Skip to main content
Log in

Wheat germ stabilization by infrared radiation

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m2, a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IR:

Infrared radiation

FFA:

Free fatty acid content

WI:

Whiteness index

FA0:

Free fatty acid content before incubation

FA48:

Free fatty acid content after 48 h of incubation

ΔFA:

Change in free fatty acid content

TTC:

Total tocopherol content

PV:

Peroxide value

IRRI:

Infrared radiation intensity

GD:

Emitter-sample gap distance

TT:

Treatment time

RSM:

Response surface methodology

References

  • AACC (2010) Approved methods of the American association of cereal chemistry, 11th edn. St. Paul, Minnesota

    Google Scholar 

  • Alimentarius Codex (1981) Codex standard for edible fats and oils not covered by individual standards. FAO/WHO, Rome

    Google Scholar 

  • AOCS (2009) Official methods and recommended practices of the American Oil Chemists’ Society, 5th edn. AOCS Press, Champaign

    Google Scholar 

  • Attia RS, Abou-Gharbia HA (2011) Evaluation and stabilization of wheat germ and its oil characteristics. Alex J Fd Sci Technol 8(2):31–39

    Google Scholar 

  • Bansal S, Sudha ML (2011) Nutritional, microstructural, rheological and quality characteristics of biscuits using processed wheat germ. Int J Food Sci Nut 62(5):474–479

    Article  CAS  Google Scholar 

  • Barnes HM (1948) 5-PentadecylIresorcinol as an oxidation inhibitor of glycerides. US Pat 2(448):207

    Google Scholar 

  • Capitani M, Mateo CM, Nolasco SM (2011) Effect of temperature and storage time of wheat germ on the oil tocopherol concentration. Braz J Chem Eng 28(02):243–250

    Article  CAS  Google Scholar 

  • Ding C, Khir R, Pan Z, Zhao L, Tu K, El-Mashad H, McHugh TH (2015) Improvement in shelf life of rough and brown rice using infrared radiation heating. Food Bioprocess Technol 8(5):1149–1159

    Article  Google Scholar 

  • Elisia I, Young JW, Yuan YV, Kitts DD (2013) Association between tocopherol isoform composition and lipid oxidation in selected multiple edible oils. Food Res Int 52(2):508–514

    Article  CAS  Google Scholar 

  • Engelsen MM, Hansen A (2009) Tocopherol and tocotrienol content in commercial wheat mill streams. Cereal Chem 86(5):499–502

    Article  CAS  Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, dosSantos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597(2):179–186

    Article  CAS  Google Scholar 

  • Galle KL (1974) Process for production stabilized wheat germ. US Pat 3783164 A

  • Gili RD, Palavecino PM, Penci MC, Ribotta PD (2013) Estabilización y aprovechamiento de germen de trigo empleando radiación infrarroja. In: Asociación Argentina de Tecnólogos Alimentarios (ed) Proceedings of XIV Congreso Argentino de Tecnología de Alimentos

  • Grandel F (1959) Process of making germ flakes. US Pat 2879167 A

  • Hakansson B, Jagerstad M, Oste R, Akesson B, Jonssson L (1987) The effects of various thermal processes on protein quality, vitamins and selenium content in whole-grain wheat and white flour. J Cereal Sci 6:269–282

    Article  Google Scholar 

  • Hemdane S, Leys S, Jacobs PJ, Dornez E, Delcour JA, Courtin CM (2015) Wheat milling by-products and their impact on bread making. Food Chem 187:280–289

    Article  CAS  Google Scholar 

  • Hernández Sánchez MDR, Cuvelier ME, Turchiuli C (2016) Effect of α-tocopherol on oxidative stability of oil during spray drying and storage of dried emulsions. Food Res Int 88(A):32–41

    Article  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C (2009) Kinetics of tocols degradation during the storage of einkorn (Triticum monococcum L. ssp. monococcum) and breadwheat (Triticum aestivum L. ssp. aestivum) flours. Food Chem 116:821–827

    Article  CAS  Google Scholar 

  • Jahani M, Alizadeh M, Pirozifard M, Qudsevali A (2008) Optimization of enzymatic degumming process for rice bran oil using response surface methodology. Lwt-Food Sci Technol 41(10):1892–1898

    Article  CAS  Google Scholar 

  • Jha PK, Kudachikar VB, Kumar S (2013) Lipase inactivation in wheat germ by gamma irradiation. Int J Radiat Phys Chem 86:136–139

