Skip to main content
Log in

A computational model of ureteral peristalsis and an investigation into ureteral reflux

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The aim of this study is to create a computational model of the human ureteral system that accurately replicates the peristaltic movement of the ureter for a variety of physiological and pathological functions. The objectives of this research are met using our in-house fluid-structural dynamics code (CgLes–Y code). A realistic peristaltic motion of the ureter is modelled using a novel piecewise linear force model. The urodynamic responses are investigated under two conditions of a healthy and a depressed contraction force. A ureteral pressure during the contraction shows a very good agreement with corresponding clinical data. The results also show a dependency of the wall shear stresses on the contraction velocity and it confirms the presence of a high shear stress at the proximal part of the ureter. Additionally, it is shown that an inefficient lumen contraction can increase the possibility of a continuous reflux during the propagation of peristalsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wein AJ, Kavoussi L, Partin W, Peters CA. Urology, Campbell-Walsh. Vol. 2 of section XIV. 2012.

  2. Weiss RM, Wagner ML, Hoffman BF. Localization of the pacemaker for peristalsis in the intact canine ureter. Invest Urol. 1967;5(42):1.

    Google Scholar 

  3. Osman F, et al. A novel videomicroscopic technique for studying rat ureteral peristalsis in vivo. World J Urol. 2009;27(2):265–70.

    Article  Google Scholar 

  4. Yin FC, Fung YC. Mechanical properties of isolated mammalian ureteral segments. Am J Physiol Leg Content. 1971;221(5):1484–93.

    Article  Google Scholar 

  5. Watanabe H, Nakagawa Y, Uchida M. Tests to evaluate the mechanical properties of the ureter. In: Kambic HE, Yokobori AT, editors. Biomaterials’ mechanical properties. ASTM International; 1994.

  6. Sokolis DP, et al. Age- and region-related changes in the biomechanical properties and composition of the human ureter. J Biomech. 2017;51:57–64.

    Article  Google Scholar 

  7. Eken Alper, Akbas Tugana, Arpaci Taner. Spontaneous rupture of the ureter. Singap Med J. 2015;56(2):e29.

    Article  Google Scholar 

  8. Choi S-K, et al. A rare case of upper ureter rupture: ureteral perforation caused by urinary retention. Korean J Urol. 2012;53(2):131–3.

    Article  MathSciNet  Google Scholar 

  9. Woodside JR, Borden TA. The pressure-flow relationship of the normal ureter. Invest Urol. 1980;18(1):82–3.

    Google Scholar 

  10. Shafik Ahmed. Ureteric profilometry: a study of the ureteric pressure profile in the normal and pathologic ureter. Scand J Urol Nephrol. 1998;32(1):14–9.

    Article  Google Scholar 

  11. Irina M, Lubov K. Ureteric function and upper urinary tract urodynamics in patients with stones in kidney and ureter. In: Kommu SS, editor. Evolving trends in urology. InTech; 2012.

  12. Tillig Bernd, Constantinou Christos E. Videomicroscopic imaging of ureteral peristaltic function in rats during cystometry. J Pharmacol Toxicol Methods. 1996;35(4):191–202.

    Article  Google Scholar 

  13. Lewis CA, et al. Radionuclide imaging of ureteric peristalsis. BJU Int. 1989;63(2):144–8.

    Article  Google Scholar 

  14. Patel U, Kellett MJ. Ureteric drainage and peristalsis after stenting studied using colour Doppler ultrasound. BJU Int. 1996;77(4):530–5.

    Article  Google Scholar 

  15. Roshani H, et al. An in vivo endoluminal ultrasonographic study of peristaltic activity in the distal porcine ureter. J Urol. 2000;163(2):602–6.

    Article  Google Scholar 

  16. Venkatesh R, et al. Impact of a double-pigtail stent on ureteral peristalsis in the porcine model: initial studies using a novel implantable magnetic sensor. J Endourol. 2005;19(2):170–6.

    Article  Google Scholar 

  17. Roshani H, et al. A study of ureteric peristalsis using a single catheter to record EMG, impedance, and pressure changes. Tech Urol. 1999;5(1):61–6.

