Skip to main content
Log in

Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET)

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2–N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Adipuri, Y. Li, G.Q. Zhang, and O. Ostrovski, Chlorination of reduced ilmenite concentrates and synthetic rutile, Int. J. Miner. Process., 100(2011), No. 3-4, p. 166.

    Article  Google Scholar 

  2. A. Adipuri, G.Q. Zhang, and O. Ostrovski, Chlorination of titanium oxycarbonitride produced by carbothermal nitridation of rutile, Ind. Eng. Chem. Res., 48(2009), No. 2, p. 779.

    Article  Google Scholar 

  3. D.P. Xiang, Y. Liu, M.J. Tu, Y.Y. Li, and W.P. Chen, Synthesis of nano Ti(C, N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction, Int. J. Refract. Met. Hard Mater., 27(2009), No. 1, p. 111.

    Article  Google Scholar 

  4. Y. Peng, H.Z. Miao, and Z.J. Peng, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 39(2013), p. 78.

    Article  Google Scholar 

  5. A. Mosbah, A. Calka, and D. Wexler, Rapid synthesis of titanium nitride powder by electrical discharge assisted mechanical milling, J. Alloys Compd., 424(2006), No. 1-2, p. 279.

    Article  Google Scholar 

  6. A. Chrysanthou and N. Hassine, The observation and crystal structure of titanium oxycarbonitride, Powder Diffr., 9(1994), No. 3, p. 202.

    Article  Google Scholar 

  7. D.T. Dam, K.D. Nam, H. Song, X. Wang, and J.M. Lee, Partially oxidized titanium carbonitride as a non-noble catalyst for oxygen reduction reactions, Int. J. Hydrogen Energy, 37(2012), No. 20, p. 15135.

    Article  Google Scholar 

  8. J.R. Groza, J.D. Curtis, and M. Krämer, Field-assisted sintering of nanocrystalline titanium nitride, J. Am. Ceram. Soc., 83(2000), No. 5, p. 1281.

    Article  Google Scholar 

  9. H. Kuwahara, N. Mazaki, M. Takahashi, T. Watanabe, X. Yang, and T. Aizawa, Mechanical properties of bulk sintered titanium nitride ceramics, Mater. Sci. Eng. A, 319-321(2001), p. 687.

    Article  Google Scholar 

  10. J.J. Ru, Y.X. Hua, C.Y. Xu, Q.B. Zhang, D. Wang, and K. Gong, Synthesis of TiN from FeTiO3 by microwave-assisted carbothermic reduction–nitridation, J. Alloys Compd., 583(2014), p. 121.

    Article  Google Scholar 

  11. A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, and B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coat. Technol., 203(2009), No. 24, p. 3701.

    Article  Google Scholar 

  12. R. Gupta, S. Soni, and D.M. Phase, Improvement of oxidation resistance of TiCN films prepared by laser alloying, Appl. Phys. A, 118(2015), No. 1, p. 191.

    Article  Google Scholar 

  13. T. Matsuda and H. Matsubara, Thermophysical and elastic properties of titanium carbonitrides containing molybdenum and tungsten, J. Alloys Compd., 562(2013), p. 90.

    Article  Google Scholar 

  14. S.A. Rezan, G.Q. Zhang, and O. Ostrovski, Carbothermal reduction and nitridation of ilmenite concentrates, ISIJ Int., 52(2012), No. 3, p. 363.

    Article  Google Scholar 

  15. Q.Y. Wang, J.X. Song, J.Y. Wu, S.Q. Jiao, J.G. Hou, and H.M. Zhu, A new consumable anode material of titanium oxycarbonitride for the USTB titanium process, Phys. Chem. Chem. Phys., 16(2014), No. 17, p. 8086.

    Article  Google Scholar 

  16. S.A. Rezan, A. Adipuri, G.Q. Zhang, and O. Ostrovski, Carbothermal reduction and nitridation of ilmenite concentrates and chlorination of the reduced samples, [in] Proceedings of the XXV International Mineral Processing Congress (IMPC 2010), Brisbane, 2010, p. 1585.

    Google Scholar 

  17. S.A. Rezan, G.Q. Zhang, and O. Ostrovski, Phase development in carbothermal reduction and nitridation of ilmenite concentrates, High Temp. Mater. Processes, 31(2012), No. 4-5, p. 381.

    Article  Google Scholar 

  18. S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243.

    Article  Google Scholar 

  19. M. Ma, D.H. Wang, W.G. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen, Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloys Compd., 420(2006), No. 1-2, p. 37.

    Article  Google Scholar 

  20. X. Fu, Y. Wang, L. Xiong, and F. Wei, Enhancement of the low temperature chlorination of ilmenite with CCl4 by adding Cl2, J. Alloys Compd., 486(2009), No. 1-2, p. 365.

    Article  Google Scholar 

  21. K.S. Geetha and G.D. Surender, Experimental and modelling studies on the aeration leaching process for metallic iron removal in the manufacture of synthetic rutile, Hydrometallurgy, 56(2000), No. 1, p. 41.

    Article  Google Scholar 

  22. L.C. de Santa Maria, Preparation of soluble TiCl4 catalyst modified with some metal chlorides and its use for ethylene and propylene homopolymerization, Polymer, 36(1995), No. 1, p. 217.

    Article  Google Scholar 

  23. R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura, and K. Ono, Titanium powder prepared by magnesiothermic reduction of Ti2+ in molten salt, Metall. Mater. Trans. B, 30(1999), No. 3, p. 403.

