Skip to main content
Log in

Hölder stability for an inverse medium problem with internal data

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We are interested in an inverse medium problem with internal data. This problem is originated from multi-waves imaging. We aim in the present work to study the well posedness of the inversion in terms of the boundary conditions. We precisely show that we have actually a stability estimate of Hölder type. For sake of simplicity, we limited our study to the class of Helmholtz equations \(\Delta + V\) with bounded potential V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandrini, G.: Global stability for a coupled physics inverse problem. Inverse Probl. 30, 075008 (2014)

    Article  MathSciNet  Google Scholar 

  2. Alessandrini, G., Di Cristo, M., Francini, E., Vessella, S.: Stability for quantitative photoacoustic tomography with well chosen illuminations. Ann. Mat. Pura Appl. 196(2), 395–406 (2017)

    Article  MathSciNet  Google Scholar 

  3. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25(12), 123004 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M.: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68(6), 1557–1573 (2008)

    Article  MathSciNet  Google Scholar 

  5. Ammari, H., Capdeboscq, Y., De Gournay, F., Rozanova-Pierrat, A., Triki, F.: Microwave imaging by elastic perturbation. SIAM J. Appl. Math. 71(6), 2112–2130 (2011)

    Article  MathSciNet  Google Scholar 

  6. Ammari, K., Choulli, M., Triki, F.: Hölder stability in determining the potential and the damping coefficient in a wave equation, arXiv:1609.06102

  7. Ammari, H., Garnier, J., Nguyen, L.H., Seppecher, L.: Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process. Commun. Part. Differ. Equ. 38(10), 1737–1762 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bal, G., Ren, K.: Non-uniqueness result for a hybrid inverse problem. Contemp. Math. 559, 29–38 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bal, G., Schotland, J.C.: Inverse scattering and acousto-optics imaging. Phys. Rev. Lett. 104, 043902 (2010)

    Article  Google Scholar 

  10. Bal, G., Uhlmann, G.: Reconstruction of coefficients in scalar second order elliptic equations from knowledge of their solutions. Commun. Pure Appl. Math. 66(10), 1629–1652 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bonnetier, E., Choulli, M., Triki, F.: Stability for quantitative photo-acoustic tomography revisited (preprint)

  12. Choulli, M.: An introduction to the analysis of elliptic partial differential equations, book (to appear)

  13. Choulli, M., Kayser, L.: Gaussian lower bound for the Neumann Green function of a general parabolic operator. Positivity 19(3), 625–646 (2015)

    Article  MathSciNet  Google Scholar 

  14. Choulli, M., Kian, Y.: Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from partial Diriclet-to-Neumann map. Application to the determination of a nonlinear term. J. Math. Pure Appl. 114, 235–261 (2018)

    Article  Google Scholar 

  15. Choulli, M., Triki, F.: New stability estimates for the inverse medium problem with internal data. SIAM J. Math. Anal. 47(3), 1778–1799 (2015)

    Article  MathSciNet  Google Scholar 

  16. Choulli, M., Yamamoto, M.: Logarithmic stability of parabolic Cauchy problems, arXiv:1702.06299

  17. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  Google Scholar 

  18. Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)

    Article  MathSciNet  Google Scholar 

  19. Henrot, A., Pierre, M.: Variation et Optimisation de Formes, vol. 48. SMAI-Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Robbiano, L.: Dimension des zéros d’une solution faible d’un opérateur elliptique. J. Math. Pures Appl. 67, 339–357 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author's contributions

Acknowledgements

The authors were supported by the Grant ANR-17-CE40-0029 of the French National Research Agency ANR (project MultiOnde).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Triki.

Appendix A

Appendix A

In this appendix, \(\Omega \) is a bounded domain of \(\mathbb {R}^n\), \(n\ge 2\), with Lipschitz boundary \(\Gamma \). Let

$$\begin{aligned} L=\text{ div }(A\nabla \, \cdot )+V, \end{aligned}$$

where \(V\in L^\infty (\Omega )\), \(A=(a^{ij})\) is a symmetric matrix with coefficients in \(W^{1,\infty }(\Omega )\) and there exist \(\kappa >0\) and \(\Lambda >0\) so that

$$\begin{aligned} A(x)\xi \cdot \xi \ge \kappa |\xi |^2, \quad x\in \Omega , \quad \xi \in \mathbb {R}^n, \end{aligned}$$
(A.1)

and

$$\begin{aligned} \Vert V\Vert _{L^\infty (\Omega )}+\Vert a^{ij}\Vert _{W^{1,\infty }(\Omega )}\le \Lambda ,\quad 1\le i,j\le n. \end{aligned}$$
(A.2)

Recall the following three-ball interpolation inequality, proved in [11] when \(V=0\) but still holds for any bounded V (see also [12]).

