices. J Electroanal Chem 524–525:8–89

    Google Scholar 

  48. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98:307–325

    Article  CAS  PubMed  Google Scholar 

  49. Inzelt G, Day RW, Kinstle JF, Chambers JQ (1984) Spectroelectrochemistry of tetracyanoquinodimethane modified electrodes. J Electroanal Chem 161:147–161

    Article  CAS  Google Scholar 

  50. Percec S, Tilford SH (2012) Amorphous polymers with pendant chromogenic groups. US Patent US8287767

  51. Schott M, Lorrmann H, Szczerba W, Beck M, Kurth DG (2014) State-of-the-art electrochromic materials based on metallo-supramolecular polymers. Sol Energy Mater Sol Cells 126:68–73

    Article  CAS  Google Scholar 

  52. Zaromb S (1962) Theory and design principles of the reversible electroplating light modulator. J Electrochem Soc 109:903–912

    Article  CAS  Google Scholar 

  53. Howard BM, Ziegler JP (1995) Optical properties of reversible electrodeposition electrochromic materials. Sol Energy Mater Sol Cells 39:309–316

    Article  CAS  Google Scholar 

  54. Kim T-Y, Cho SM, Ah CS, Suh K-S, Ryu H, Chu HY (2014) Electrochromic device for the reversible electrodeposition system. J Inf Disp 15:13–17

    Article  CAS  Google Scholar 

  55. Ziegler JP, Howard BM (1995) Applications of reversible electrodeposition electrochromic devices. Sol Energy Mater Sol Cells 39:317–331

    Article  CAS  Google Scholar 

  56. Ye T, Xiang Y, Ji H, Hu C, Wu G (2016) Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode. RSC Adv 6:30769–30775

    Article  CAS  Google Scholar 

  57. Notten PHL (1999) Electrochromic metal hydrides. Curr Opin Solid State Mater Sci 4:5–10

    Article  CAS  Google Scholar 

  58. Notten PHL, Kremers M, Griessen R (1996) Optical switching of Y-hydride thin film electrodes. a remarkable electrochromic phenomenon. J Electrochem Soc 143:3348–3353

    Article  CAS  Google Scholar 

  59. Yoshimura K (2015) Metal hydrides for smart-window applications. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 241–248

    Chapter  Google Scholar 

  60. Manivasagam TG, Kiraz K, Notten PHL (2012) Electrochemical and optical properties of magnesium-alloy hydrides reviewed. Crystals 2:1410–1433

    Article  CAS  Google Scholar 

  61. Mortimer RJ, Sialvi MZ, Varley TS (2014) An in situ colorimetric measurement study of electrochromism in the thin-film nickel hydroxide/oxyhydroxide system. J Solid State Electrochem 18:3359–3367

    Article  CAS  Google Scholar 

  62. Mortimer RJ, Varley TS (2012) In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen. Sol Energy Mater Sol Cells 99:213–220

    Article  CAS  Google Scholar 

  63. Mortimer RJ, Monk PMS, Rosseinsky DR (2015) Definitions of electrochromic materials and device performance parameters. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 623–626

    Chapter  Google Scholar 

  64. Gaupp CL, Welsh DM, Rauh RD, Reynolds JR (2002) Composite coloration efficiency measurements of electrochromic polymers based on 3,4-Alkylenedioxythiophenes. Chem Mater 14:3964–3970

    Article  CAS  Google Scholar 

  65. Roldan R, Romanyuk YE (2014) Dynamics in electrochromic windows interpreted with an extended logistic model. J Electrochem Soc 163:E235–E240

    Article  CAS  Google Scholar 

  66. Gunde MK, Krasovec UO, Platzer WJ (2005) Color rendering properties of interior lighting influenced by a switchable window. J Opt Soc Am A22:416–423

    Article  Google Scholar 

  67. Arbab S, Matusiak BS, Martinsen FA, Hauback BC (2017) The impact of advanced glazing on colour perception. J Int Colour Assoc 17:50–68

