Skip to main content
Log in

Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Consolidation and hydrophobic treatment of stone artworks are challenging tasks. These treatments are considered irreversible in many cases. However, in many cases, they are unavoidable, especially when the stone monuments are in risk of deterioration and collapse induced by aging and weathering. The consolidation and hydrophobic treatment of a monument have to be done within an appropriate time window; otherwise, it is in risk of being collapsed completely due to the deep erosion of layers and loss of cohesion. In this study, a variety of challenges associated with the consolidation, and hydrophobic treatments of stone monuments are addressed. Inorganic nanoparticles and polymeric materials are introduced for this aim. Acrylics, silanes and organic–inorganic nanocomposites play an important role in the preparation of hydrophobic coating compositions for application on the stone surface. In addition, the effect of fluorinated functional groups on the coating composition and the influence of hydrophobic properties of additives on the stability and weathering resistance under harsh conditions are discussed. It is shown that the use of inorganic nanoparticles in a coating composition is a useful way to improve consolidation, self-cleaning and anti-microorganism properties in the conservation and protection treatments. Scientific articles and recent developments emphasize the need for water-based resins which possess environmentally friendly features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sohrabi M, Favero-Longo SE, Pérez-Ortega S, Ascaso C, Haghighat Z, Talebian MH, Fadaei H, de los Ríos A (2017) Lichen colonization and associated deterioration processes in Pasargadae, UNESCO world heritage site, Iran. Int Biodet Biodeg 117:171–182

    Article  CAS  Google Scholar 

  2. Pinto APF, Rodrigues JD (2008) Stone consolidation: the role of treatment procedures. J Cult Herit 9:38–53

    Article  Google Scholar 

  3. Bergamonti L, Bondioli F, Alfieri I, Alinovi S, Lorenzi A, Predieri G, Lottici PP (2018) Weathering resistance of PMMA/SiO2/ZrO2 hybrid coatings for sandstone conservation. Polym Degrad Stabil 147:274–283

    Article  CAS  Google Scholar 

  4. Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Polym Plast Technol Eng 57:1932–1952

    Article  CAS  Google Scholar 

  5. Xu J, Jiang Y, Qiu F, Dai Y, Yang D, Yu Z, Yang P (2018) Synthesis, mechanical properties and iron surface conservation behavior of uv-curable waterborne polyurethane-acrylate coating modified with inorganic carbonate. Polym Bull 75:4713–4734

    Article  CAS  Google Scholar 

  6. Afzal A, Kausar A, Siddiq M (2016) A review on polymer/cement composite with carbon nanofiller and inorganic filler. Polym Plast Technol Eng 55:1299–1323

    Article  CAS  Google Scholar 

  7. Ershad-Langroudi A, Fadaii H, Ahmadi K, Beheshtifar M (2016) Superhydrophobic siloxane based coating for enhanced protection of historical limestone surfaces. In: ISPST 2016, the 12th international seminar on polymer science and technology. Novambor, Tehran

    Google Scholar 

  8. Ershad-Langroudi A, Fadaii H, Ahmadi K, Beheshtifar M (2016) Consolidation of historical stone by silane/siloxane treatment. In: ISPST 2016, the 12th international seminar on polymer science and technology. Novambor, Tehran

    Google Scholar 

  9. Rodrigues JD (2001) Consolidation of decayed stones: a delicate problem with few practical solutions. Proc Int Sem Hist Const 3–14. http://www.csarmento.uminho.pt/docs/ncr/historical_constructions/page%2003-14_DDelgado.pdf

  10. Price CA, Doehne E (2011) Stone conservation: an overview of current research, 2nd edn. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  11. McMillan AJ, Swindells N, Archer E, McIlhagger A, Sung A, Leong K, Jones R (2017) A review of composite product data interoperability and product life-cycle management challenges in the composites industry. Adv Manuf Polym Compos Sci 3:130–147

    CAS  Google Scholar 

  12. Ershad-Langroudi A (2009) Photo evolution of siloxane based coatings on artificial weathering, 9th conference on protection and restoration of historical and cultural objects and decoration related to architecture. Iranian Research Institute for cultural Heritage, Tehran, p 339–334

  13. Ershad-Langroudi A, Sadat-Shojai M (2009) Siloxane-based coatings as potential materials for protection of brick-made monuments. J Color Sci Technol 3:177–187

    Google Scholar 

  14. Sadat-Shojai M, Ershad-Langroudi A (2009) Polymeric coatings for protection of historic monuments: opportunities and challenges. J Appl Polym Sci 112:2535–2551

    Article  CAS  Google Scholar 

  15. Pia G, Corcione CE, Striani R, Casnedi L, Sanna U (2016) Thermal conductivity of porous stones treated with UV light-cured hybrid organic–inorganic methacrylic-based coating: experimental and fractal modeling procedure. Prog Org Coat 94:105–115

    Article  CAS  Google Scholar 

  16. Striani R, Esposito Corcione C, Dell’Anna Muia G, Frigione M (2016) Durability of a sunlight-curable organic–inorganic hybrid protective coating for porous stones in natural and artificial weathering conditions. Prog Org Coat 101:1–14

    Article  CAS  Google Scholar 

  17. Isebaert A, Van Parys L, Cnudde V (2014) Composition and compatibility requirements of mineral repair mortars for stone—a review. Constr Build Mater 59:39–50

    Article  Google Scholar 

  18. Carretti E, Bonini M, Dei L, Berrie BH, Angelova LV, Baglioni P, Weiss RG (2010) New frontiers in materials science for art conservation: responsive gels and beyond. Acc Chem Res 43:751–760

    Article  CAS  PubMed  Google Scholar 

  19. Young R (2017) Minimal intervention and regular repair. ICOMOS J German Nat Committee 32:63–70

    Google Scholar 

  20. Ward PR (1990) The nature of conservation: a race against time. Getty Publications, California

    Google Scholar 

  21. Appelbaum B (2012) Conservation treatment methodology. Routledge, Abington

    Book  Google Scholar 

  22. Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, Van Grieken R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179

