Skip to main content
Log in

Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions

  • Published:
Metallurgical and Materials Transactions E

Abstract

Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or “lath” type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Lyngfelt: Appl. Energy, 2014, vol. 113(1), pp. 1869–73

  2. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, and L.F. de Diego: Prog. Energy Comb. Sci., 2012, vol. 38(2), pp. 215–82

  3. T. Mattisson, A. Lyngfelt, P. Cho, Fuel 80(13), 1953–1962 (2001)

    Article  Google Scholar 

  4. W.C. Cho, M.W. Seo, S. Kim, K.S. Kang, K.K. Bae, C.H. Kim, and C.S. Park: Int. J. Hydrog. Energy, 2012, vol. 37(22), pp. 16852–63

  5. E.R. Monazam, R.W. Breault, R. Siriwardane, G. Richards, S. Carpenter, Chem. Eng. J. 232, 478–487 (2013)

    Article  Google Scholar 

  6. H. Brill-Edwards, B.L. Daniell, R.L. Sammer, J. Iron Steel Inst. 203, 365–368 (1965)

    Google Scholar 

  7. A.V. Bradshaw, A.G. Matyas, Metall. Trans. B 7B(1), 81–87 (1976)

    Article  Google Scholar 

  8. P.R. Swann, N.J. Tighe, Metall. Trans. B 8B, 479–487 (1977)

    Article  Google Scholar 

  9. J.R. Porter, P.R. Swann, Ironmak. Steelmak. 4, 300–307 (1977)

    Google Scholar 

  10. P.C. Hayes, P. Grieveson, Metall. Trans. B 12B, 579–587 (1981)

    Article  Google Scholar 

  11. P. Baguley, D.H. St John, and P.C. Hayes.: Metall. Trans B., 1983, vol. 14B, pp. 513–14

  12. A. Ünal, A.V. Bradshaw, Metall. Trans. B 14B(4), 743–752 (1983)

    Article  Google Scholar 

  13. M. El-Tabirou, B. Dupré, C. Gleitzer, Metall. Trans. B 19B(2), 311–317 (1988)

    Article  Google Scholar 

  14. H. El Abdouni, A. Modaressi, J.J. Heizmann, React. Solids 5(2–3), 129–138 (1988)

    Article  Google Scholar 

  15. S.P. Matthew, T.R. Cho, P.C. Hayes, Metall. Trans. B 21B, 733–741 (1990)

    Article  Google Scholar 

  16. T. Hidayat, A. Rhamdhani, E. Jak, P.C. Hayes, Metall. Mater. Trans. B 40B, 474–489 (2008)

    Google Scholar 

  17. S. Oh, D.C. Cook, and H.E Townsend: Hyperfine Interact., 1988, vol. 112(1–4), pp. 59–66

  18. G. Nauer, P. Strecha, N. Brinda-Konopik, G. Liptay, J. Therm. Anal. 30(4), 813–30 (1985)

    Article  Google Scholar 

  19. D. Thierry, D. Persson, C. Leygraf, N. Boucherit, and A. Hugot-le Goff: Corros. Sci., 1991, vol. 32(3), pp. 273–84

  20. N. Boucherit, A. Hugot-Le Goff, S. Joiret, Corros. Sci. 32(5–6), 497–507 (1991)

    Article  Google Scholar 

  21. M. Hanesch, Geophys. J. Int. 177(3), 941–948 (2009)

    Article  Google Scholar 

  22. P.C. Hayes: Metall. Mater. Trans. B, 2011, vol. 41B(1), pp. 19–34

  23. T.Simmonds, M Phil., The University of Queensland, Brisbane, Australia, 2017

  24. E. Radke, J. Chen, and P.C. Hayes: Clearwater Coal Conference, Florida, 2015

Download references

Acknowledgments

The authors would like to acknowledge the financial support for this project from the Australian Research Council (ARC) Discovery program. Thanks to Eugene Jak for support and discussions on the research, to Jiang Chen and Suping Huang, PYROSEARCH, for their support in developing experimental procedures, and to Ron Rasch and Ying Yu for their assistance in the use of electron microscope facilities that were provided through the Centre for Microscopy and Microanalysis, the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Hayes.

Additional information

Manuscript submitted February 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmonds, T., Hayes, P.C. Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions. Metallurgical and Materials Transactions E 4, 101–113 (2017). https://doi.org/10.1007/s40553-017-0112-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-017-0112-6

Keywords

Navigation