Skip to main content
Log in

Measurement Error and Environmental Epidemiology: a Policy Perspective

  • Methods in Environmental Epidemiology (EF Schisterman and AZ Pollack, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making.

Recent Findings

We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure-response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention.

Summary

Under a policy perspective, the analyst must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement error in nonlinear models: a modern perspective, second edition. London: Chapman and Hall/CRC; 2006.

    Book  Google Scholar 

  2. Gustafson P. Measurement error and misclassification in statistics and epidemiology: impacts and Bayesian adjustments. Chapman and Hall/CRC; 2003.

  3. Armstrong BG. Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup Environ Med. 1998;55(10):651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armstrong BG. The effects of measurement errors on relative risk regressions. Am J Epidemiol. 1990;132(6):1176–84.

    Article  CAS  PubMed  Google Scholar 

  5. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health. 2000;108(5):419–26.

    CAS  Google Scholar 

  6. Cole SR, Richardson DB, Chu H, Naimi AI. Analysis of occupational asbestos exposure and lung cancer mortality using the G formula. Am J Epidemiol. 2013;177(9):989–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Edwards JK, McGrath LJ, Buckley JP, Schubauer-Berigan MK, Cole SR, Richardson DB. Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric g-formula. Epidemiology. 2014;25(6):829–34.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cain LE, Logan R, Robins JM, Sterne JAC, Sabin C, Bansi L, Justice A, Goulet J, van Sighem A, de Wolf F, Bucher HC, von Wyl V, Esteve A, Casabona J, del Amo J, Moreno S, Seng R, Meyer L, Perez-Hoyos S, Muga R, Lodi S, Lanoy E, Costagliola D, Hernan MA. When to initiate combined antiretroviral therapy to reduce mortality and AIDS-defining illness in HIV-infected persons in developed countries: an observational study. Ann Intern Med. 2011;154(8):509–15.

    Article  PubMed  Google Scholar 

  9. Sterne JAC, May M, Costagliola D, de Wolf F, Phillips AN, Harris R, Funk MJ, Geskus RB, Gill J, Dabis F, Miró JM, Justice AC, Ledergerber B, Fätkenheuer G, Hogg RS, Monforte AD, Saag M, Smith C, Staszewski S, Egger M, Cole SR. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet. 2009;373(9672):1352–63.

    Article  PubMed  Google Scholar 

  10. Edwards JK, Cole SR, Westreich D, Mugavero MJ, Eron JJ, Moore RD, Mathews WC, Hunt P, Williams C. Age at entry into care, timing of antiretroviral therapy initiation, and 10-year mortality among HIV-seropositive adults in the United States. Clin Infect Dis. 2015;61(7):1189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Günthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, Burger DM, Cahn P, Gallant JE, Glesby MJ, Reiss P, Saag MS, Thomas DL, Jacobsen DM, Volberding PA. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the international antiviral society-USA panel. JAMA. 2014;312(4):410–25.

    Article  PubMed  Google Scholar 

  12. Michels KB. EDITORIAL A renaissance for measurement error. Int J Epidemiol. 2001;30:421–2.

    Article  CAS  PubMed  Google Scholar 

  13. Rothman KJ. Methodologic frontiers in environmental epidemiology. Environ. Health Perspect. 1993;(Suppl 4):19–21.

  14. Thomas DC. Statistical methods in environmental epidemiology. Oxford University Press; 2009 432 p.

  15. Rothman KJ, Greenland S. Lash TL. Modern epidemiology: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  16. Thomas D, Stram D, Dwyer J. Exposure measurement error: influence on exposure-disease. Relationships and methods of correction. Annu Rev Public Health. 1993;14:69–93.

    Article  CAS  PubMed  Google Scholar 

  17. Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med. 1989;8(9):1051–69. 1073

    Article  CAS  PubMed  Google Scholar 

  18. Spiegelman D. Approaches to uncertainty in exposure assessment in environmental epidemiology. Annu Rev Public Health. 2010;31:149–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hatch M, Thomas D. Measurement issues in environmental epidemiology. Environ Health Perspect. 1993;101(SUPPL. 4):49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borkowf CB, Albert PS, Abnet CC. Using lowess to remove systematic trends over time in predictor variables prior to logistic regression with quantile categories. Stat Med. 2003;22(9):1477–93.