    Article  Google Scholar 

  23. Moropoulou A, Labropoulos KC, Delegou ET, Karoglou M (2013) A Bakolas non-destructive techniques as a tool for the protection of built cultural heritage. Constr Build Mater 48:1222–1239

    Article  Google Scholar 

  24. Kottke J (2009) An investigation of quantifying and monitoring stone surface deterioration using three dimensional laser scanning. MSc Thesis, University of Pennsylvania

  25. El-Gohary M (2015) Effective roles of some deterioration agents affecting edfu royal birth house “MAMMISI”. Int J Conserv Sci 6:349–368

    CAS  Google Scholar 

  26. Scherer GW, Flatt R, Wheeler G (2001) Materials science research for the conservation of sculpture and monuments. MRS Bull 26:44–50

    Article  CAS  Google Scholar 

  27. Baglioni P, Chelazzi D, Giorgi R, Poggi G (2013) Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification. Langmuir 29:5110–5122

    Article  CAS  PubMed  Google Scholar 

  28. Cardiano P, Sergi S, Lazzari M, P Piraino (2002) Epoxy–silica polymers as restoration materials. Polymer 43:6635–6640

    Article  CAS  Google Scholar 

  29. D’Orazio L, Gentile G, Mancarella C, Martuscelli E, Massa V (2001) Water-dispersed polymers for the conservation and restoration of cultural heritage: a molecular, thermal, structural and mechanical characterisation. Polym Test 20:227–240

    Article  Google Scholar 

  30. Ma X, Balonis M, Pasco H, Toumazou M, Counts D, Kakoulli I (2017) Evaluation of hydroxyapatite effects for the consolidation of a Hellenistic-Roman rock-cut chamber tomb at Athienou-Malloura in Cyprus. Constr Build Mater 150:333–344

    Article  CAS  Google Scholar 

  31. Biernacki JJ, Bullard JW, Sant G, Brown K, Glasser FP, Jones S, Ley T, Livingston R, Nicoleau L, Olek J, Sanchez F (2017) Cements in the 21st century: challenges, perspectives, and opportunities. J Am Ceram Soc 100:2746–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ershad-Langroudi A, Rahimi A (2009) Synthesis and characterization of nano silica-based coatings for protection of antique articles. Int J Nanotechnol 6:915–925

    Article  CAS  Google Scholar 

  33. Ershad–Langroudi A, Mai C, Vigier G, Vassoille R (1997) Hydrophobic hybrid inorganic–organic thin film prepared by sol–gel process for glass protection and strengthening applications. J Appl Polym Sci 65:2387–2393

    Article  Google Scholar 

  34. Princi E, Vicini S, Pedemonte E, Arrighi V, McEwen I (2005) New polymeric materials for paper and textile conservation. I. synthesis and characterization of acrylic copolymers. J Appl Polym Sci 98:157–164

    Article  CAS  Google Scholar 

  35. Constâncio C, Franco L, Russo A, Anjinho C, Pires J, Vaz MF, Carvalho AP (2010) Studies on polymeric conservation treatments of ceramic tiles with Paraloid B-72 and two alkoxysilanes. J Appl Polym Sci 116:2833–2839

    Google Scholar 

  36. El-Gohary MA (2015) Methodological evaluation of some consolidants interference with ancient Egyptian sandstone “Edfu Mammisi as a case study”. Prog Org Coat 80:87–97

    Article  CAS  Google Scholar 

  37. Franzoni E, Pigino B, Pistolesi C (2013) Ethyl silicate for surface protection of concrete: performance in comparison with other inorganic surface treatments. Cement Concret Comp 44:69–76

    Article  CAS  Google Scholar 

  38. da Fonseca BS, Piçarra S, Ferreira Pinto AP, Montemor MF (2016) Development of formulations based on TEOS-dicarboxylic acids for consolidation of carbonate stones. New J Chem 40:7493–7503

    Article  CAS  Google Scholar 

  39. Fassina V (1995) New findings on past treatments carried out on stone and marble monuments’ surfaces. Sci Total Environ 167:185–203

    Article  CAS  Google Scholar 

  40. Kopecká I, Nejedlý V, Kopecký L, Novotný J (2017) Fluorosilicates (“fluats”) used in the past in the conservation of stone in Central Europe, proceedings of 7th European commission conference safeguarded cultural heritage. Understanding & Viability for the Enlarged Europe, Prague, Czech Republic, 31 May–3 June 2006, publ. ITAM 2007, vol 2, pp 827–830. ISBN 978–80-86246-29-1

  41. Lech T (2011) Fatal cases of acute suicidal sodium and accidental zinc fluorosilicate poisoning. Review of acute intoxications due to fluoride compounds. Forensic Sci Int 206:e20–e24

    Article  CAS  PubMed  Google Scholar 

  42. Giorgi R, Ambrosi M, Toccafondi N, Baglioni P (2010) Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation. Chem Eur J 16:9374–9382

    Article  CAS  PubMed  Google Scholar 

  43. Karatasios I, Kilikoglou V, Colston B, Theoulakis P, Watt D (2007) Setting process of lime-based conservation mortars with barium hydroxide. Cem Concr Res 37:886–893

    Article  CAS  Google Scholar 

  44. Rodriguez-Navarro C, Vettori I, Ruiz-Agudo E (2016) Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implications in heritage conservation using nanolimes. Langmuir 32:5183–5194

    Article  CAS  PubMed  Google Scholar 

  45. Arizzi A, Gomez-Villalba LS, Lopez-Arce P, Cultrone G, Fort R (2015) Lime mortar consolidation with nanostructured calcium hydroxide dispersions: the efficacy of different consolidating products for heritage conservation. Eur J Mineral 27:311–323