Theorem A.1

Let \(0<k<\ell <m\). There exist \(C>0\) and \(0<s <1\), only depending on \(\Omega \), k, \(\ell \), m, \(\kappa \) and \(\Lambda \), such that

$$\begin{aligned} \Vert v\Vert _{L^2(B(y,\ell r))}\le C\Vert v\Vert _{L^2(B(y,kr))}^s\Vert v\Vert _{L^2(B(y,m r))}^{1-s}, \end{aligned}$$
(A.3)

for all \(v\in H^1(\Omega )\) satisfying \(Lv=0\) in \(\Omega \), \(y\in \Omega \) and \(0<r< \text{ dist }(y,\Gamma )/m\).

We know from [19, Theorem 2.4.7, page 53] that any Lipschitz domain has the uniform interior cone condition, abbreviated to UICP in the sequel. In particular, there exist \(R>0\) and \(\theta \in \left]0,\frac{\pi }{2}\right[\) so that, to any \(\tilde{x}\in \Gamma \) corresponds \(\xi =\xi (\tilde{x})\in \mathbb {S}^{n-1}\) for which

$$\begin{aligned} \mathcal {C}(\tilde{x})=\{x\in \mathbb {R}^n; 0<|x-\tilde{x}|<R, (x-\tilde{x})\cdot \xi >|x-\tilde{x}|\cos \theta \}\subset \Omega . \end{aligned}$$

Define the geometric distance \(d_g^D\), on a bounded domain D of \(\mathbb {R}^n\), by

$$\begin{aligned} d_g^D(x,y)=\inf \left\{ \ell (\psi ) ; \psi :[0,1]\rightarrow D\;\text{ Lipschitz } \text{ path } \text{ joining } \; x\; \text{ to } \, y\right\} , \end{aligned}$$

where

$$\begin{aligned} \ell (\psi )= \int _0^1|\dot{\psi }(t)|\hbox {d}t \end{aligned}$$

is the length of \(\psi \).

Note that, according to Rademacher’s theorem, any Lipschitz continuous function \(\psi :[0,1]\rightarrow D\) is almost everywhere differentiable with \(|\dot{\psi }(t)|\le k\) a.e. \(t\in [0,1]\), where k is the Lipschitz constant of \(\psi \).

Lemma A.1

Let D be a bounded Lipschitz domain of \(\mathbb {R}^n\). Then \(d_g^D\in L^\infty (D \times D )\).

A proof of this lemma can be found in [16].

In the rest of this text

$$\begin{aligned} \mathbf {d}_g=\Vert d_g^\Omega \Vert _{L^\infty (\Omega \times \Omega )}. \end{aligned}$$

Proof

(Proof of Theorem 2.1) In this proof C denotes a generic constant that can depend only on \(\Omega \), \(v_0\), \(V_0\), \(\kappa \) and M.

Step 1. Let \(y, y_0\in \Omega ^{3\delta }\) and \(\psi :[0,1]\rightarrow \Omega \) be a Lipschitz path joining \(y_0\) to y so that \(\ell (\psi )\le d_g^\Omega (y_0,y)+1\). Let \(t_0=0\) and \(t_{k+1}=\inf \{t\in [t_k,1]; \psi (t)\not \in B(\psi (t_k),\delta )\}\), \(k\ge 0\). We claim that there exists an integer \(N\ge 1\) so that \(\psi (1)\in B(\psi (t_N),\delta )\). If not, we would have \(\psi (1)\not \in B(\psi (t_k),\delta )\) for any \(k\ge 0\). As the sequence \((t_k)\) is nondecreasing and bounded from above by 1, it converges to \(\hat{t}\le 1\). In particular, there exists an integer \(k_0\ge 1\) so that \(\psi (t_k)\in B\left( \psi (\hat{t}),\delta /2\right) \), \(k\ge k_0\). But this contradicts the fact that \(\left| \psi (t_{k+1})-\psi (t_k)\right| =\delta \), \(k\ge 0\).