    Article  PubMed  Google Scholar 

  21. Wang Y, Jacobs EJ, McCullough ML, Rodriguez C, Thun MJ, Calle EE, Flanders WD. Comparing methods for accounting for seasonal variability in a biomarker when only a single sample is available: insights from simulations based on serum 25-hydroxyvitamin d. Am J Epidemiol. 2009;170(1):88–94.

    Article  PubMed  Google Scholar 

  22. Zhang H, Ahn J, Yu K. Comparing statistical methods for removing seasonal variation from vitamin D measurements in case-control studies. Stat Interface. 2011;4(1):85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cook E, Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull. 1981;41(45):53.

    Google Scholar 

  24. Richardson S, Gilks WR. A Bayesian approach to measurement error problems in epidemiology using conditional independence models. Am J Epidemiol. 1993;138(6):430–42.

    Article  CAS  PubMed  Google Scholar 

  25. Hernán MA, Cole SR. Invited commentary: causal diagrams and measurement bias. Am J Epidemiol. 2009;170(8):959–62.

    Article  PubMed  PubMed Central  Google Scholar 

  26. VanderWeele TJ, Hernán MA. Results on differential and dependent measurement error of the exposure and the outcome using signed directed acyclic graphs. Am J Epidemiol. 2012;175(12):1303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berkson J. Are there two regressions? J Am Stat Assoc. 1950;45:164–80.

    Article  Google Scholar 

  28. Szpiro AA, Sheppard L, Lumley T. Efficient measurement error correction with spatially misaligned data. Biostatistics. 2011;12(4):610–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Committee to Assess Health Risks from Exposure to Radon National Research Council. Health effects of exposure to radon: beir vi. 1999; (http://www.nap.edu/catalog.php?record_id=5499). Accessed 15 August 2011.

  30. Hornung RW, Meinhardt TJ. Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys. 1987;52(4):417–30.

    Article  CAS  PubMed  Google Scholar 

  31. Lubin JH, Boice JD, Edling C, Hornung RW, Howe GR, Kunz E, Kusiak R a, Morrison HI, Radford EP, Samet JM. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst. 1995;87(11):817–27.

    Article  CAS  PubMed  Google Scholar 

  32. Roscoe RJ, Steenland K, Halperin WE, Beaumont JJ, Waxweiler RJ. Lung cancer mortality among nonsmoking uranium miners exposed to radon daughters. J Am Med Assoc. 1989;262(5):629–33.

    Article  CAS  Google Scholar 

  33. Roscoe RJ. An update of mortality from all causes among white uranium miners from the Colorado plateau study group. Am J Ind Med. 1997;31(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  34. • Westreich D, Edwards JK, Rogawski ET, Hudgens MG, Stuart EA, Cole SR. Causal impact: epidemiological approaches for a public health of consequence. Am J Public Health. 2016;106(6):1011–2. Highlights features of epidemiologic approaches to estimate population health impact

    Article  PubMed  Google Scholar 

  35. Picciotto S, Chevrier J, Balmes J, Eisen Ea. Hypothetical interventions to limit metalworking fluid exposures and their effects on COPD mortality: G-estimation within a public health framework. epidemiology. 2014;25(3).

  36. Hernan MA. A definition of causal effect for epidemiological research. J Epidemiol Community Heal. 2004;58(4):265–71.

    Article  CAS  Google Scholar 

  37. Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annu Rev Public Health. 2013;34:61–75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Edwards JK, Cole SR, Westreich DJ. All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework. Int J Epidemiol. 2015;44(4):1452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dunn G. Design and analysis of reliability studies. Stat Methods Med Res. 1992;1(2):123–57.

    Article  CAS  PubMed  Google Scholar 

  40. Stram DO, Langholz B, Huberman M, Thomas DC. Correcting for exposure measurement error in a reanalysis of lung cancer mortality for the Colorado Plateau Uranium Miners cohort. Health Phys. 1999;77(3):265–75.

