Skip to main content
Log in

Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The objective of this work was to investigate the contribution of α-amylase and amyloglucosidase to dough fermentation process and bread quality, as an alternative to reduce the negative effects caused by high damaged starch in flour. The dough properties during the proofing process were modified by higher damaged starch content. Higher damaged starch in flour resulted into breads with darker crusts and firmer crumbs. The enzymes reduced the negative influence of damaged starch, producing a positive effect on the maximum carbon dioxide pressure reached during fermentation and the carbon dioxide volume retained by dough. Incorporation of alpha-amylase reduced dimension ratio and crumb firmness attributes; however, progressive additions of this additive produced lower bread volume and red intensity, and higher crumb firmness. The amyloglucosidase additions produced higher bread volume and red intensity of the crust, and lower brightness crust and gas cell diameter. Incorporation of amyloglucosidase was beneficial in the presence of a suitable quantity of damaged starch. The results confirmed that the α-amylase and amyloglucosidase additions significantly improved bread quality. Incorporation of α-amylase and amyloglucosidase led to higher bread loaves and lower crumb firmness throughout the storage period, promoting a longer life of the finished product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AACC American Association of Cereal Chemists (2000) Approved methods of the AACC. The Association, St. Paul

    Google Scholar 

  • Barrera GN, Pérez GT, Ribotta PD, León AE (2007) Influence of damaged starch on cookie and bread-making quality. Eur Food Res Technol 225:1–7. doi:10.1007/s00217-006-0374-1

    Article  CAS  Google Scholar 

  • Barrera GN, León AE, Ribotta PD (2012) Effect of damaged starch on starch thermal behavior. J Int Starch Stärke 64:786–793. doi:10.1002/star.201200022

    Article  CAS  Google Scholar 

  • Barrera GN, Bustos MC, Iturriaga L, Flores SK, León AE, Ribotta PD (2013) Effect of damaged starch on the rheological properties of wheat starch suspensions. J Food Eng 116:233–239. doi:10.1016/j.jfoodeng.2012.11.020

    Article  CAS  Google Scholar 

  • Barrera GN, León AE, Ribotta PD (2015) Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems. J Sci Food Agric 96:2539–2546. doi:10.1002/jsfa.7374

    Article  Google Scholar 

  • Bowles LK (1996) Baked Goods Freshness: Technology, Evaluation and Inhibition of Staling. Marcel Dekker, New York

    Google Scholar 

  • C.I.E International Commission on illumination (1976) CIE colorimetry-technical reports. C.I.E. N 15.2, Vienna

    Google Scholar 

  • Colombo A, Peréz GT, Ribotta PD, León AE (2008) A comparative study of physicochemical tests for quality prediction of Argentine wheat flours used as corrector flours and for cookie production. J Cereal Sci 48:775–780. doi:10.1016/j.jcs.2008.05.003

    Article  CAS  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat-version2011. Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Diler G, Chevallier S, Pöhlmann I, Guyon C, Guilloux M, Le-Bail A (2015) Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking. J Cereal Sci 61:63–70. doi:10.1016/j.jcs.2014.10.003

    Article  CAS  Google Scholar 

  • Duyvejonck AE, Lagrain B, Pareyt B, Courtin CM, Delcour JA (2011) Relative contribution of wheat flour constituents to solvent retention capacity profiles of European wheats. J Cereal Sci 53:312–318. doi:10.1016/j.jcs.2011.01.014

    Article  CAS  Google Scholar 

  • El-Porai ES, Salama AE, Sharaf AM, Hegazy AI, Gadallah MGE (2013) Effect of different milling processes on Egyptian wheat flour properties and pan bread quality. Ann Agric Sci 58:51–59. doi:10.1016/j.aoas.2013.01.008

    Google Scholar 

  • Ferreira SL, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EG, Portugal LA, dos Reis PS, Souza AS, dos Santos WN (2007) Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chem Act 597:179–186. doi:10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  • Fujii M, Homma T, Taniguchi M (1988) Synergism of alpha-amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol Bioeng 32:910–915. doi:10.1002/bit.260320710

    Article  CAS  Google Scholar 

  • Ghodke SK, Ananthanarayan L, Rodrigues L (2009) Use of response surface methodology to investigate the effects of milling conditions on damaged starch, dough stickiness and chapatti quality. Food Chem 112:1010–1015. doi:10.1016/j.foodchem.2008.05.036

