Skip to main content

Advertisement

Log in

From Biomass Residues to Titania Coated Carbonaceous Photocatalysts: A Comparative Analysis of Different Preparation Routes for Water Treatment Application

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper investigates on the sustainable ways of associating activated carbon (AC) and titania (TiO2) into a single material capable of both adsorbing and degrading micropollutants in aqueous solution under UV light. Three main preparation routes were carried out, based on the thermochemical conversion of shea nut shell, an abundant and cost free tropical biomass. N2 adsorption desorption at 77 K, X-ray diffraction spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to assess how each specific preparation route shapes the textural and structural properties of the resulting catalysts. Catalysts obtained from AC impregnation with preformed titania nanoparticles sol (CAT/S) exhibited a regular deposition of TiO2 nanoparticles in the readily irradiated external macropores providing them with the best performances on phenol photomineralization. Pyrolysis of biomass impregnated with TiO2 nanoparticles sol leads to catalysts (CAT/SB) with large agglomerates embedded within the AC structure. The third category of catalysts (CAT/G) obtained from the in situ generation of TiO2 nanoparticles within a titania gel impregnated AC presented a degraded porosity-surface area network, which seems to explain their poor photoactivity. The performances of CAT/S catalysts are maintained after three successive reutilizations and suggest their stability and self regeneration capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846 (2007)

    Article  Google Scholar 

  2. Liu, S.X., Sun, C.L., Zhang, S.R.: Photocatalytic regeneration of exhausted activated carbon saturated with phenol. Bull. Environ. Contam. Toxicol. 73, 1017–1024 (2004)

    Article  Google Scholar 

  3. Lim, T.-T., Yap, P.-S., Srinivasan, M., Fane, A.G.: TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit. Rev. Environ. Sci. Technol. 41, 1173–1230 (2011)

    Article  Google Scholar 

  4. Çeçen, F, Aktaş, Ö.: Front Matter, in: Act. Carbon Water Wastewater Treat. Wiley-VCH Verlag GmbH & Co. KGaA (2011). http://onlinelibrary.wiley.com/doi/10.1002/9783527639441.fmatter/summary. Accessed 24 May 2016

  5. Herrmann, J.-M., Matos, J., Disdier, J., Guillard, C., Laine, J., Malato, S., Blanco, J.: Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal. Today 54, 255–265 (1999)

    Article  Google Scholar 

  6. Gianluca, A.B., Puma, L.: Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J. Hazard. Mater. 157, 209–219 (2008)

    Article  Google Scholar 

  7. Velasco, L.F., Parra, J.B., Ania, C.O.: Role of activated carbon features on the photocatalytic degradation of phenol. Appl. Surf. Sci. 256, 5254–5258 (2010)

    Article  Google Scholar 

  8. Ndounla, J., Spuhler, D., Kenfack, S., Wéthé, J., Pulgarin, C.: Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: absence of re-growth after one week of subsequent storage. Appl. Catal. B Environ. 129, 309–317 (2013)

    Article  Google Scholar 

  9. Liu, S.X., Chen, X.Y., Chen, X.: A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater. 143, 257–263 (2007)

    Article  Google Scholar 

  10. Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., Wen, Z.: A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci. 255, 3953–3958 (2009)

    Article  Google Scholar 

  11. Liu, C., Li, Y., Xu, P., Li, M., Zeng, M.: Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater. Chem. Phys. 149–150, 69–76 (2015)

    Article  Google Scholar 

  12. Asenjo, N.G., Santamaría, R., Blanco, C., Granda, M., Álvarez, P., Menéndez, R.: Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55, 62–69 (2013)

    Article  Google Scholar 

  13. El-Sheikh, A.H., Newman, A.P., Al-Daffaee, H., Phull, S., Cresswell, N., York, S.: Deposition of anatase on the surface of activated carbon. Surf. Coat. Technol. 187, 284–292 (2004)

    Article  Google Scholar 

  14. Leary, R., Westwood, A.: Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741–772 (2011)

    Article  Google Scholar 

  15. Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., Maier, W.F.: Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B Environ. 32, 215–227 (2001)

    Article  Google Scholar 

  16. Li, Y., Zhang, S., Yu, Q., Yin, W.: The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method. Appl. Surf. Sci. 253, 9254–9258 (2007)

    Article  Google Scholar 

  17. Yuan, R., Guan, R., Zheng, J.: Effect of the pore size of TiO2-loaded activated carbon fiber on its photocatalytic activity. Scr. Mater. 52, 1329–1334 (2005)

    Article  Google Scholar 

  18. Liang, Y., Wang, H., Casalongue, H.S., Chen, Z., Dai, H.: TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010)

    Article  Google Scholar 

  19. Subramani, A.K., Byrappa, K., Ananda, S., Rai, K.M.L., Ranganathaiah, C., Yoshimura, M.: Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bull. Mater. Sci. 30, 37–41 (2007)

    Article  Google Scholar 

  20. Velasco, L.F., Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N., Parra, J.B., Ania, C.O.: Carbon foams as catalyst supports for phenol photodegradation. J. Hazard. Mater. 184, 843–848 (2010)