    Article  CAS  Google Scholar 

  46. Ventolà L, Vendrell M, Giraldez P, Merino L (2011) Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr Build Mater 25:3313–3318

    Article  Google Scholar 

  47. Bracci S, Melo MJ (2003) Correlating natural ageing and Xenon irradiation of Paraloid® B72 applied on stone. Polym Degrad Stabil 80:533–541

    Article  CAS  Google Scholar 

  48. Cardiano P, Ponterio RC, Sergi S, Schiavo SL, Piraino P (2005) Epoxy-silica polymers as stone conservation materials. Polymer 46:1857–1864

    Article  CAS  Google Scholar 

  49. Melo MJ, Bracci S, Camaiti M, Chiantore O, Piacenti F (1999) Photodegradation of acrylic resins used in the conservation of stone. Polym Degrad Stabil 66:23–30

    Article  CAS  Google Scholar 

  50. Stefanidou M, Karozou A (2016) Testing the effectiveness of protective coatings on traditional bricks. Constr Build Mater 111:482–487

    Article  Google Scholar 

  51. Zanini A, Trafeli V, Bartoli L (2018) The laser as a tool for the cleaning of Cultural Heritage. IOP Confer Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/364/1/012078

    Article  Google Scholar 

  52. Allington-Jones L (2015) The Clacton spear: the last one hundred years. Archeol J 172:273–296

    Google Scholar 

  53. Barreca S, Bruno M, Oddo L, Orecchio S (2015) Preliminary study on analysis and removal of wax from a Carrara marble statue. Nat Prod Res 27:1–9

    Google Scholar 

  54. Howie FMP (1984) Materials used for conserving fossil specimens since 1930: a review. Stud Conserv 29:92–97

    Article  Google Scholar 

  55. Bomford D, Staniforth S (1981) Wax–resin lining and colour change: an evaluation. Natl Gallery Technol Bull 5:58–65

    Google Scholar 

  56. Cather S, Howard H (1986) The use of wax and wax-resin preservatives on English mediaeval wall paintings: rationale and consequences. Stud Conserv 31:48–53

    Article  Google Scholar 

  57. da Guia LP, da Motta ALTS (2015) Criteria of waxes’ performance in the consolidation of steatites (soapstone) in heritage buildings. WIT Trans Built Env 168:637–648

    Article  Google Scholar 

  58. Ciccola A, Guiso M, Domenici F, Sciubba F, Bianco A (2017) Azo-pigments effect on UV degradation of contemporary art pictorial film: a FTIR-NMR combination study. Polym Degrad Stabil 140:74–83

    Article  CAS  Google Scholar 

  59. Lettieri M, Frigione M (2011) Natural and artificial weathering effects on cold-cured epoxy resins. J Appl Polym Sci 119:1635–1645

    Article  CAS  Google Scholar 

  60. Ershad-Langroudi A, Rabiee A (2012) A novel acrylamide-anatase hybrid nanocomposite. J Polym Res 19:9970

    Article  CAS  Google Scholar 

  61. Baglioni P, Dei L, Carretti E, Giorgi R (2009) Gels for the conservation of cultural heritage. Langmuir 25:8373–8374

    Article  CAS  PubMed  Google Scholar 

  62. Rabiee A, Ershad-Langroudi A, Zeynali ME (2015) A survey on cationic polyelectrolytes and their applications: acrylamide derivatives. Rev Chem Eng 31:239–261

    Article  CAS  Google Scholar 

  63. Vicini S, Castellano M, Faria Soares Lima MC, Licinio P, Goulart Silva G (2017) Polyacrylamide hydrogels for stone restoration: effect of salt solutions on swelling/deswelling degree and dynamic correlation length. J Appl Polym Sci 134:44726

    Article  CAS  Google Scholar 

  64. Vergès-Belmin V, Siedel H (2005) Desalination of masonries and monumental sculptures by poulticing: a review. Restor Build Monum 11:391–408

    Google Scholar 

  65. Vergès-Belmin V, Heritage A, Bourgès A (2011) Powdered cellulose poultices in stone and wall painting conservation-myths and realities. Stud Conserv 56:281–297

    Article  CAS  Google Scholar 

  66. Torraca G (2009) Lectures on materials science for architectural conservation. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  67. Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A (2013) Photocatalyst nanocomposite hybrid coatings based on TiO2-SiO2 core/shell nanoparticles: preparation and investigation of weathering and corrosion resistance. J Color Sci Technol 3:151–164

    Google Scholar 

  68. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, Vigato PA (2006) Evaluation of polymers for conservation treatments of outdoor exposed stone monuments: part I: photo-oxidative weathering. Polym Degrad Stabil 91:3083–3096

    Article  CAS  Google Scholar 

  69. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, Vigato PA (2007) Evaluation of polymers for conservation treatments of outdoor exposed stone monuments: part II: photo-oxidative and salt-induced weathering of acrylic–silicone mixtures. Polym Degrad Stabil 92:335–351

    Article  CAS  Google Scholar 

  70. Vicini S, Gaggero L, Princi E (2013) Characterization, weathering, and protection of sandstones: the case of ‘Agro d’Ardesia’. Stud Conserv 58:50–57

    Article  CAS  Google Scholar 

  71. Liu F, Liu G (2017) TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers encapsulated by MMA–PMPM copolymers. Iran Polym J 26:785–795

    Article  CAS  Google Scholar 

  72. Andreotti S, Franzoni E, Degli Esposti M, Fabbri P (2018) Poly(hydroxyalkanoate)s-based hydrophobic coatings for the protection of stone in cultural heritage. Materials 11:165

    Article  CAS  PubMed Central  Google Scholar 

  73. Eroğlu G, Gündüz G, Çolak Ü, Mavis B (2018) Use of functionalized boehmite nanoparticles to improve the hardness and tribological properties of polyurethane films. J Polym Res 25:42