    Google Scholar 

  68. Aste N, Leonforte N, Piccolo A (2018) Color rendering performance of smart glazings for building applications. Sol Energy 176:51–61

    Article  Google Scholar 

  69. Hassab S, Shen DE, Österholm AM, Da Rocha M, Song G, Alesanco Y, Vinuales A, Rougier A, Reynolds JR, Padilla J (2018) A new standard method to calculate electrochromic switching time. Sol Energy Mater Sol Cells 185:54–60

    Article  CAS  Google Scholar 

  70. Scholz G, Scholz F (2014) First-order differential equations in chemistry. ChemTexts 1:1

    Article  Google Scholar 

  71. Czanderna AW, Benson DK, Jorgensen GJ, Zhang J-G, Tracy CE, Deb SK (1999) Durability issues and service lifetime prediction of electrochromic windows for buildings applications. Sol Energy Mater Sol Cells 56:419–436

    Article  CAS  Google Scholar 

  72. Lampert CM, Agrawal A, Baertlien C, Nagai J (1999) Durability evaluation of electrochromic devices—an industry perspective. Sol Energy Mater Sol Cells 56:449–463

    Article  CAS  Google Scholar 

  73. Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A 57:19–24

    Article  Google Scholar 

  74. Singh R, Tharion J, Murugan S, Kumar A (2017) ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Appl Mater Interfaces 9:19427–19435

    Article  CAS  PubMed  Google Scholar 

  75. von Benken W, Kuwana T (1970) Preparation and properties of thin gold and platinum films on glass or quartz for transparent electrodes. Anal Chem 42:1114–1116

    Article  Google Scholar 

  76. Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Stretchable and wearable electrochromic devices. ACS Nano 8:316–322

    Article  CAS  PubMed  Google Scholar 

  77. Hu L, Gruner G, Li D, Kaner RB, Cech J (2007) Patternable transparent carbon nanotube films for electrochromic devices. J Appl Phys 101:016102

    Article  CAS  Google Scholar 

  78. Zhao L, Zhao L, Xu Y, Qiu T, Zhi L, Shi G (2009) Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim Acta 55:491–497

    Article  CAS  Google Scholar 

  79. Ho K-C, Singleton DE, Greenberg CB (1990) The influence of terminal effect on the performance of electrochromic windows. J Electrochem Soc 137:3858–3864

    Article  CAS  Google Scholar 

  80. Krasovec UO, Orel B, Reisfeld R (1998) Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the sol–gel route. Electrochem Solid State Lett 1:104–106

    Article  Google Scholar 

  81. Kadam A, Sonavane AC, Inamdar A, Deshmukh H, Patil PS (2010) Multicoloured electrochromic thin films of NiO/PANI. J Phys D Appl Phys 43:315102

    Article  CAS  Google Scholar 

  82. DeLongchamp DM, Hammond PT (2004) Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater 16:4799–4805

    Article  CAS  Google Scholar 

  83. Li H, McRae L, Elezabbi AY (2018) Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl Mater Interfaces 10:10520–10527

    Article  CAS  PubMed  Google Scholar 

  84. Heckner K-H, Kraft A (2002) Similarities between electrochromic windows and thin film batteries. Solid State Ionics 152–153:899–905

    Article  Google Scholar 

  85. Kraft A, Franz S, Rottmann M, Heckner K-H (2004) Process for the electric control of electrochromic elements. European Patent EP1517293

  86. Byker HJ (2015) Solution-phase electrochromic devices and systems. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 401–418

    Google Scholar 

  87. Bechinger C, Ferrere S, Zaban A, Spague J, Gregg BA (1997) Photoelectrochromic windows and displays. Nature 383:608–610

    Article  Google Scholar 

  88. Cannavale A, Cossari P, Eperon GE, Colella S, Fiorito F, Gigli G, Snaith HJ, Listorti A (2016) Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy Environ Sci 9:2682–2719