    Article  Google Scholar 

  21. Mohd Din, A.T., Hameed, B.H., Ahmad, A.L.: Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161, 1522–1529 (2009)

    Article  Google Scholar 

  22. Kahru, A., Pollumaa, L., Reiman, R., Rätsep, A., Liiders, M., Maloveryan, A.: The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach. Environ. Toxicol. 15(5), 431–442 (2000)

    Article  Google Scholar 

  23. Noumi, E.S., Dabat, M.-H., Blin, J.: Energy efficiency and waste reuse: a solution for sustainability in poor West African countries? Case study of the shea butter supply chain in Burkina Faso. J. Renew. Sustain. Energy. 5, 053134 (2013)

    Article  Google Scholar 

  24. Itodo, A.U., Itodo, H.U., Gafar, M.K.: Evaluation of Dyestuff removal by Shea Nut (Vitellaria paradoxa) shells. J. Appl. Sci. Environ. Manag. 14, 163–168 (2010)

    Google Scholar 

  25. Andronic, L., Andrasi, D., Enesca, A., Visa, M., Duta, A.: The influence of titanium dioxide phase composition on dyes photocatalysis. J. Sol Gel Sci. Technol. 58, 201–208 (2010)

    Article  Google Scholar 

  26. Bosc, F., Edwards, D., Keller, N., Keller, V., Ayral, A.: Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation. Thin Solid Films 495, 272–279 (2006)

    Article  Google Scholar 

  27. Gupta, S.M., Tripathi, M.: A review on the synthesis of TiO2 nanoparticles by solution route. Cent. Eur. J. Chem. 10, 279–294 (2012)

    Google Scholar 

  28. Réti, B., Mogyorósi, K., Dombi, A., Hernádi, K.: Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts. Appl. Catal. Gen. 469, 153–158 (2014)

    Article  Google Scholar 

  29. Cheng, G., Stadler, F.J.: Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules. J. Colloid Interface Sci. 438, 169–178 (2015)

    Article  Google Scholar 

  30. Noh, J.S., Schwarz, J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)

    Article  Google Scholar 

  31. Plantard, G., Janin, T., Goetz, V., Brosillon, S.: Solar photocatalysis treatment of phytosanitary refuses: efficiency of industrial photocatalysts. Appl. Catal. B Environ. 115–116, 38–44 (2012)

    Article  Google Scholar 

  32. Gueye, M., Richardson, Y., Kafack, F.T., Blin, J.: High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2, 273–281 (2014)

    Article  Google Scholar 

  33. Molina-Sabio, M., Rodríguez-Reinoso, F.: Role of chemical activation in the development of carbon porosity. Colloids Surf. Physicochem. Eng. Asp. 241, 15–25 (2004)

    Article  Google Scholar 

  34. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, Hoboken (2003)

    Book  Google Scholar 

  35. Marsh, H., Reinoso, F.R.: Activated Carbon. Elsevier, Amsterdam (2006)

    Google Scholar 

  36. Zhang, X., Zhou, M., Lei, L.: Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon 43, 1700–1708 (2005). doi:10.1016/j.carbon.2005.02.013

    Article  Google Scholar 

  37. Xie, Y., Wu, Z., Wu, Q., Liu, M., Piao, L.: Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal. Today 225, 74–79 (2014)

    Article  Google Scholar 

  38. Carp, O., Huisman, C.L., Reller, A.: Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)

    Article  Google Scholar 

  39. Regonini, D., Jaroenworaluck, A., Stevens, R., Bowen, C.R.: Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf. Interface Anal. 42, 139–144 (2010)

    Article  Google Scholar 

  40. Tancredi, N., Medero, N., Möller, F., Píriz, J., Plada, C., Cordero, T.: Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J. Colloid Interface Sci. 279, 357–363 (2004)

    Article  Google Scholar 

  41. Salame, I.I., Bandosz, T.J.: Role of surface chemistry in adsorption of phenol on activated carbons. J. Colloid Interface Sci. 264, 307–312 (2003)

    Article  Google Scholar 

  42. Araña, J., Doña-Rodríguez, J.M., Tello Rendón, E., Garriga i Cabo, C., González-Díaz, O., Herrera-Melián, J.A., Pérez-Peña, J., Colón, G., Navío, J.A.: TiO2 activation by using activated carbon as a support: Part II. Photoreactivity and FTIR study. Appl. Catal. B Environ. 44, 153–160 (2003)

    Article  Google Scholar 

  43. Ahmaruzzaman, M., Sharma, D.K.: Adsorption of phenols from wastewater. J. Colloid Interface Sci. 287, 14–24 (2005)

    Article  Google Scholar 

  44. Goetz, V., Cambon, J.P., Sacco, D., Plantard, G.: Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized TiO2. Chem. Eng. Process. Process. Intensif. 48, 532–537 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Telegang Chekem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekem, C.T., Richardson, Y., Plantard, G. et al. From Biomass Residues to Titania Coated Carbonaceous Photocatalysts: A Comparative Analysis of Different Preparation Routes for Water Treatment Application. Waste Biomass Valor 8, 2721–2733 (2017). https://doi.org/10.1007/s12649-016-9789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9789-5

Keywords

Navigation