Skip to main content
Log in

Ubiquitination: a tool for plant adaptation to changing environments

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Post-translational modifications namely ubiquitination, phosphorylation, methylation and acetylation play distinct roles in regulating the growth and development of plants. Among these, the ubiquitination regulates the abundance, activities, subcellular compartmentalization and trafficking of regulatory proteins involved in diverse developmental as well as stress-responsive processes. The ubiquitin–proteasome system (UPS) involves five essential components namely ubiquitin, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3) and the intact 26S proteasome. The E3 ubiquitin ligase is the major component of UPS that recognizes and tethers poly-ubiquitins on the target proteins. Owing to its specificity of substrate recognition, the E3 ubiquitin ligase contributes not only to the proteome plasticity of the cell but also regulates the plant’s response to environmental cues. In this context, the review summarizes the components involved in UPS and elaborates the role of E3 ubiquitin ligase in biotic and abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams EHS, Spoel SH. The ubiquitin–proteasome system as a transcriptional regulator of plant immunity. J Exp Bot. 2018;69:4529–37.

    CAS  PubMed  Google Scholar 

  2. Adler G, Konrad Z, Zamir L, Mishra AK, Raveh D, Bar-Zvi D. The Arabidopsis paralogs, PUB46 and PUB48, encoding U-box E3 ubiquitin ligases, are essential for plant response to drought stress. BMC Plant Biol. 2017;17:8.

    PubMed Central  PubMed  Google Scholar 

  3. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, et al. Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol. 2005;59:469–84.

    CAS  PubMed  Google Scholar 

  4. Aragon W, Reina-Pinto JJ, Serrano M. The intimate talk between plants and microorganisms at the leaf surface. J Exp Bot. 2017;68:5339–50.

    CAS  PubMed  Google Scholar 

  5. Aravind L, Koonin EV. The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol. 2000;10:R132–4.

    CAS  PubMed  Google Scholar 

  6. Azevedo C, Santos-Rosa MJ, Shirasu K. The U-box protein family in plants. Trends Plant Sci. 2001;6:354–8.

    CAS  PubMed  Google Scholar 

  7. Blanc C, Coluccia F, L’Haridon F, Torres M, Ortiz-Berrocal M, Stahl E, et al. The cuticle mutant eca2 modifies plant defense responses to biotrophic and necrotrophic pathogens and herbivory insects. Mol Plant Microbe Interact. 2018;31:344–55.

    CAS  PubMed  Google Scholar 

  8. Bonas U, Lahaye T. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol. 2002;5:44–50.

    CAS  PubMed  Google Scholar 

  9. Boyes DC, Nam J, Dangl JL. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA. 1998;95:15849–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Callis J, Carpenter T, Sun CW, Vierstra RD. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics. 1995;139:921–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chinnusamy V. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003;17:1043–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Cho SK, Ryu MY, Song C, Kwak JM, Kim WT. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell. 2008;20:1899–914.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Christensen AH, Sharrock RA, Quail PH. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992;18:675–89.

    CAS  PubMed  Google Scholar 

  14. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA. 2006;103:8281–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Downes B, Vierstra RD. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans. 2005;33:393–9.

    CAS  PubMed  Google Scholar 

  16. Downes BP, Stupar RM, Gingerich DJ, Vierstra RD. The HECT ubiquitin–protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J. 2003;35:729–42.

    CAS  PubMed  Google Scholar 

  17. Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot. 2007;99:787–822.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Freemont PS. The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci. 1993;684:174–92.

    CAS  PubMed  Google Scholar 

  19. Genschik P, Parmentier Y, Durr A, Marbach J, Criqui MC, Jamet E, et al. Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol. 1992;20:897–910.

    CAS  PubMed  Google Scholar 

  20. Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. Plant Cell Rep. 2016;35:415–28.

    CAS  PubMed  Google Scholar 

  21. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895–9.

    CAS  PubMed  Google Scholar 

  22. Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J. 1997;11:213–26.

    CAS  PubMed  Google Scholar 

  23. He F, Wang HL, Li HG, Su Y, Li S, Yang Y, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J. 2018;16:1514–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Heath MC. Hypersensitive response-related death. Plant Mol Biol. 2000;44:321–34.

    CAS  PubMed  Google Scholar 

  25. Heise A, Lippok B, Kirsch C, Hahlbrock K. Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci USA. 2002;99:9049–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, Skowyra D, et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin–protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem. 2007;282:17375–86.

    CAS  PubMed  Google Scholar 

  27. Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol. 2006;8:700–10.

    CAS  PubMed  Google Scholar 

  28. Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J. 2001;26:217–27.

    CAS  PubMed  Google Scholar 

  29. Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol. 2005;139(4):1597–611.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kurepa J, Smalle JA. Structure, function and regulation of plant proteasomes. Biochimie. 2008;90:324–35.

    CAS  PubMed  Google Scholar 

  31. Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell. 2009;21:622–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Lee JC, Peter ME. Regulation of apoptosis by ubiquitination. Immunol Rev. 2003;193:39–47.

    CAS  PubMed  Google Scholar 

  33. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE. 2008;3:e1487.

    PubMed Central  PubMed  Google Scholar 

  34. Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot. 2013;64:2899–914.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS. Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res. 2013;20:299–314.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA. 2001;98:4782–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Luo H, Laluk K, Lai Z, Veronese P, Song F, Mengiste T. The Arabidopsis Botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol. 2010;154:1766–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Mandal A, Mishra AK, Dulani P, Muthamilarasan M, Shweta S, Prasad M. Identification, characterization, expression profiling, and virus-induced gene silencing of armadillo repeat-containing proteins in tomato suggest their involvement in tomato leaf curl New Delhi virus resistance. Funct Integr Genomics. 2018;18:101–11.