    Article  CAS  Google Scholar 

  • Krishnamurthy K, Khurana HK, Soojin J, Irudayaraj J, Demirci A (2008) Infrared heating in food processing: an overview. Compr Rev Food Sci Food Saf 7(1):2–13

    Article  Google Scholar 

  • Magariño M, Mateo CM, Nolasco SM (2012) Efecto de variables de almacenamiento del aceite sobre los tocoferoles de germen de trigo. In: Proceedings of IV Congreso Internacional Ciencia y Tecnología de los Alimentos. http://cicytac.cba.gov.ar/edicionesAnt/2012/Libro%20de%20Res%C3%BAmenes%20CICyTAC%202012.pdf. Accessed 29 Jan 2016

  • Marti A, Torri L, Casiraghi MC, Franzetti L, Limbo S, Morandin F, Pagani MA (2014) Wheat germ stabilization by heat-treatment or sourdough fermentation: effects on dough rheology and bread properties. Lwt-Food Sci Technol 59(2):1100–1106

    Article  CAS  Google Scholar 

  • Martínez ML, Maestri DM (2015) Aceites vegetales no tradicionales, vol 1, 1st edn. Editorial Brujas, Córdoba

    Google Scholar 

  • Martínez ML, Mattea MA, Maestri DM (2006) Varietal and crop year effects on lipid composition of walnut (Juglans regia) genotypes. J Am Oil Chem Soc 83(9):791–796

    Article  Google Scholar 

  • Martínez ML, Marín MA, Ribotta PD (2013) Optimization of soybean heat-treating using a fluidized bed dryer. J Food Sci Technol 50(6):1144–1150

    Article  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Rahman M, Labuza TP (2007) Water activity and food preservation. In: Rahman M (ed) Handbook of food preservation, 2nd edn. Taylor and Francis, Boca Raton, pp 447–476

    Chapter  Google Scholar 

  • Rose DJ, Pike OA (2006) A simple method to measure lipase activity in wheat and wheat bran as an estimation of storage quality. J Am Oil Chem Soc 83(5):415–419

    Article  CAS  Google Scholar 

  • Rose D, Lynn D, Dunn M, Pike O (2008) Enhanced lipid stability in whole wheat flour by lipase inactivation and antioxidant retention. Cereal Chem 85(2):218–223

    Article  CAS  Google Scholar 

  • Sakai N, Hanzawa T (1994) Applications and advances in far-infrared heating in Japan. Trends Food Sci Technol 5:357–362

    Article  CAS  Google Scholar 

  • Shurpalekar SR, Rao PH (1977) Wheat Germ. Adv Food Res 23:187–304

    Article  CAS  Google Scholar 

  • Sjövall O, Virtalaine T, Lapveteläinen A, Kallio H (2000) Development of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. J Agric Food Chem 48(8):3522–3527

    Article  Google Scholar 

  • Tuncel NB, Yılmaz N, Kocabıyık H, Uygur A (2014) The effect of infrared stabilized rice bran substitution on physicochemical and sensory properties of pan breads: part I. J Cereal Sci 59(2):155–161

    Article  CAS  Google Scholar 

  • Yazicioglu B, Sahin S, Sumnu G (2014) Microencapsulation of wheat germ oil. J Food Sci Technol 52(6):3590–3597

    Google Scholar 

  • Yılmaz N, Tuncel NB, Kocabıyık H (2013) Infrared stabilization of rice bran and its effects on γ-oryzanol content, tocopherols and fatty acid composition. J Sci Food Agric 94:1568–1576

    Article  Google Scholar 

  • Yöndem-Makascıoǧlu F, Gürün B, Dik T, Suzan Kıncal N (2005) Use of a spouted bed to improve the storage stability of wheat germ followed in paper and polyethlyene packages. J Sci Food Agric 85(8):1329–1336

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Secretaría de Ciencia y Tecnología of Universidad Nacional de Córdoba (SeCyT-UNC) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for financial support. We thank Dr. Paul Hobson, native speaker, for revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cecilia Penci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gili, R.D., Palavecino, P.M., Cecilia Penci, M. et al. Wheat germ stabilization by infrared radiation. J Food Sci Technol 54, 71–81 (2017). https://doi.org/10.1007/s13197-016-2437-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2437-z

Keywords

Navigation