Let us check that \(N\le N_0\), where \(N_0\) only depends on \(\mathbf {d}_g\) and \(\delta \). If \(\psi =(\psi _1,\ldots ,\psi _n)\), we pick \(1\le j\le n\) so that

$$\begin{aligned} \max _{1\le i\le n} \left| \psi _i(t_{k+1})-\psi _i(t_k)\right| =\left| \psi _j(t_{k+1})-\psi _j(t_k)\right| . \end{aligned}$$

Then

$$\begin{aligned} \delta \le n\left| \psi _j (t_{k+1})-\psi _j(t_k)\right| =n\left| \int _{t_k}^{t_{k+1}}\dot{\psi }_j(t)\hbox {d}t\right| \le n\int _{t_k}^{t_{k+1}}|\dot{\psi }(t)|\hbox {d}t . \end{aligned}$$

Consequently, where \(t_{N+1}=1\),

$$\begin{aligned} (N+1)\delta \le n\sum _{k=0}^N\int _{t_k}^{t_{k+1}}|\dot{\psi }(t)|\hbox {d}t=n\ell (\psi )\le n(\mathbf {d}_g+1). \end{aligned}$$

Therefore

$$\begin{aligned} N\le N_0=\left[ \frac{n(\mathbf {d}_g+1)}{\delta }\right] . \end{aligned}$$

Here \(\left[ n(\mathbf {d}_g+1)/\delta \right] \) is the integer part of \(n(\mathbf {d}_g+1)/\delta \).

Let \(y_k=\psi (t_k)\), \(0\le k\le N\). If \(|z-y_{k+1}|<\delta \) then

$$\begin{aligned} |z-y_k|\le |z-y_{k+1}|+|y_{k+1}-y_k|<2\delta . \end{aligned}$$

In other words, \(B(y_{k+1},\delta )\subset B(y_k,2\delta )\).

We get from Theorem A.1

$$\begin{aligned} \Vert u\Vert _{L^2(B(y_j,2\delta ))}\le C\Vert u\Vert _{L^2(B(y_j,3\delta ))}^{1-s}\Vert u\Vert _{L^2(B(y_j,\delta ))}^s,\quad 0\le j\le N. \end{aligned}$$
(A.4)

Set \(I_j=\Vert u\Vert _{L^2(B(y_j,\delta ))}\), \(0\le j\le N\) and \(I_{N+1}=\Vert u\Vert _{L^2(B(y,\delta ))}\). Since \(B(y_{j+1},\delta )\subset B(y_j,2\delta )\), \(1\le j\le N-1\), estimate (A.4) implies

$$\begin{aligned} I_{j+1}\le C M_0^{1-s}I_j^s,\quad 0\le j\le N, \end{aligned}$$
(A.5)

where we set \(M_0=\Vert u\Vert _{L^2(\Omega )}\).

Let \(C_1=C^{1+s+\ldots +s^{N}}\) and \(\beta =s^{N+1}\). Then, by a simple induction argument, estimate (A.5) yields

$$\begin{aligned} I_{N+1}\le C_1M_0^{1-\beta }I_0^\beta . \end{aligned}$$
(A.6)

Without loss of generality, we assume in the sequel that \(C\ge 1\) in (A.5). Using that \(N\le N_0\), we have

$$\begin{aligned}&\beta \ge \beta _0=s^{N_0+1}\ge se^{-\frac{\kappa }{\delta }}=\psi (\delta ), \, \text{ where } \quad \kappa =n(\mathbf {d}_g+1)|\ln s|,\\&C_1\le C^{\frac{1}{1-s}},\\&\left( \frac{I_0}{M_0}\right) ^\beta \le \left( \frac{I_0}{M_0}\right) ^{\beta _0}. \end{aligned}$$

These estimates in (A.6) gives

$$\begin{aligned} \frac{I_{N+1}}{M_0}\le C\left( \frac{I_0}{M_0}\right) ^{\psi (\delta )}. \end{aligned}$$

In other words,

$$\begin{aligned} \frac{\Vert u\Vert _{L^2(B(y,\delta ))}}{\Vert u\Vert _{L^2(\Omega )}}\le C\left( \frac{\Vert u\Vert _{L^2(B(y_0,\delta ))}}{\Vert u\Vert _{L^2(\Omega )}}\right) ^{\psi (\delta )}. \end{aligned}$$

Applying Young’s inequality, we get from this inequality

$$\begin{aligned} \Vert u\Vert _{L^2(B(y,\delta ))}\le C\left( \epsilon ^{\frac{1}{1-\psi (\delta )}}\Vert u\Vert _{L^2(\Omega )}+\epsilon ^{-\frac{1}{\psi (\delta )}}\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) , \end{aligned}$$
(A.7)

\(\epsilon >0\), \(y,y_0\in \Omega ^{3\delta }\).