    Article  CAS  PubMed  Google Scholar 

  41. Allodji RS, Leuraud K, Thiébaut ACM, Henry S, Laurier D, Bénichou J. Impact of measurement error in radon exposure on the estimated excess relative risk of lung cancer death in a simulated study based on the French Uranium Miners’ cohort. Radiat Environ Biophys. 2012;51(2):151–63.

    Article  CAS  PubMed  Google Scholar 

  42. Heid IM, Küchenhoff H, Miles J, Kreienbrock L, Wichmann HE. Two dimensions of measurement error: classical and Berkson error in residential radon exposure assessment. J Expo Anal Environ Epidemiol. 2004;14(5):365–77.

    Article  CAS  PubMed  Google Scholar 

  43. Küchenhoff H, Bender R, Langner I. Effect of Berkson measurement error on parameter estimates in Cox regression models. Lifetime Data Anal. 2007;13(2):261–72.

    Article  PubMed  Google Scholar 

  44. Toh S, Hernández-Díaz S, Logan R, Robins JM, Hernán MA. Estimating absolute risks in the presence of nonadherence: an application to a follow-up study with baseline randomization. Epidemiology. 2010;21(4):528–39.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Allodji RS, Thiébaut ACM, Leuraud K, Rage E, Henry S, Laurier D, Bénichou J. The performance of functional methods for correcting non-Gaussian measurement error within Poisson regression: corrected excess risk of lung cancer mortality in relation to radon exposure among French uranium miners. Stat Med. 2012;31(30):4428–43.

    Article  PubMed  Google Scholar 

  46. Gilks WR, Clayton DG, Spiegelhalter DJ, Best NG, McNeil AJ, Sharples LD, Kirby AJ. Modelling complexity: applications of Gibbs sampling in medicine. J R Stat Soc Ser B. 1993;55(1):39–52.

    Google Scholar 

  47. • Greenland S, Fischer HJ, Kheifets L. Methods to explore uncertainty and bias introduced by job exposure matrices. Risk Anal. 2016;36(1):74–82. Provides guidance on accounting for measurement error induced by use of job exposure matrices in occupational studies

    Article  PubMed  Google Scholar 

  48. Küchenhoff H, Mwalili SM, Lesaffre E. A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics. 2006;62(1):85–96.

    Article  PubMed  Google Scholar 

  49. Lockwood JR, McCaffrey DF. Simulation-extrapolation for estimating means and causal effects with mismeasured covariates. Grantee Submiss. 2015;1:241–90.

    Google Scholar 

  50. Keil AP, Daniels JL, Hertz-Picciotto I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Environ Health. 2014;13(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  51. MacLehose RF, Olshan AF, Herring AH, Honein M, Shaw GM, Romitti P. Bayesian methods for correcting misclassification: an example from birth defects epidemiology. Epidemiology. 2009;20(1):27–35.

    Article  PubMed  Google Scholar 

  52. Fearn T, Hill DC, Darby SC. Measurement error in the explanatory variable of a binary regression: regression calibration and integrated conditional likelihood in studies of residential radon and lung cancer. Stat Med. 2008;27(12):2159–76.

    Article  CAS  PubMed  Google Scholar 

  53. BRESLOW NE, DAY NE. Statistical methods in cancer research. Vol. 1. The analysis of case-control studies. Int Agency Res Cancer Sci Publ. 1980;1:338.

    Google Scholar 

  54. Spiegelman D, Valanis B. Correcting for bias in relative risk estimates due to exposure measurement error: a case study of occupational exposure to antineoplastics in pharmacists. Am J Public Health. 1998;88(3):406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stürmer T, Thürigen D, Spiegelman D, Blettner M, Brenner H. The performance of methods for correcting measurement error in case-control studies. Epidemiology. 2002;13(5):507–16.

    Article  PubMed  Google Scholar 

  56. Cole SR, Chu H, Greenland S. Multiple-imputation for measurement-error correction. Int J Epidemiol. 2006;35(4):1074–81.

