Skip to main content
Log in

Numerical Solutions for a Two-dimensional Quantum Dot Model

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a quantum dot mathematical model based on a two-dimensional Schrödinger equation assuming the 1/r inter-electronic potential is revisited. Generally, it is argued that the solutions of this model obtained by solving a biconfluent Heun equation have some limitations. The known polynomial solutions are confronted with new numerical calculations based on the Numerov method. A good qualitative agreement between them emerges. The numerical method being more general gives rise to new solutions. In particular, we are now able to calculate the quantum dot eigenfunctions for a much larger spectrum of external harmonic frequencies as compared to previous results. Also, the existence of bound state for such planar system, in the case = 0, is predicted and its respective eigenvalue is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Reimann, M. Manninen, Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  2. Ch. Sikorski, U. Merkt, Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164 (1989)

    Article  ADS  Google Scholar 

  3. U. Merkt, J. Huser, M. Wagner, Energy spectra of two electrons in a harmonic quantum dot. Phys. Rev. B. 43, 7320 (1991)

    Article  ADS  Google Scholar 

  4. M. Taut, Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem. Phys. Rev. A. 48, 3561 (1993)

    Article  ADS  Google Scholar 

  5. A. Turbiner, Quantum mechanics: problems intermediate between exactly solvable and completely unsolvable. Sov. Phys. JETP. 67, 230 (1988)

    MathSciNet  Google Scholar 

  6. A. Turbiner, Quasi-exactly-solvable problems and sl(2) algebra. Commun. Math. Phys. 118, 467 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A.G. Usheridze. Quasi-Exactly Solvable Models in Quantum Mechanics (Institute of Physics, Bristol, 1993)

    Google Scholar 

  8. F. Caruso, J. Martins, V. Oguri, Solving a two-electron quantum dot model in terms of polynomial solutions of a Biconfluent Heun equation. Ann. Phys. 347, 130 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. F. Caruso, J. Martins, V. Oguri, F. Silveira, Corrigendum to ‘Solving a two-electron quantum dot model in terms of polynomial solutions of a Biconfluent Heun Equation’. Ann. Phys. 377, 518 (2017). [Ann. Phys. 347 (2014) 130–140]

    Article  ADS  MATH  Google Scholar 

  10. M. Taut, Two electrons in a homogeneous magnetic field: particular analytical solutions. J. Phys. A. 27, 1045 (1994). and corrigendum J. Phys. A 27 4723 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Taut, Special analytical solutions of the Schrödinger equation for two and three electrons in a magnetic field and ad hoc generalizations to N particles. J. Phys.: Condens. Matter. 12, 3689 (2000)

    ADS  Google Scholar 

  12. M. Taut, H. Eschrig, Exact solutions for a two-electron quantum dot model in a magnetic field and application to more complex sytems. Z. Phys. Chem. 224, 631 (2010)

    Article  Google Scholar 

  13. B.V. Numerov, A method of extrapolation of perturbations. Mon. Not. R. Astron. Soc. 84, 592 (1924)

    Article  ADS  Google Scholar 

  14. B.V. Numerov, Note on the numerical integration of d 2 x/d t 2 = f(x,t). Astron. Nachr. 230, 359 (1927)

    Article  ADS  MATH  Google Scholar 

  15. J.M. Blatt, Practical points concerning the solution of the Schrödinger equation. J. Comput. Phys. 1, 382 (1967)

    Article  ADS  MATH  Google Scholar 

  16. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378 (1970)

    Article  ADS  MATH  Google Scholar 

  17. J.P. Leroy, R. Wallace, Renormalized Numerov method applied to eigenvalue equations: extension to include single derivative terms and a variety of boundary conditions. J. Phys. Chem. 89, 1928 (1985)

    Article  Google Scholar 

  18. F. Caruso, V. Oguri, Numerov numerical method applied to the Schrödinger equation. Rev. Bras. Ens. Fis. 36, 2310 (2014)

    Article  Google Scholar 

  19. F. Caruso, J.A. Helayël-Neto, J. Martins, V. Oguri, Effects on the non-relativistic dynamics of a charged particle interacting with a Chern-Simons potential. Eur. Phys. J. B. 86, 324 (2013)

    Article  ADS  Google Scholar 

  20. F. Caruso, V. Oguri, F. Silveira, How the inter-electronic potential Ansätze affect the bound state solutions of a planar two-electron quantum dot model. Phys. E 105, 182 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Caruso.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, F., Oguri, V. & Silveira, F. Numerical Solutions for a Two-dimensional Quantum Dot Model. Braz J Phys 49, 432–437 (2019). https://doi.org/10.1007/s13538-019-00656-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00656-7

Keywords

Navigation