Step 2. Fix \(\tilde{x}\in \Gamma \) so that \(|u(\tilde{x})|=\Vert u\Vert _{L^\infty (\Gamma )}\). Let \(\xi =\xi (\tilde{x})\) be as in the definition of the UICP. Let \(x_0=\tilde{x}+\delta \xi \), \(\delta \le R/2\), \(d_0=|x_0-\widetilde{x}|=\delta \) and \(\rho _0=d_0\sin \theta /3\). Note that \(B(x_0,3\rho _0)\subset \mathcal {C}(\tilde{x})\).

By induction in k, we construct a sequence of balls \((B(x_k, 3\rho _k))\), contained in \(\mathcal {C}(\tilde{x})\), as follows

$$\begin{aligned} \left\{ \begin{array}{ll} x_{k+1}=x_k-\alpha _k \xi ,\\ \rho _{k+1}=\mu \rho _k,\\ d_{k+1}=\mu d_k, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} d_k=|x_k-\tilde{x}|, \quad \rho _k=\vartheta d_k, \quad \alpha _k=(1-\mu )d_k , \end{aligned}$$

with

$$\begin{aligned} \vartheta =\frac{\sin \theta }{3},\quad \mu =\frac{3-2\sin \theta }{3-\sin \theta } . \end{aligned}$$

Note that this construction guarantees that, for each k, \(B(x_k,3\rho _k)\subset \mathcal {C}(\tilde{x})\) and

$$\begin{aligned} B(x_{k+1},\rho _{k+1})\subset B(x_k,2\rho _k). \end{aligned}$$
(A.8)

We get, by applying Theorem A.1, that there exist \(C>0\) and \(0<s<1\), only depending on \(\Omega \), \(v_0\) and \(V_0\), so that

$$\begin{aligned} \Vert u\Vert _{L^2(B(x_k,2\rho _k))}&\le C\Vert u\Vert _{L^2(B(x_k,3\rho _k))}^{1-s}\Vert u\Vert _{L^2(B(x_k,\rho _k))}^s \\&\le CM^{1-s}\Vert u\Vert _{L^2(B(x_k,\rho _k))}^s.\nonumber \end{aligned}$$
(A.9)

In light of (A.8), (A.9) gives

$$\begin{aligned} \Vert u\Vert _{L^2(B(x_{k+1},\rho _{k+1}))}\le CM^{1-s}\Vert u\Vert _{L^2(B(x_k,\rho _k))}^s. \end{aligned}$$
(A.10)

Let \(J_k=\Vert u\Vert _{L^2(B(x_k,\rho _k))}\), \(k\ge 0\). Then (A.10) is rewritten as follows:

$$\begin{aligned} J_{k+1}\le CM^{1-s}J_k^s. \end{aligned}$$

An induction in k yields

$$\begin{aligned} J_k\le C^{1+s +\cdots +s^{k-1}}M^{(1-s)(1+s +\cdots +s^{k-1})}J_0^{s^k}. \end{aligned}$$

That is

$$\begin{aligned} J_k\le \left[ C^{\frac{1}{1-s}}M\right] ^{1-s^k}J_0^{s^k}. \end{aligned}$$
(A.11)

Applying Young’s inequality we obtain, for any \(\epsilon >0\),

$$\begin{aligned} J_k&\le (1-s^k)\epsilon ^{\frac{1}{1-s^k}}C^{\frac{1}{1-s}}M+s^k \epsilon ^{-\frac{1}{s^k}}J_0 \nonumber \\&\le \epsilon ^{\frac{1}{1-s^k}}C^{\frac{1}{1-s}}M+\epsilon ^{- \frac{1}{s^k}}J_0\nonumber \\&\le C\epsilon ^{\frac{1}{1-s^k}}M+\epsilon ^{-\frac{1}{s^k}}J_0. \end{aligned}$$
(A.12)