    Article  Google Scholar 

  89. Park S-I, Quan Y-J, Kim S-H, Kim H, Kim S, Chun D-M, Lee CS, Taya M, Chu W-S, Ahn S-H (2016) A review on fabrication processes for electrochromic devices. Int J Pr Eng Man-GT 3:397–421

    Google Scholar 

  90. Schmidt DJ, Pridgen EM, Hammond PT, Love JC (2010) Layer-by-layer assembly of a pH-responsive and electrochromic thin film. J Chem Educ 87:208–211

    Article  CAS  Google Scholar 

  91. Heusing S, Aegerter M (2018) Sol–gel coating for electrochromic devices. In: Klein L et al (eds) Handbook of sol–gel science and technology, Springer, New York, pp 2745–2784

    Chapter  Google Scholar 

  92. Kraft A, Rottmann M, Heckner K-H (2006) Large area electrochromic glazing with ion conducting PVB interlayer and two complementary electrodeposited electrochromic layers. Sol Energy Mater Sol Cells 90:469–476

    Article  CAS  Google Scholar 

  93. Kraft A, Rottmann M (2009) Properties, performance and current status of the laminated electrochromic glass of Gesimat. Sol Energy Mater Sol Cells 93:2088–2092

    Article  CAS  Google Scholar 

  94. Jödicke D, Marquardt R, Batchelor RA (1994) Cast resin mixture for bonding substantially sheet-shaped elements. US Patent US5859723

  95. Georen P, Marsal Berenguel R (2008) Electrolytes for electrochromic devices. US Patent US8218225

  96. Byker H (1986) Single-compartment, self-erasing, solution-phase electrochromic devices, solution for use therein, and uses thereof. US Patent US4902108

  97. Vitkala J (2017) Summary of GPD 2017. GPD_2107_Worldwide_glass_trends.pdf. https://www2.glaston.net/gpd-2017-glass-trends-summary. Accessed 16 Oct 2018

  98. Sbar NL, Podbelski L, Yang HM, Pease B (2012) Electrochromic dynamic windows for office buildings. Int J Sust Built Environ 1:125–139

    Article  Google Scholar 

  99. Wittkopf H, Cardinal J, Gumprich V (1999) Pilkington E-control—the new electrochromic glazing for optimization of lighting, heating and air-conditioning. In: Proceedings of the glass processing days, pp 264–266

  100. Jödicke D, Wittkopf H (2007) The 2nd generation of an electrochromic solar control glazing—ready for projects. In: Proceedings of the glass performance days, pp 394–395

  101. Beaupré S, Breton A-C, Dumas J, Leclerc M (2009) Multicolored electrochromic cells based on Poly(2,7-Carbazole) derivatives for adaptive camouflage. Chem Mater 21:1504–1513

    Article  CAS  Google Scholar 

  102. Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W (2016) Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. J Mater Chem C 4:2269–2273

    Article  CAS  Google Scholar 

  103. Otley MT, Invernale M, Sotzing GA (2015) Fabric electrochromic displays for adaptive camouflage, biomimicry, wearable displays and fashion. In: Mortimer RJ, Rosseinsky DR, Monk PMS (eds) Electrochromic materials and devices, 1st edn. Wiley-VCH Weinheim, New York, pp 503–524

    Chapter  Google Scholar 

  104. Franke E, Trimble CL, Schubert M, Woollam JA, Hale JS (2000) All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Appl Phys Lett 77:930–932

    Article  CAS  Google Scholar 

  105. Demiryont H, Moorehead D (2009) Electrochromic emissivity modulator for spacecraft thermal management. Sol Energy Mater Sol Cells 93:2075–2078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kraft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, A. Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5, 1 (2019). https://doi.org/10.1007/s40828-018-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-018-0076-x

Keywords

Navigation