    Article  CAS  Google Scholar 

  74. Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri ML, Agostiano A, Comparelli R (2017) Nanocomposite materials for photocatalytic degradation of pollutants. Catal Today 281:85–100

    Article  CAS  Google Scholar 

  75. Zarzuela R, Carbú M, Gil MA, Cantoral JM, Mosquera MJ (2017) CuO/SiO2 nanocomposites: a multifunctional coating for application on building stone. Mater Des 114:364–372

    Article  CAS  Google Scholar 

  76. Corcione CE, Simone DN, Santarelli ML, Frigione M (2017) Protective properties and durability characteristics of experimental and commercial organic coatings for the preservation of porous stone. Prog Org Coat 103:193–203

    Article  CAS  Google Scholar 

  77. Sierra-Fernandez A, Gomez-Villalba LS, Rabanal ME, Fort R (2017) New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater Construcc 67:107–125

    Article  CAS  Google Scholar 

  78. Mosquera MJ, Santos DMdL, Rivas T (2010) Surfactant-synthesized ormosils with application to stone restoration. Langmuir 26:6737–6745

    Article  CAS  PubMed  Google Scholar 

  79. Kapridaki C, Maravelaki-Kalaitzaki P (2013) TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat 76:400–410

    Article  CAS  Google Scholar 

  80. D’Arienzo L, Scarfato P, Incarnato L (2008) New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. J Cult Herit 9:253–260

    Article  Google Scholar 

  81. Luo Y, Xiao L, Zhang X (2015) Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. J Cult Herit 16:470–478

    Article  Google Scholar 

  82. Hansen E, Doehne E, Fidler J, Larson J, Martin B, Matteini M, Rodriguez-Navarro C, Pardo ES, Price C, Tagle AD, Teutonico JM, Weiss N (2003) A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Stud Conserv 48:13–25

    Article  Google Scholar 

  83. Rodriguez-Navarro C, Suzuki A, Ruiz-Agudo E (2013) Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir 29:11457–11470

    Article  CAS  PubMed  Google Scholar 

  84. Borsoi G, Lubelli B, Hees RV, Veiga R, Santos A (2016) Understanding the transport of nanolime consolidants within Maastricht limestone. J Cult Herit 18:242–249

    Article  Google Scholar 

  85. Dei L, Salvadori B (2006) Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit 7:110–115

    Article  Google Scholar 

  86. Allali F, Joussein E, Kandri NI, Rossignol S (2016) The influence of calcium content on the performance of metakaolin-based geomaterials applied in mortars restoration. Mater Des 103:1–9

    Article  CAS  Google Scholar 

  87. Nayak B, Mishra BK, Behera S, Kumar V (2012) Composition for building material and a process for the preparation thereof. US Patent 8:257,486

    Google Scholar 

  88. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci 392:42–49

    Article  CAS  PubMed  Google Scholar 

  89. Borsoi G, Lubelli B, Van Hees R, Veiga R, Silva AS, Colla L, Fedele L, Tomasin P (2016) Effect of solvent on nanolime transport within limestone: how to improve in-depth deposition. Colloids Surf A Physicochem Eng Asp 497:171–181

    Article  CAS  Google Scholar 

  90. Benedetti E, D’Alessio A, Zini MF, Bramanti E, Tirelli N, Vergamini P, Moggi G (2000) Characterization of acrylic resins and fluoroelastomer blends as potential materials in stone protection. Polym Int 49:888–892

    Article  CAS  Google Scholar 

  91. Mazzola M, Frediani P, Bracci S, Salvini A (2003) New strategies for the synthesis of partially fluorinated acrylic polymers as possible materials for the protection of stone monuments. Eur Polym J 39:1995–2003

    Article  CAS  Google Scholar 

  92. Zhang XY, Wen WY, Yu HQ, Chen Q, Xu JC, Yang DY, Qiu FX (2016) Preparation and artificial ageing tests in stone conservation of fluorosilicone vinyl acetate/acrylic/epoxy polymers. Chem Pap 70:1621–1631

    CAS  Google Scholar 

  93. Franzoni E, Graziani G, Sassoni E, Bacilieri G, Griffa M, Lura P (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Mater Struct 48:3503–3515

    Article  CAS  Google Scholar 

  94. Lettieri M, Masieri M (2016) Performances and coating morphology of a siloxane-based hydrophobic product applied in different concentrations on a highly porous stone. Coatings 6–60

  95. Corcione CE, Manno R, Frigione M (2016) Sunlight-curable boehmite/siloxane-modified methacrylic based nanocomposites as insulating coatings for stone substrates. Prog Org Coat 95:107–119

    Article  CAS  Google Scholar 

  96. Xu J, Qiu F, Rong X, Dai Y, Yang D (2014) Preparation and surface pigment protection application of stone substrate on UV-curable waterborne polyurethane-acrylate coating. J Polym Mater 31:287–303

    CAS  Google Scholar 

  97. Choi YS, Lee JH, Jeong YS, Kang YS, Won J, Kim JJ, Kim SD (2012) Performance improvement of hydrogenated bisphenol-A epoxy resin/inorganic additives composites for stone conservation by controlling their composition. J Conserv Sci 28:265–276

    Article  Google Scholar 

  98. Sablier M, Chapoulie R (2017) Art and cultural heritage—where analytical sciences contribute to preserve our heritage. Environ Sci Pollut Res 24:2135–2137

    Article  Google Scholar 

  99. Baglioni M, Montis C, Brandi F, Guaragnone T, Meazzini I, Baglioni P, Berti D (2017) Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures—implications for cultural heritage conservation. Phys Chem Chem Phys 19:23723–23732

    Article  CAS  PubMed  Google Scholar 

  100. Calvo AMDC, Docters A, Miranda MV, Saparrat MCN (2017) The use of gamma radiation for the treatment of cultural heritage in the argentine national atomic energy commission: past, present, and future. Top Curr Chem (Z) 375:227–235