    Article  CAS  Google Scholar 

  • Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16:12–30. doi:10.1016/j.tifs.2004.02.011

    Article  CAS  Google Scholar 

  • Hoseney RC (1994) Principles of cereal science and technology. American Association of Cereal Chemists, MN, USA

    Google Scholar 

  • IRAM Instituto Argentino de Racionalización de Materiales (1996) Cereales. Ensayo de panificación experimental. Método para ser usado en programas de mejoramiento de trigo. Norma 15858–1. Instituto Argentino de Racionalización de Materiales, Buenos Aires

    Google Scholar 

  • Jovanovich G, Campaña L, Cardós M, Lupano CE (2003) Correlation between starch damaged, alveograph parameters, water absorption and gelatinization enthalpy in flour obtained by industrial milling of Argentinian wheats. Food Technol 1:168–172

    Google Scholar 

  • Kim JH, Maeda T, Morita N (2006) Effect of fungal alpha-amylase on the dough properties and bread quality of wheat flour substituted with polished flours. Food Res Int 39:117–126. doi:10.1016/j.foodres.2005.06.008

    Article  CAS  Google Scholar 

  • Kragh KM (2002) Amylases in baking. In: Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent advances in enzymes in grain processing. Laboratory of Food Chemistry, Leuven

    Google Scholar 

  • Linko YY, Javanainen P, Linko S (1997) Biotechnology of bread baking. Trends Food Sci Technol 8:339–344. doi:10.1016/S0924-2244(97)01066-2

    Article  CAS  Google Scholar 

  • Martinez-Anaya MA, Jimenez T (1997) Rheological properties of enzyme supplemented doughs. J Texture Studies 28:569–583. doi:10.1111/j.1745-4603.1997.tb00137.x

    Article  Google Scholar 

  • Morrison WR, Tester RF, Gidley MJ (1994) Properties of damaged starch granules II. Crystallitinty, molecular order and gelatinization of ball-milled starches. J Cereal Sci 19:209–217. doi:10.1006/jcrs.1994.1028

    Article  CAS  Google Scholar 

  • Patel MJ, Ng JHY, Hawkins WE, Pitts KF, Chakrabarti-Bell S (2012) Effects of fungal α-amylase on chemically leavened wheat flour doughs. J Cereal Sci 56:644–651. doi:10.1016/j.jcs.2012.08.002

    Article  CAS  Google Scholar 

  • Sanz Penella JM, Collar C, Haros M (2008) Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J Cereal Sci 48:715-721. doi:10.1016/j.jcs.2008.03.006

    Article  Google Scholar 

  • Rao BN, Pozniak CJ, Hucl PJ, Briggs C (2010) Baking quality of emmer-derived durum wheat breeding lines. J Cereal Sci 51:299–304. doi:10.1016/j.jcs.2010.01.004

    Article  Google Scholar 

  • Rehman S, Paterson A, Piggott JR (2007) Chapatti quality from British wheat cultivar flours. LWT Food Sci Technol 40:775–784. doi:10.1016/j.lwt.2006.04.009

    Article  CAS  Google Scholar 

  • Sakhare SD, Inamdar AA, Soumya C, Indrani D, Venkateswara Rao G (2014) Effect of flour particle size on microstructural, rheological and physico-sensory characteristics of bread and south Indian parotta. J Food Sci Technol 51:4108–4113. doi:10.1007/s13197-013-0939-5

    Article  CAS  Google Scholar 

  • Tester RF (1997) Properties of damaged starch granules: composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocoll 11:293–301. doi:10.1016/S0268-005X(97)80059-8

    Article  CAS  Google Scholar 

  • Tester RF, Morrison WR, Gidley MJ, Kirkland M, Karkalas J (1994) Properties of damaged starch granules. III. Microscopy and particle size analysis of undamaged granules remnants. J Cereal Sci 20:59–67. doi:10.1006/jcrs.1994.1045

    Article  CAS  Google Scholar 

  • Wursch P, Gumy D (1994) Inhibition of amylopectin retrogradation by partial beta amylolysis. Carbohydr Res 256:129–137. doi:10.1016/0008-6215(94)84232-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Consejo Nacional de Ciencia y Técnica, Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba and Ministerio de Ciencia y Tecnología of Córdoba for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo D. Ribotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera, G.N., Tadini, C.C., León, A.E. et al. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch. J Food Sci Technol 53, 3675–3684 (2016). https://doi.org/10.1007/s13197-016-2337-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2337-2

Keywords

Navigation