    Article  PubMed  Google Scholar 

  57. Lyles RH, Kupper LL. Approximate and pseudo-likelihood analysis for logistic regression using external validation data to model log exposure. J Agric Biol Environ Stat. 2013;18(1):22–38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schisterman EF, Vexler A, Whitcomb BW, Liu A. The limitations due to exposure detection limits for regression models. Am J Epidemiol. 2006;163(4):374–83.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection. Int J Epidemiol. 2009;38(6):1674–80.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Richardson DB, Ciampi A. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am J Epidemiol. 2003;157(4):355–63.

    Article  PubMed  Google Scholar 

  61. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA. Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics. 2009;10(2):258–74.

    Article  PubMed  Google Scholar 

  62. • Zhang Z, Manjourides J, Cohen T, Hu Y, Jiang Q. Spatial measurement errors in the field of spatial epidemiology. Int J Health Geogr. 2016;15(1):21. Provides a review of the effects of spatial measurement errors in epidemiology and methods that can be used to account for them

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sheppard L, Burnett RT, Szpiro AA, Kim S-Y, Jerrett M, Pope CA, Brunekreef B. Confounding and exposure measurement error in air pollution epidemiology. Air Qual Atmos Heal. 2012;5(2):203–16.

    Article  Google Scholar 

  64. Huque MH, Bondell H, Ryan L. On the impact of covariate measurement error on spatial regression modelling. Environmetrics. 2014;25(8):560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Huque MH, Bondell HD, Carroll RJ, Ryan LM. Spatial regression with covariate measurement error: a semiparametric approach. Biometrics. 2016;in press. Addresses the issue of covariate measurement error in spatial epidemiology.

  66. • Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics. 2013;24(8):501–17. Proposes an analytic framework and method for accounting for measurement error in two-stage analyses

    Article  PubMed  Google Scholar 

  67. • Alexeeff SE, Carroll RJ, Coull B. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures. Biostatistics. 2016;17(2):377–89. Presents an application of SIMEX to account for measurement error in air polluation studies

    Article  PubMed  Google Scholar 

  68. Lopiano KK, Young LJ, Gotway CA. A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data. Biometrics. 2014;70(3):648–60.

    Article  PubMed  Google Scholar 

  69. • Masiuk SV, Shklyar SV, Kukush AG, Carroll RJ, Kovgan LN, Likhtarov IA. Estimation of radiation risk in presence of classical additive and Berkson multiplicative errors in exposure doses. Biostatistics. 2016;17(3):422–36. Compares approaches to account measurement error with Berkson and classical components

    Article  CAS  PubMed  Google Scholar 

  70. • Pollack AZ, Perkins NJ, Mumford SL, Ye A, Schisterman EF. Correlated biomarker measurement error: an important threat to inference in environmental epidemiology. Am J Epidemiol. 2013;177(1):84–92. Examines bias due to correlated biomarker measurement error in simulations and presents a closed form solution to approximate bias due to such correlated error in logistic regression

    Article  CAS  PubMed  Google Scholar 

  71. Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: the case of multiple covariates measured with error. Am J Epidemiol. 1990;132(4):734–45.

    Article  CAS  PubMed  Google Scholar 

  72. Ahern J, Hubbard A, Galea S. Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol. 2009;169(9):1140–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Edwards JK, Cole SR, Lesko CR, Mathews WC, Moore RD, Mugavero MJ, Westreich D. An illustration of inverse probability weighting to estimate policy-relevant causal effects. Am. J. Epidemiol. 2016;in press.

  74. Hubbard AE, Van Der Laan MJ. Population intervention models in causal inference. Biometrika. 2008;95(1):35–47.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Taguri M, Matsuyama Y, Ohashi Y, Harada A, Ueshima H. Doubly robust estimation of the generalized impact fraction. Biostatistics. 2012;13(3):455–67.

    Article  PubMed  Google Scholar 

  76. Taubman SL, Robins JM, Mittleman MA, Herna MA. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009;28(6):1599–611.