    Article  CAS  Google Scholar 

  101. D’Amato R, Spizzichino V, Caneve L, Bonfigli F, Giancristofaro C, Persia F (2017) Nanomaterials for conservation of artistic stones: performance and removal tests by laser cleaning. J Nano Res 46:225–233

    Article  Google Scholar 

  102. Al-Dosari MA, Darwish SS, Adam MA, Elmarzugi NA, Al-Mouallimi N, Ahmed SM (2017) Ca(OH)2 Nanoparticles based on acrylic copolymers for the consolidation and protection of ancient Egypt calcareous stone monuments. J Phys Conf Ser 829:012009

    Article  CAS  Google Scholar 

  103. Goins ES, Wheeler GS, Griffiths D, Price CA (1996) The effect of sandstone, limestone, marble and sodium chloride on the polymerisation of MTMOS solutions. In: Proceedings of 8th congress on deterioration and conservation of stone, Berlin, pp 1243–1254. http://iscs.icomos.org/pdf-files/Berlin1996/goinetal1.pdf

  104. Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7:49–55

    Article  Google Scholar 

  105. Danehey C, Wheeler GS, Su SCH (1992) The influence of quartz and calcite on the polymerization of methyltrimethoxysilane. In: Proceedings of the 7th international congress on deterioration and conservation of stone, 15–18 June, Lisbon, pp 1043–1052

  106. Hamdani-Devarennes S, Longuet C, Sonnier R, Ganachaud F, Lopez-Cuesta JM (2013) Calcium and aluminum-based fillers as flame-retardant additives in silicone matrices. III. investigations on fire reaction. Polym Degrad Stabil 98:2021–2032

    Article  CAS  Google Scholar 

  107. Weiss N, Slavid I, Wheeler G (2000) Development and assessment of a conversion treatment for calcareous stone. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone. Elsevier, Amsterdam, pp 533–540

    Google Scholar 

  108. de los Santos DM, Montes A, Sánchez-Coronilla A, Navas J (2014) Sol–gel application for consolidating stone: an example of project-based learning in a physical chemistry lab. J Chem Edu 91:1481–1485

    Article  CAS  Google Scholar 

  109. Verganelaki A, Maravelaki N, Kilikoglou V, Karatasios I, Arampatzis I, Siamos K (2015) Characterization of a newly synthesized calcium oxalate-silica nanocomposite and evaluation of its consolidation effect on limestones. In: Toniolo L, Boriani M, Guidi G (eds) Built heritage: monitoring conservation management. Springer International Publishing, Switzerland

    Google Scholar 

  110. Van Hees R, Veiga R, Slížková Z (2017) Consolidation of renders and plasters. Mater Struct 50:65

    Article  Google Scholar 

  111. Shakhmenko G, Juhnevica I, Korjakins A (2013) Influence of sol-gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Procedia Eng 57:1013–1021

    Article  CAS  Google Scholar 

  112. Remzova M, Sasek P, Frankeova D, Slizkova Z, Rathousky J (2016) Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr Build Mater 112:674–681

    Article  CAS  Google Scholar 

  113. Snethlage R (2011) Stone conservation. In: Siegesmund S, Snethlage R (eds) Stone in architecture: properties, durability. Springer-Verlag, Berlin

    Google Scholar 

  114. Fang XN, Chen WT, Feng GL, Liu LM, Yi XG (2015) Syntheses of series of organosilicon-acrylate composite emulsions for the consolidation and conservation of historical earthen sites. Asian J Chem 27:3523–3524

    Article  CAS  Google Scholar 

  115. Wan T, Lin JH (2014) A new inorganic-organic hybrid material as consolidation material for Jinsha archaeological site of Chengdu. J Central South Univ 21:487–492

    Article  CAS  Google Scholar 

  116. Carretti E, Chelazzi D, Rocchigiani G, Baglioni P, Poggi G, Dei L (2013) Interactions between nanostructured calcium hydroxide and acrylate copolymers: implications in cultural heritage conservation. Langmuir 29:9881–9890

    Article  CAS  PubMed  Google Scholar 

  117. Zhang W, Zhang Y, Fang S, Luo X, Jin H, Xu Z, Xia W (2016) Preparation of acrylate copolymer modified by TiO2 nanoparticles with excellent photo-oxidative stability for application in ancient ivory conservation. J Appl Polym Sci 133:43291

    Google Scholar 

  118. Mohammadi F, Ershad-Langroudi A (2014) Structural characterization and corrosion performance of acrylic/silica nanocomposite coatings. Adv Mater Nov Coat 9:643–652

    Google Scholar 

  119. Corcione CE, Manno R, Frigione M (2016) Sunlight curable boehmite/siloxane-modified methacrylic nano-composites: an innovative solution for the protection of carbonate stones. Prog Org Coat 97:222–232

    Article  CAS  Google Scholar 

  120. Tanaka T (2002) Aging of polymeric and composite insulating materials: aspects of interfacial performance in aging. IEEE Trans Dielectr Electr Insul 9:704–716

    Article  CAS  Google Scholar 

  121. Xu F, Li D (2017) Modification of HBA/D230 polymer for stone protection. J Polym Environ 25:1304–1312

    Article  CAS  Google Scholar 

  122. Amiri S, Rahimi A (2016) Hybrid nanocomposite coating by sol–gel method: a review. Iran Polym J 25:559–577

    Article  CAS  Google Scholar 

  123. Gharazi S, Ershad-Langroudi A, Rahimi A (2011) The influence of silica synthesis on the morphology of hydrophilic nanocomposite coating. Sci Iran 18:785–789

    CAS  Google Scholar 

  124. Ershad-Langroudi A, Abdollahi H, Rahimi A (2017) Mechanical properties of sol–gel prepared nanocomposite coatings in the presence of titania and alumina-derived nanoparticles. Plas Rubb Comp 46:25–34

