Skip to main content
Log in

Aberration in the structural paradigm of lens protein α crystallin by UV-C irradiation

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

The conformation of lens protein α crystallin was investigated using different spectroscopic techniques under normal and UV-C-irradiated condition. The structural elucidation of commercially available lens protein α crystallin under the effects of UV-C irradiation has never been reported earlier. To study the effects of irradiation on the lens protein, we used UV–visible spectroscopy, CD spectroscopy, and steady-state and time-resolved fluorescence measurements along with FTIR study, under increasing doses of UV-C irradiation. Using the secondary and tertiary structural changes as parameters for detecting conformational perturbation, we investigated the structural paradigm shift in the lens protein α crystallin. Increasing doses of UV-C radiation resulted in decreasing β sheet content of α crystallin from 30 to 10%. The fluorescence profile confirmed the formation of ROS species in the protein upon extensive exposure to UV-C irradiation. These results inferred UV-C irradiation may induce alteration of secondary structure of the lens protein leading to impaired biological functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52(2):115–125

    Article  CAS  Google Scholar 

  2. Protić-Sabljić M, Tuteja N, Munson PJ, Hauser J, Kraemer KH, Dixon K (1986) UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells. Mol Cell Biol 6(10):3349–3356

    Article  PubMed  PubMed Central  Google Scholar 

  3. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu JWR, Kao CY, Lin LTW, Wen WS, Lai JT, Wang SSS (2013) Human γD-crystallin aggregation induced by ultraviolet C irradiation is suppressed by resveratrol. Biochem Eng J 78:189–197

    Article  CAS  Google Scholar 

  5. Horwit J, Bova MP, Ding L, Haley DA, Stewart PL (1999) Lens α-crystallin: function and structure. Eye 13:403–408

    Article  Google Scholar 

  6. Peschek J, Braun N, Franzmann TM, Georgalis Y, Haslbeck M, Weinkauf S, Buchner J (2009) The eye lens chaperone α-crystallin forms defined globular assemblies. PNAS 106(32):13272–13277

    Article  PubMed  Google Scholar 

  7. Bhagyalaxmi SG, Srinivas PNBS, Barton KA, Kumar KR, Vidyavathi M, Petrash JM, Padma T (2009) A novel mutation (F71L) in αA-crystallin associated with age-related cataract results in defective chaperone-like function despite unaltered structure. Biochim Biophys Acta 1792(10):974–981

    Article  CAS  PubMed  Google Scholar 

  8. Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76(2):145–153

    Article  CAS  PubMed  Google Scholar 

  9. Reddy GB, Kumar PA, Kumar MS (2006) Chaperone-like activity and hydrophobicity of α-crystallin. IUBMB Life 58(11):632–641

    Article  CAS  PubMed  Google Scholar 

  10. Posner M (2003) A comparative view of alpha-crystallins: the contribution of comparative studies to understanding function. Integr Comp Biol 43(4):481–491

    Article  CAS  PubMed  Google Scholar 

  11. Kingsley CN, Bierma JC, Pham V, Martin RW (2014) γS-crystallin proteins from the antarctic nototheniidtoothfish: a model system for investigating differential resistance to chemical and thermal denaturation. J Phys Chem B 118(47):13544–13553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL (1999) Lens α-crystallin: function and structure. Eye 13:403–408

    Article  PubMed  Google Scholar 

  13. Bloemendal H, de Jon W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86(3):407–485

    Article  CAS  PubMed  Google Scholar 

  14. Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72(4):1063–1081

    Article  CAS  PubMed  Google Scholar 

  15. Santhoshkumar P, Udupa P, Murugesan R, Sharma KK (2008) Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem 283(13):8477–8485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar AP, Reddy GB (2009) Modulation of a-crystallin chaperone activity: a target to prevent or delay cataract? IUBMB Life 61(5):485–495

    Article  CAS  PubMed  Google Scholar 

  18. Borkman RF, Douhal A, Yoshihara K (1993) Picosecond fluorescence decay in photolyzed lens protein α crystallin. Biochemistry 32(18):4787–4792

    Article  CAS  PubMed  Google Scholar 

  19. Kong J, Shaoning YU (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  PubMed  Google Scholar 

  20. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79(11):4215–4221

    Article  CAS  PubMed  Google Scholar 

  21. Griebenow K, Laureano YD, Santos AM, Clemente IM, Rodríguez L, Vidal MW, Barletta G (1999) Improved enzyme activity and enantioselectivity in organic solvents by methyl-β-cyclodextrin. J Am Chem Soc 121(36):8157–8163

    Article  CAS  Google Scholar 

  22. Cohen FB, Baillet G, Ayguavives TD, Garcia PO, Krutmann J, García PP, Reme C, Wolffsohn JS (2014) Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin Ophthalmol 8:87–104

    Google Scholar 

  23. Schmid FX (2001) Biological macromolecules: UV–visible spectrophotometry. Wiley, New York

    Google Scholar 

  24. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basak P, Pattanayak R, Bhattacharyya M (2015) Transition metal induced conformational change of heme proteins. Spectrosc Lett 48(5):324–330

    Article  CAS  Google Scholar 

  26. Gabellieri E, Strambini GB (2006) ANS fluorescence detects widespread perturbations of protein tertiary structure in ice. Biophys J 90(9):3239–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mafia K, Gupta R, Kirk M, Wilson L, Srivastava OP, Barnes S (2008) UV-A-induced structural and functional changes in human lens deamidated αB-crystallin. Mol Vis 14:234–248

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Walrant P, Santus R (1974) N-formyl-kynurenine, a tryptophan photooxidationproduct, as a photodynamic sensitizer. Photochem Photobiol 19(6):411–417

    Article  CAS  PubMed  Google Scholar 

  29. Borkman RF (1977) Ultraviolet action spectrum for tryptophan destruction in aqueous solution. Photo chem Photobiol 26(2):163–166

    Article  CAS  Google Scholar 

  30. Wang SSS, Wen WS (2010) Examining the influence of ultraviolet C irradiation on recombinant human γD-crystallin. Mol Vis 16:2777–2790

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghisaidoobe AB, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci 15(12):22518–22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baldassarre M, Li C, Eremina N, Goormaghtigh E, Barth A (2015) Simultaneous fitting of absorption spectra and their second derivatives for an improved analysis of protein infrared spectra. Molecules 20(7):12599–12622

    Article  CAS  PubMed  Google Scholar 

  33. Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM (2000) A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 285(1):33–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to World Bank-ICZMP (54-ICZMP/3P), DST (FIST), UGC-CAS, UGC-UPE, and DBT-IPLS, Government of India for providing the instrumental facility in the Department of Biochemistry, Calcutta University. Turban Kar thanks to UGC-DAE Consortium for Scientific Research, New Delhi, India, for providing the financial assistance in the form of grants and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Basak or M. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R.K., Kar, T., Dutta, B. et al. Aberration in the structural paradigm of lens protein α crystallin by UV-C irradiation. Appl Biol Chem 61, 281–287 (2018). https://doi.org/10.1007/s13765-018-0351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-018-0351-y

Keywords

Navigation