    Article  Google Scholar 

  77. Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. Am J Epidemiol. 2010;172(1):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bareinboim E, Pearl J. A general algorithm for deciding transportability of experimental results. J Causal Inference. 2013;1(1):107–34.

    Article  Google Scholar 

  79. Hornung RW, Deddens JA, Roscoe RJ. Modifiers of lung cancer risk in uranium miners from the Colorado Plateau. Health Phys. 1998;74(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  80. Dominici F, Peng RD, Barr CD, Bell ML. Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach. Epidemiology. 2010;21(2):187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bergdahl I a, Jonsson H, Eriksson K, Damber L, Järvholm B. Lung cancer and exposure to quartz and diesel exhaust in Swedish iron ore miners with concurrent exposure to radon. Occup Environ Med. 2010;67(8):513–8.

    Article  CAS  PubMed  Google Scholar 

  82. Edwards JK, Cole SR, Westreich D, Crane H, Eron JJ, Mathews WC, Moore R, Boswell SL, Lesko CR, Mugavero MJ. Multiple imputation to account for measurement error in marginal structural models. Epidemiology. 2015;26(5):645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Babanezhad M, Vansteelandt S, Goetghebeur E. Comparison of causal effect estimators under exposure misclassification. J Stat Plan Inference. 2010;140(5):1306–19.

    Article  Google Scholar 

  84. Goetghebeur E, Vansteelandt S. Structural mean models for compliance analysis in randomized clinical trials and the impact of errors on measures of exposure. Stat Methods Med Res. 2005;14(4):397–415.

    Article  PubMed  Google Scholar 

  85. Robins J. A new approach to causal inference in mortality studies with a sustained exposure period: application to control of the healthy worker survivor effect. Math Model. 1986;7(9–12):1393–512.

    Article  Google Scholar 

  86. Lajous M, Willett WC, Robins J, Young JG, Rimm E, Mozaffarian D, Hernán MA. Changes in fish consumption in midlife and the risk of coronary heart disease in men and women. Am J Epidemiol. 2013;178(3):382–91.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Garcia-Aymerich J, Varraso R, Danaei G, Camargo C, Hernán MA. Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity: an application of the parametric g-formula. Am J Epidemiol. 2014;179(1):20–6.

    Article  PubMed  Google Scholar 

  88. Keil AP, Edwards JK, Richardson DB. Estimating intervention effects in occupational data with the Bayesian g-formula: measurement error in causal inference. In: Epidemiology Congress of the Americas. Miami, FL: 2016

  89. Keil AP, Daza EJ, Engel SM, Buckley JP, Edwards JK. A Bayesian approach to the g-formula. arXiv. 2015;1512(4809).

  90. von Winterfeldt D. Bridging the gap between science and decision making. Proc Natl Acad Sci. 2013;110(Supplement_3):14055–61.

    Article  Google Scholar 

  91. Van Boven L, Travers M, Westfall J, McClelland G. Judgement and decision making. In: Carlston D, ed. The Oxford handbook of social cognition. Oxford University Press; 2013.

  92. Greenland S. Bayesian perspectives for epidemiologic research: III. Bias analysis via missing-data methods. Int J Epidemiol. 2009;38(6):1662–73.

    Article  PubMed  Google Scholar 

  93. •• Frumkin H. Work that matters: toward consequential environmental epidemiology. Epidemiology. 2015;26(2):137–40. Presents an argument for ways in which environmental epidemiology can become more relevant to public health

    Article  PubMed  Google Scholar 

  94. Cates W. Invited commentary: consequential(ist) epidemiology: let’s seize the day. Am J Epidemiol. 2013;178(8):1192–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH 5T32ES007018-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie K. Edwards.

Ethics declarations

Conflict of Interest

The authors declare that they no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Methods in Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, J.K., Keil, A.P. Measurement Error and Environmental Epidemiology: a Policy Perspective. Curr Envir Health Rpt 4, 79–88 (2017). https://doi.org/10.1007/s40572-017-0125-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0125-4

Keywords

Navigation