    Article  CAS  Google Scholar 

  125. Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A (2014) Anticorrosive coatings prepared using epoxy–silica hybrid nanocomposite materials. Ind Eng Chem Res 53:10858–10869

    Article  CAS  Google Scholar 

  126. Jafari M, Rahimi A, Shokrolahi P, Ershad-Langroudi A (2014) Synthesis of antistatic hybrid nanocomposite coatings using surface modified indium tin oxide (ITO) nanoparticles. J Coat Technol Res 11:587–593

    Article  CAS  Google Scholar 

  127. Palma-Ramírez D, Domínguez-Crespo MA, Torres-Huerta AM, Escobar-Barrios VA, Dorantes-Rosales H, Willcock H (2018) Dispersion of upconverting nanostructures of CePO4 using rod and semi-spherical morphologies into transparent PMMA/PU IPNs by the sequential route. Polymer 1425:356–374

    Article  CAS  Google Scholar 

  128. Ershad-Langroudi A, Zare D, Rahimi A (2017) Effect of ceria and zirconia nanoparticles on mechanical behavior of nanocomposite hybrid coatings. Polym Sci Ser A 59:425–436

    Article  CAS  Google Scholar 

  129. de Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12:356–363

    Article  Google Scholar 

  130. Son S, Won J, Kim JJ, Jang YD, Kang YS, Kim SD (2009) Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS Appl Mater Interfaces 1:393–401

    Article  CAS  PubMed  Google Scholar 

  131. Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100:31–50

    Article  CAS  Google Scholar 

  132. Ershad-Langroudi A, Akkaf MH (2017) Improvement in the mechanical properties of polyester nanocomposite with nano-silica prepared by sol-gel method. J Sci Technol Compos 4:419–428

    Google Scholar 

  133. Chruściel JJ, Leśniak E (2015) Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 41:67–121

    Article  CAS  Google Scholar 

  134. Muromachi T, Tsujino T, Kamitani K, Maeda K (2006) Application of functional coatings by sol-gel method. J Sol–Gel Sci Techn 40:267–272

    Article  CAS  Google Scholar 

  135. Vitale A, Bongiovanni R, Ameduri B (2015) Fluorinated oligomers and polymers in photopolymerization. Chem Rev 115:8835–8866

    Article  CAS  PubMed  Google Scholar 

  136. Alessandrini G, Toniolo L, Colombo C (2000) Partially fluorinated acrylic copolymers as coating for calcareous stone materials. Stud Conserv 45:1–6

    Article  Google Scholar 

  137. Toniolo L, Della Volpe C, Brugnara M, Poli T (2002) Partially fluorinated acrylic copolymers as coatings for stone protection: characterization and surface properties. MRS Online Proc Library Arch. https://doi.org/10.1557/PROC-712-II3.3

    Article  Google Scholar 

  138. Zhang X, Wen W, Yu H, Qiu F, Chen Q, Yang D (2016) Preparation, characterization of nano-silica/fluoroacrylate material and the application in stone surface conservation. J Polym Res 23:75

    Article  CAS  Google Scholar 

  139. Ugur I (2014) Surface characterization of some porous natural stones modified with a waterborne fluorinated polysiloxane agent under physical weathering conditions. J Coat Technol Res 11:639–649

    Article  CAS  Google Scholar 

  140. Walker RA, Wilson K, Lee AF, Woodford J, Grassian VH, Baltrusaitis J, Rubasinghege G, Cibin G, Dent A (2012) Preservation of York Minster historic limestone by hydrophobic surface coatings. Sci Rep. https://doi.org/10.1038/srep00880

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ingrosso C, Corcione CE, Striani R, Comparelli R, Striccoli M, Agostiano A, Curri ML, Frigione M (2015) UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals. ACS Appl Mater Interfaces 7:15494–15505

    Article  CAS  PubMed  Google Scholar 

  142. Corcione CE, Striani R, Frigione M (2015) Sunlight curable hybrid organic–inorganic methacrylic-based coatings: analysis of the cure mechanism and functional properties. Polym Adv Technol 26:167–175

    Article  CAS  Google Scholar 

  143. Alves C, Sanjurjo-Sánchez J (2018) Nanotechnology for the treatment of stony materials’ surface against biocoatings. In: Hosseini M, Karapanagiotis I (eds) Advanced materials for the conservation of stone. Springer, Switzerland

    Google Scholar 

  144. Azadi N, Ershad-Langroudi A (2017) Synthesis and characterization of a hydrophobic coating on the inorganic material surfaces and compared with commercial products. MSc Thesis, Islamic Azad University

  145. Xu F, Xiang N, Li D, Yu J, Wu D, Zhang Q (2014) Use of coupling agents for increasing passivants and cohesion ability of consolidant on limestone. Prog Org Coat 77:1613–1618

    Article  CAS  Google Scholar 

  146. Ershad-Langroudi A (2017) The use of nanoparticles for consolidation and strengthening the stone artworks materials along with the evaluation of three types of commercial polymer resins. Final report. Iran Polymer and Petrochemical Institute, Tehran

    Google Scholar 

  147. Ershad-Langroudi A, Fadaii H, Ahmadi K (2017) Silane/siloxane surface treatment for cohesion ability and strengthening agent of historical stone. Cons Sci J 1:23–31

    Article  Google Scholar 

  148. Column of Persepolis falls? The beginning of the cold season for the historical area of Pasargad gamers has always been tense. http://www.bartarinha.ir/fa/news/37798/. Accessed 1 Aug 2017

  149. Cappelletti G, Fermo P, Camiloni M (2015) Smart hybrid coatings for natural stones conservation. Prog Org Coat 78:511–516

    Article  CAS  Google Scholar 

  150. Zare-Hossein-abadi D, Ershad-Langroudi A, Rahimi A, Afsar S (2010) Photo-generated activities of nanocrystalline TiO2 thin films. J Inorg Organomet Polym Mater 20:250–257