    CAS  PubMed  Google Scholar 

  39. Marino D, Froidure S, Canonne J, Ben Khaled S, Khafif M, Pouzet C, et al. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nature Commun. 2013;4:1476.

    Google Scholar 

  40. Marino D, Peeters N, Rivas S. Ubiquitination during plant immune signaling. Plant Physiol. 2012;160:15–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Martin T. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 2002;128:472–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, et al. The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics. 2006;7:509–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell. 2003;15:2551–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM. Nitrate transport and signalling. J Exp Bot. 2007;58:2297–306.

    CAS  PubMed  Google Scholar 

  45. Molnar G, Bancos S, Nagy F, Szekeres M. Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta. 2002;215:127–33.

    CAS  PubMed  Google Scholar 

  46. Mudgil Y, Shiu SH, Stone SL, Salt JN, Goring DR. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family. Plant Physiol. 2004;134:59–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.

    CAS  PubMed  Google Scholar 

  48. Muthamilarasan M, Prasad M. Plant innate immunity: an updated insight into defense mechanism. J Biosci. 2013;38:433–49.

    CAS  PubMed  Google Scholar 

  49. Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, et al. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol. 2011;157:242–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249–66.

    PubMed  Google Scholar 

  51. Park J-A, Cho SK, Kim JE, Chung HS, Hong J-P, Hwang B, et al. Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang). Plant Sci. 2003;165:471–81.

    CAS  Google Scholar 

  52. Peng M, Hannam C, Gu H, Bi Y-M, Rothstein SJ. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 2007;50:320–37.

    CAS  PubMed  Google Scholar 

  53. Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol. 2004;8:610–6.

    CAS  PubMed  Google Scholar 

  54. Pokhilko A, Ramos JA, Holtan H, Maszle DR, Khanna R, Millar AJ. Ubiquitin ligase switch in plant photomorphogenesis: a hypothesis. J Theor Biol. 2011;270:31–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell. 2008;20:1693–707.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, et al. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell. 2008;20:752–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE, Durrant WE, et al. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell. 2005;17:295–310.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep. 2016;6:270–8.

    Google Scholar 

  59. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA. 2006;103:18822–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Salinas-Mondragon RE, Garciduenas-Pina C, Guzman P. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol. 1999;40:579–90.

    CAS  PubMed  Google Scholar 

  61. Sato T, Maekawa S, Yasuda S, Sonoda Y, Katoh E, Ichikawa T, et al. CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant J. 2009;60:852–64.

    CAS  PubMed  Google Scholar 

  62. Serrano M, Guzman P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics. 2004;167:919–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded betaC1. Mol Plant. 2016;9:911–25.

    CAS  PubMed  Google Scholar 

  64. Shu K, Yang W. E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol. 2017;58:1461–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol. 2004;55:555–90.

    CAS  PubMed  Google Scholar 

  66. Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, et al. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J. 2009;60:68–78.

    CAS  PubMed  Google Scholar 

  67. Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 2005;137:13–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sun CW, Callis J. Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J. 1997;11:1017–27.

    CAS  PubMed  Google Scholar 

  69. Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, et al. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J. 2002;30:447–55.

    CAS  PubMed  Google Scholar 

  70. Takizawa M, Goto A, Watanabe Y. The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress hormones. Mol Cells. 2005;19:228–31.

    CAS  PubMed  Google Scholar 

  71. Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U, et al. Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant J. 2005;43:437–48.

    CAS  PubMed  Google Scholar 

  72. Thordal-Christensen H. Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol. 2003;6:351–7.

    CAS  PubMed  Google Scholar 

  73. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Trujillo M, Shirasu K. Ubiquitination in plant immunity. Curr Opin Plant Biol. 2010;13:402–8.

    CAS  PubMed  Google Scholar 

  75. Vierstra RD. Proteolysis in plants: mechanisms and functions. Plant Mol Biol. 1996;32:275–302.

    CAS  PubMed  Google Scholar 

  76. Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10:385–97.

    CAS  PubMed  Google Scholar 

  77. Wiborg J, O’Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin–protein ligases. Biochem J. 2008;413:447–57.

    CAS  PubMed  Google Scholar 

  78. Windheim M, Peggie M, Cohen P. Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J. 2008;409:723–9.

    CAS  PubMed  Google Scholar 

  79. Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot. 2009;60:1109–21.

    CAS  PubMed  Google Scholar 

  80. Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, et al. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol. 2013;200:834–46.

    CAS  PubMed  Google Scholar 

  81. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell. 2004;16:2795–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang C, Song L, Choudhary MK, Zhou B, Sun G, Broderick K, Gieslet L, Zeng L. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode. BMC Plant Biol. 2018;18:149.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors’ work in this area is financially supported by the Department of Biotechnology, Ministry of Science and Technology, Govt. of India (Project No.: BT/PR8357/PBD/16/1033/2013). AM acknowledges the NPDF award from DST-SERB, Govt. of India. MM acknowledges the DST INSPIRE Faculty Award from DST, Govt. of India. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to the e-resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Additional information

This article is dedicated to the memory of Profs AK Sharma and Archana Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Sharma, N., Muthamilarasan, M. et al. Ubiquitination: a tool for plant adaptation to changing environments. Nucleus 61, 253–260 (2018). https://doi.org/10.1007/s13237-018-0255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-018-0255-6

Keywords

Navigation