Now, since \(u\in C^{0,1/2}(\overline{\Omega })\),

$$\begin{aligned} |u(\tilde{x})|\le [u]_{1/2} |\tilde{x}-x|^{1/2} +|u(x)|,\quad x\in B(x_k,\rho _k). \end{aligned}$$

Hence

$$\begin{aligned} |\mathbb {S}^{n-1}|\rho _k^n|u(\tilde{x})|^2\le 2[u]_{1/2}^2\int _{B(x_k,\rho _k)} |\tilde{x}-x|\hbox {d}x+ 2\int _{B(x_k,\rho _k)} |u(x)|^2\hbox {d}x. \end{aligned}$$

Or equivalently

$$\begin{aligned} |u(\tilde{x})|^2\le 2|\mathbb {S}^{n-1}|^{-1}\rho _k^{-n}\left( [u]_{1/2}^2\int _{B(x_k,\rho _k)} |\tilde{x}-x|\hbox {d}x+ \int _{B(x_k,\rho _k)} |u(x)|^2\hbox {d}x\right) . \end{aligned}$$

A simple computation shows that \(d_k=\mu ^kd_0\). Then

$$\begin{aligned} |\tilde{x}-x|\le |\tilde{x}-x_k|+|x_k-x|\le d_k+\rho _k=(1+\vartheta )d_k=(1+\vartheta )\mu ^kd_0. \end{aligned}$$

Therefore,

$$\begin{aligned} |u(\tilde{x})|^2\le 2\left( M^2(1+\vartheta )^{1/2} d_0^{1/2}\mu ^{k}+ |\mathbb {S}^{n-1}|^{-1}(\vartheta d_0)^{-n}\mu ^{-nk}\Vert u\Vert _{L^2(B(x_k,\rho _k))}^2\right) \end{aligned}$$

implying, when \(d_0 (=\delta ) \le 1\),

$$\begin{aligned} |u(\tilde{x})|\le C\left( M\mu ^{k/2}+\mu ^{-nk/2}\delta ^{-n/2}J_k\right) . \end{aligned}$$
(A.13)

Inequalities (A.12) and (A.13) give

$$\begin{aligned} |u(\tilde{x})|\le C\left( \mu ^{k/2}M+\mu ^{-nk/}\epsilon ^{1/(1-s^k)}\delta ^{-n/2}M+\mu ^{-nk/2}\epsilon ^{-1/s^k}\delta ^{-n/2}J_0\right) . \end{aligned}$$
(A.14)

We get, by choosing \(\epsilon =\mu ^{(1-s^k)(n+1)k/2}\) in (A.14),

$$\begin{aligned} |u(\tilde{x})|\le C\left( \mu ^{k/2}M+ \mu ^{k/2}\delta ^{-n/2}M+ \mu ^{-(n+1)k/(2s^k)+k/2}\delta ^{-n/2}J_0\right) . \end{aligned}$$

Hence

$$\begin{aligned} |u(\tilde{x})|\le C\delta ^{-n/2}\left( \mu ^{k/2}M+ \mu ^{-(n+1)k/(2s^k)}J_0\right) , \end{aligned}$$
(A.15)

by using \(\delta \le \text{ diam }(\Omega )\).

Let \(t>0\) and k be the integer so that \(k\le t<k+1\). It follows from (A.15)

$$\begin{aligned} |u(\tilde{x})|\le C\delta ^{-n/2}\left( \mu ^{t/2}M+\mu ^{-t(n+1)/(2s^t)}J_0\right) . \end{aligned}$$
(A.16)

Let \(p =(n+1)/2+|\ln s|\). Then (A.16) yields

$$\begin{aligned} |u(\tilde{x})|\le C\delta ^{-n/2}\left( \mu ^{t/2}M+\mu ^{-e^{p t}}J_0\right) . \end{aligned}$$
(A.17)

Putting \(e^{p t}=1/\epsilon \), \(0<\epsilon <1\), we get from (A.17)

$$\begin{aligned} |u(\tilde{x})|\le C\delta ^{-n/2}\left( \epsilon ^{\beta }M+e^{|\ln \mu |/\epsilon } J_0\right) , \end{aligned}$$
(A.18)

where \(\beta = |\ln \mu |/(2p)\).