    Article  CAS  Google Scholar 

  151. Zare-Hossein-abadi D, Ershad-Langroudi A, Rahimi A (2009) Preparation of anatase nanoparticles thin film coatings by sol-gel method at low temperature and investigation of their photocatalytic activities. J Color Sci Technol 3:121–129

    Google Scholar 

  152. Allen NS, Edge M, Verran J, Stratton J, Maltby J, Bygott C (2008) Photocatalytic titania based surfaces: environmental benefits. Polym Degrad Stabil 93:1632–1646

    Article  CAS  Google Scholar 

  153. Bergamonti L, Bondioli F, Alfieri I, Lorenzi A, Mattarozzi M, Predieri G, Lottici PP (2016) Photocatalytic self-cleaning TiO2 coatings on carbonatic stones. Appl Phys A 122:124

    Article  CAS  Google Scholar 

  154. Garlisi C, Scandura G, Alabi A, Aderemi O, Palmisano G (2015) Self-cleaning coatings activated by solar and visible radiation. J Adv Chem Eng 5:e103

    Article  CAS  Google Scholar 

  155. Hatami M, Djafarzadeh N, Hasanabadi H (2017) Application of poly(methyl methacrylate-co-γ-methacryloxypropyltrimethoxysilane)/silica modified TiO2 nanocomposites for anti-pollutant properties. Adv Polym Technol 37:1837–1849

    Article  CAS  Google Scholar 

  156. Haldorai Y, Shim JJ (2014) Novel chitosan-TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Polym Compos 35:327–333

    Article  CAS  Google Scholar 

  157. Thirupathi B, Smirniotis PG (2011) Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low temperatures. Appl Catal Part B Environ 110:195–206

    Article  CAS  Google Scholar 

  158. Veres Á, Ménesi J, Juhász Á, Berkesi O, Ábrahám N, Bohus G, Oszkó A, Pótári G, Buzás N, Janovák L, Dékány I (2014) Photocatalytic performance of silver-modified TiO2 embedded in poly(ethyl-acrylate-co-methyl metacrylate) matrix. Colloid Polym Sci 292:207–217

    Article  CAS  Google Scholar 

  159. Liu S, Yao K, Wang B, Ma MG (2017) Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites. Iran Polym J 26:681–691

    Article  CAS  Google Scholar 

  160. Chen X, Burda C (2008) The electronic origin of the visible light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  CAS  PubMed  Google Scholar 

  161. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  162. Mungondori HH, Tichagwa L, Katwire DM, Aoyi O (2016) Preparation of photo-catalytic copolymer grafted asymmetric membranes (N–TiO2–PMAA–g–PVDF/PAN) and their application on the degradation of bentazon in water. Iran Polym J 25:135–144

    Article  CAS  Google Scholar 

  163. Liu H, Chen Y, Tian G, Ren Z, Tian C, Fu H (2015) Visible-light-induced self-cleaning property of Bi2Ti2O7–TiO2 composite nanowire arrays. Langmuir 31:5962–5969

    Article  CAS  PubMed  Google Scholar 

  164. Bergamonti L, Predieri G, Paz Y, Fornasini L, Lottici PP, Bondioli F (2017) Enhanced self-cleaning properties of N-doped TiO2 coating for cultural heritage. Microchem J 133:1–12

    Article  CAS  Google Scholar 

  165. La Russa MF, Rovella N, de Buergo MA, Belfiore CM, Pezzino A, Crisci GM, Ruffolo SA (2016) Nano-TiO2 coatings for cultural heritage protection: the role of the binder on hydrophobic and self-cleaning efficacy. Prog Org Coat 91:1–8

    Article  CAS  Google Scholar 

  166. Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A, Pournamdari E (2013) Photocatalytic coating using Titania-Silica core/shell nanoparticles. Int J Bio-Inorg Hybd Nanomater 2:407–422

    Google Scholar 

  167. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  168. Chen ZM, Pan SJ, Yin HJ, Zhang LL, Ou EC, Xiong YQ, Xu WJ (2011) Facile synthesis of super hydrophobic TiO2/polystyrene core-shell microspheres. Express Polym Lett 5:38–46

    Article  CAS  Google Scholar 

  169. Troiano F, Vicini S, Gioventù E, Lorenzi PF, Improta CM, Cappitelli F (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Degrad Stabil 107:321–327

    Article  CAS  Google Scholar 

  170. Cocca M, D’arienzo L, D’orazio L, Gentile G, Martuscelli E (2004) Polyacrylates for conservation: chemico-physical properties and durability of different commercial products. Polym Test 23:333–342

    Article  CAS  Google Scholar 

  171. Akala EO (2010) Strategies for transmembrane passage of polymer-based nanostructures. In: Broz P (ed) Polymer-based nanostructures: medical applications. Royal Society of Chemistry, London

    Google Scholar 

  172. Pedna A, Rosi L, Frediani M, Frediani P (2015) High glass transition temperature polyester coatings for the protection of stones. J Appl Polym Sci 132:42323

    Article  CAS  Google Scholar 

  173. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments-an updated overview. Adv Appl Microbial 66:97–139

    Article  CAS  Google Scholar 

  174. Bhatnagar P, Khan AA, Jain SK, Rai MK (2016) Biodeterioration of archaeological monuments and approach for restoration. In: Khan A, Jain SK, Rai MK (eds) Geomicrobiology. CRC press, Boca Raton

    Google Scholar 

  175. Wilson P(2005) Building with Scotia’s stone. http://docshare01.docshare.tipsfiles/21023/210239038.pdf. Accessed 3 Aug 2018

  176. Misra V, Pandey SD (2005) Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environ Int 31:417–431

    Article  CAS  PubMed  Google Scholar 

  177. Staniszewska M, Boniecka H (2017) Managing dredged material in the coastal zone of the Baltic Sea. Environ Monit Assess 189:46