    Google Scholar 

  18. Ulmsten Ulf, Diehl Jan. Investigation of ureteric function with simultaneous intraureteric pressure recordings and ureteropyelography. Radiology. 1975;117(2):283–9.

    Article  Google Scholar 

  19. Young AJ, et al. Evaluation of novel technique for studying ureteral function in vivo. J Endourol. 2007;21(1):94–9.

    Article  Google Scholar 

  20. Kiil Fredrik. Function of the ureter and renal pelvis. Ann Surg. 1958;148(2):280–91.

    Article  Google Scholar 

  21. Manton MJ. Long-wavelength peristaltic pumping at low Reynolds number. J Fluid Mech. 1975;68(3):467–76.

    Article  MATH  Google Scholar 

  22. Zien T-F, Ostrach S. A long wave approximation to peristaltic motion. J Biomech. 1970;3(1):63–75.

    Article  Google Scholar 

  23. Vahidi B, Fatouraee N. A numerical simulation of peristaltic motion in the ureter using fluid structure interactions. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE. IEEE; 2007.

  24. Xiao Q, Damodaran M. A numerical investigation of peristaltic waves in circular tubes. Int J Comput Fluid Dyn. 2002;16(3):201–16.

    Article  MATH  Google Scholar 

  25. Kumar BVR, Naidu KB. A numerical study of peristaltic flows. Comput Fluids. 1995;24(2):161–76.

    Article  MATH  Google Scholar 

  26. Vahidi B, et al. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng. 2011;133(3):031004.

    Article  Google Scholar 

  27. Vahidi B, et al. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng. 2011;133(3):031004.

    Article  Google Scholar 

  28. Woodburne Russell T, Lapides Jack. The ureteral lumen during peristalsis. Dev Dyn. 1972;133(3):255–8.

    Google Scholar 

  29. Hosseini G, et al. Computational simulation of the urinary system. In: Proceedings of the world congress on engineering and computer science, Vol II; 2012. ISBN: 978-988-19252-4-4.

  30. Hosseini G, et al. Simulation of the upper urinary system. Crit Rev™ Biomed Eng. 2013;41(3):259–68.

    Article  Google Scholar 

  31. Thomas TG, Williams JJR. Development of a parallel code to simulate skewed flow over a bluff body. J Wind Eng Ind Aerodyn. 1997;67:155–67.

    Article  Google Scholar 

  32. Ji C, Munjiza A, Williams JJR. A novel iterative direct-forcing immersed boundary method and its finite volume applications. J Comput Phys. 2012;231(4):1797–821.

    Article  MathSciNet  MATH  Google Scholar 

  33. Munjiza AA. The combined finite-discrete element method. New York: Wiley; 2004.

    Book  MATH  Google Scholar 

  34. Singh KM, et al. On parallel pre-conditioners for pressure Poisson equation in LES of complex geometry flows. Int J Numer Meth Fluids. 2017;83(5):446–64.

    Article  MathSciNet  Google Scholar 

  35. Boyarsky S, Gottschalk CW, Tanagho EA. Urodynamics: hydrodynamics of the ureter and renal pelvis. London: Academic Press; 2014.

    Google Scholar 

  36. Davenport K, Timoney AG, Keeley Jr. FX. The role of ureteral relaxation in the promotion of stone passage. In: AIP conference proceedings, Vol. 900. No. 1. AIP; 2007.

  37. Arlen AM, Kirsch AJ, Leong T, Cooper CS. Validation of the ureteral diameter ratio for predicting early spontaneous resolution of primary vesicoureteral reflux. J Pediatr Urol. 2017. https://doi.org/10.1016/j.jpurol.2017.01.012.

Download references

Acknowledgements

National computing time was provided by UK Turbulence Consortium under EPSRC Grant EP/L000261, Clinical data was provided by Urology Research Innovation at Whipps Cross Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. R. Williams.

Ethics declarations

Conflict of interest

None.

Ethical approval

All scans showing the whole ureter with normal anatomy were anonymised and chosen at random from a larger educational set.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, G., Ji, C., Xu, D. et al. A computational model of ureteral peristalsis and an investigation into ureteral reflux. Biomed. Eng. Lett. 8, 117–125 (2018). https://doi.org/10.1007/s13534-017-0053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-017-0053-0

Keywords

Navigation