Step 3. A combination of (A.7) and (A.18) entails, with \(0<\epsilon <1\) and \(\epsilon _1>0\),

$$\begin{aligned} |u(\tilde{x})|\le C\delta ^{-n/2}\left( \epsilon ^{\beta }M+e^{|\ln \mu |/\epsilon } \left( \epsilon _1^{1/(1-\psi (\delta ))}M+\epsilon _1^{-1/\psi (\delta )}\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) \right) . \end{aligned}$$

Hence, where \(\ell =n/2\) and \(\rho =|\ln \mu |\),

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Gamma )}\le C\delta ^{-\ell }\left( \epsilon ^{\beta }M+e^{\rho /\epsilon } \left( \epsilon _1^{1/(1-\psi (\delta ))}M+\epsilon _1^{-1/\psi (\delta )}\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) \right) . \end{aligned}$$

In this inequality, we take \(\epsilon _1=\epsilon ^{\beta (1-\psi (\delta ))}e^{-\rho (1-\psi (\delta ))/\epsilon }\). Using that

$$\begin{aligned} \epsilon _1^{-1/\psi (\delta )}\le e^{(\rho +\beta )(1-\psi (\delta ))/(\epsilon \psi (\delta ))}, \end{aligned}$$

we obtain in a straightforward manner

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Gamma )}\le C\delta ^{-\ell }\left( \epsilon ^{\beta }M+e^{(\rho +\beta )(1-\psi (\delta ))/(\epsilon \psi (\delta ))}\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) . \end{aligned}$$

If \(\phi (\delta )=\rho +(\rho +\beta )(1-\psi (\delta ))/\psi (\delta )\) then we can rewrite the previous estimate as follows:

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Gamma )}\le C\delta ^{-\ell }\left( \epsilon ^{\beta }M+e^{\phi (\delta )/\epsilon }\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) , \end{aligned}$$

or equivalently

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Gamma )}\le C\delta ^{-\ell }\left( t^{-\beta }M+e^{t\phi (\delta )}\Vert u\Vert _{L^2(B(y_0,\delta ))}\right) , \quad t>1. \end{aligned}$$
(A.19)

If \(M/\Vert u\Vert _{L^2(B(y_0,\delta ))}> e^{\phi (\delta )}\), we find \(t>1\) so that \(M/\Vert u\Vert _{L^2(B(y_0,\delta ))}=t^\beta e^{t\phi (\delta )}\). The estimate (A.19) with that t yields

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Gamma )}\le C\delta ^{-\ell }M\left( \frac{1}{(\beta +\phi (\delta )}\ln \left( \frac{M}{\Vert u\Vert _{L^2(B(y_0,\delta ))}} \right) \right) ^{-\beta } . \end{aligned}$$

In light of the inequality \(\Vert u\Vert _{L^\infty (\Gamma )}\ge \eta \), this estimate implies

$$\begin{aligned} \eta \le C\delta ^{-\ell }M\left( \frac{1}{\beta +\phi (\delta )}\ln \left( \frac{M}{\Vert u\Vert _{L^2(B(y_0,\delta ))}} \right) \right) ^{-\beta } . \end{aligned}$$

This inequality is equivalent to the following one

$$\begin{aligned} Me^{-C(\beta +\phi (\delta ))\delta ^{-\ell /\beta }\left( M/\eta \right) ^{1/\beta }}\le \Vert u\Vert _{L^2(B(y_0,\delta ))}. \end{aligned}$$
(A.20)

Otherwise,

$$\begin{aligned} Me^{-\phi (\delta )}\le \Vert u\Vert _{L^2(B(y_0,\delta ))}. \end{aligned}$$
(A.21)

We derive from (A.20) and (A.21) that, there exist \(C>0\) and \(\delta ^*\) so that

$$\begin{aligned} e^{-e^{c/\delta }}\le \Vert u\Vert _{L^2(B(y_0,\delta ))}, \quad 0< \delta \le \delta ^*. \end{aligned}$$

Obviously, a similar estimate holds for \(\delta \ge \delta ^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choulli, M., Triki, F. Hölder stability for an inverse medium problem with internal data. Res Math Sci 6, 9 (2019). https://doi.org/10.1007/s40687-018-0171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0171-z

Keywords

Mathematics Subject Classification

Navigation