    Article  CAS  PubMed  Google Scholar 

  178. Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T, McCracken D, Moritz RF, Niemelä J, Rebane M, Wascher D (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agr Ecosyst Environ 124:60–71

    Article  Google Scholar 

  179. Urzí C, de Leo F (2007) Evaluation of the efficiency of water repellent and biocide compounds against microbial colonization of mortars. Int Biodeter Biodegr 60:25–34

    Article  CAS  Google Scholar 

  180. Colonna M, Gentilini C, Praticò F, Ubertini F (2015) Surface treatments for historical constructions using nanotechnology. Key Eng Mater 624:313–321

    Article  CAS  Google Scholar 

  181. Zhang Z, MacMullen J, Dhakal HN, Radulovic J, Herodotou C, Totomis M, Bennett N (2013) Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facade treatments. Build Environ 59:47–55

    Article  Google Scholar 

  182. Moreau C, Vergès-Belmin V, Leroux L, Orial G, Fronteau G, Barbin V (2008) Water-repellent and biocide treatments: assessment of the potential combinations. J Cult Herit 9:394–400

    Article  Google Scholar 

  183. Favaro M, Chiurato M, Tomasin P, Ossola F, El Habra N, Brianese N, Svensson I, Beckers E, Pérez V, Sánchez MR, Bernardi A (2015) Calcium and magnesium alkoxides for conservation treatment of stone and wood in built heritage. In: Toniolo L, Boriani M, Guidi G (eds) Built heritage: monitoring conservation management. Springer International Publishing, Switzerland

    Google Scholar 

  184. Natali I, Tomasin P, Becherini F, Bernardi A, Ciantelli C, Favaro M, Favoni O, Pérez VJF, Olteanu ID, Sanchez MDR, Vivarelli A (2015) Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Herit Sci 3:6

    Article  CAS  Google Scholar 

  185. Wang J, Ersan YC, Boon N, De Belie N (2016) Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100:2993–3007

    Article  CAS  PubMed  Google Scholar 

  186. Micallef R, Vella D, Sinagra E, Zammit G (2016) Biocalcifying bacillus subtilis cells effectively consolidate deteriorated globigerina limestone. J Ind Microbiol Biotechnol 43:941–952

    Article  CAS  PubMed  Google Scholar 

  187. Richardson A, Coventry KA, Forster AM, Jamison C (2014) Surface consolidation of natural stone materials using microbial induced calcite precipitation. Struct Surv 32:265–278

    Article  Google Scholar 

  188. Corcione CE, Frigione M (2012) UV-cured polymer-boehmite nanocomposite as protective coating for wood elements. Prog Org Coat 74:781–787

    Article  CAS  Google Scholar 

  189. Corcione CE, Frigione M (2013) Surface characterization of novel hydrophobic UV-vurable siloxane-modified methacrylate/boehmite nanocomposites. Polym Compos 34:1546–1552

    Article  CAS  Google Scholar 

  190. Alfieri I, Lorenzi A, Ranzenigo L, Lazzarini L, Predieri G, Lottici PP (2017) Synthesis and characterization of photocatalytic hydrophobic hybrid TiO2-SiO2 coatings for building applications. Build Environ 111:72–79

    Article  Google Scholar 

  191. Corcione CE, Striani R, Frigione M (2013) UV-cured siloxane-modified methacrylic system containing hydroxyapatite as potential protective coating for carbonate stones. Prog Org Coat 76:1236–1242

    Article  CAS  Google Scholar 

  192. Chatzigrigoriou A, Manoudis PN, Karapanagiotis I (2013) Fabrication of water repellent coatings using waterborne resins for the protection of the cultural heritage. Macromol Symp 331:158–165

    Article  CAS  Google Scholar 

  193. Guo X, Ge S, Wang J, Zhang X, Zhang T, Lin J, Zhao CX, Wang B, Zhu G, Guo Z (2018) Waterborne acrylic resin modified with glycidyl methacrylate (GMA): formula optimization and property analysis. Polymer 143:155–163

    Article  CAS  Google Scholar 

  194. Panda SS, Panda BP, Nayak SK, Mohanty S (2018) A review on waterborne thermosetting polyurethane coatings based on castor oil: synthesis, characterization, and application. Polym Plast Technol Eng 57:500–522

    Article  CAS  Google Scholar 

  195. Liu Z, Wu B, Jiang Y, Lei J, Zhou C, Zhang J, Wang J (2018) Solvent-free and self-catalysis synthesis and properties of waterborne polyurethane. Polymer 143:129–136

    Article  CAS  Google Scholar 

  196. Nosrati R, Olad A, Maryami F (2018) Visible-light induced anti-bacterial and self-cleaning waterborne polyacrylic coating modified with TiO2/polypyrrole nanocomposite; preparation and characterization. J Mol Struct 1163:174–184

    Article  CAS  Google Scholar 

  197. Yesudass SA, Mohanty S, Nayak SK (2018) Facile synthesis of bio-sourced polyurethane-fluorosilane modified TiO2 hybrid coatings for high-performance self cleaning application. J Polym Res 25:1–10

    Article  CAS  Google Scholar 

  198. Karapanagiotis I, Hosseini M (2018) Superhydrophobic coatings for the protection of natural stone. In: Advanced materials for the conservation of stone. Springer, Basel

    Google Scholar 

  199. Aslanidou D, Karapanagiotis I, Lampakis D (2018) Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone. Materials 11:585

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge, with gratitude, Iran National Science Foundation (INSF) which kindly supported this work financially (Grant no. 93043402) and Institute for Conservation and Restoration of Cultural and Historical Monuments, Iranian Research Institute for Cultural Heritage which kindly provided the historical samples, and cooperated with Iran Polymer and Petrochemical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ershad-Langroudi.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershad-Langroudi, A., Fadaei, H. & Ahmadi, K. Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments. Iran Polym J 28, 1–19 (2019). https://doi.org/10.1007/s13726-018-0673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0673-y

Keywords

Navigation