    Article  Google Scholar 

  24. D.S. van Vuuren, S.J. Oosthuizen, and M.D. Heydenrych, Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products, J. S. Afr. Inst. Min. Metall., 111(2011), No. 3, p. 141.

    Google Scholar 

  25. S.A. Rezan, G.Q. Zhang, O. Ostrovski, and L. Prentice, Carbothermal reduction and nitridation of titanium dioxide in a H2-N2 gas mixture, J. Am. Ceram. Soc., 94(2011), No. 11, p. 3804.

    Article  Google Scholar 

  26. J.R. Dankwah, P. Koshy, and V. Sahajwalla, Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life polyethylene terephthalate, Ironmaking Steelmaking, 41(2014), No. 6, p. 401.

    Article  Google Scholar 

  27. S. Kongkarat, R. Khanna, P. Koshy, P. O’Kane, and V. Sahajwalla, Recycling waste polymers in EAF steelmaking: Influence of polymer composition on carbon/slag interactions, ISIJ Int., 52(2012), No. 3, p. 385.

    Article  Google Scholar 

  28. C.M. Zhang, S.W. Chen, X.C. Miao, and H. Yuan, Reduction experiment of iron scale by adding waste plastics, J. Environ. Sci., 21(2009), Suppl. 1, p. S48.

    Google Scholar 

  29. V. Trinkel, N. Kieberger, T. Bürgler, H. Rechberger, and J. Fellner, Influence of waste plastic utilisation in blast furnace on heavy metal emissions, J. Cleaner Prod., 94(2015), p. 312.

    Article  Google Scholar 

  30. J.M.L. Reis, R. Chianelli-Junior, J.L. Cardoso, and F.J.V. Marinho, Effect of recycled PET in the fracture mechanics of polymer mortar, Constr. Build. Mater., 25(2011), No. 6, p. 2799.

    Article  Google Scholar 

  31. N. George and T. Kurian, Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste, Ind. Eng. Chem. Res., 53(2014), No. 37, p. 14185.

    Article  Google Scholar 

  32. J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.M. Palacios, and J.J. Pis, Textural development and hydrogen adsorption of carbon materials from PET waste, J. Alloys Compd., 379(2004), No. 1-2, p. 280.

    Article  Google Scholar 

  33. M. Pohořelý, M. Vosecký, P. Hejdová, M. Punčochář, S. Skoblja, M. Staf, J. Vošta, B. Koutský, and K. Svoboda, Gasification of coal and PET in fluidized bed reactor, Fuel, 85(2006), No. 17-18, p. 2458.

    Article  Google Scholar 

  34. M.A.R. Dewan, G.Q. Zhang, and O. Ostrovski, Phase development in carbothermal reduction of ilmenite concentrates and synthetic rutile, ISIJ Int., 50(2010), No. 5, p. 647.

    Article  Google Scholar 

  35. S.N. Ali, M.F. Yusop, K. Ismail, Z.A. Ghani, M.F. Abdullah, M.A.M. Ishak, and A.R. Mohamed, Tetralin-glycerol as solvent in direct liquefaction of Mukah Balingian coal, Energy Procedia, 52(2014), p. 618.

    Article  Google Scholar 

  36. A. Yaraghi, M.H.A. Sapri, N. Baharun, S.A. Rezan, N.I. Shoparwe, S. Ramakrishnan, K.S. Ariffin, M.N.A. Fauzi, H.B. Zabidi, H. Ismail, and H.H. Seli, Aeration leaching of iron from nitrided Malaysian ilmenite reduced by polystyrene-coal reductant, Procedia Chem., 19(2016), p. 715.

    Article  Google Scholar 

  37. S. Lashkari and B. Kruczek, Development of a fully automated soap flowmeter for micro flow measurements, Flow Meas. Instrum., 19(2008), No. 6, p. 397.

    Article  Google Scholar 

  38. M. Sundararajan, K.H. Bhat, S. Velusamy, N. Babu, M.E.K. Janaki, S. Sasibhooshanan, and P.N. Mohan Das, Characterization of ilmenite from Kerala coastline, India: implications in the production of synthetic rutile, J. Miner. Mater. Charact. Eng., 8(2009), No. 6, p. 427.

    Google Scholar 

  39. S. Volker and K. Mario, Primary and secondary pseudobrookite minerals in volcanic rocks from the Katzenbuckel Alkaline Complex, southwestern Germany, Swiss Bull. Mineral. Petrol., 83(2003), No. 2, p. 145.

    Google Scholar 

  40. M.W. Chase Jr., NIST-JANAF Thermochemical Tables, 4th Ed., J. Phys. Chem. Ref. Data, 1998, No. 9, p. 1758.

    Google Scholar 

  41. D.G. Jones, Reaction sequences in the reduction of ilmenite: 2. Gaseous reduction by carbon monoxide, Trans. Inst. Min. Metall., 82(1973), p. C186.

    Google Scholar 

  42. Y. Zhao and F. Shadman, Kinetics and mechanism of ilmenite reduction with carbon monoxide, AIChE J., 36(1990), No. 9, p. 1433.

    Article  Google Scholar 

  43. C.K. Ande and M.H.F. Sluiter, First-principles calculations on stabilization of iron carbides (Fe3C, Fe5C2, and η-Fe2C) in steels by common alloying elements, Metall. Mater. Trans. A, 43(2012), No. 11, p. 4436.

    Article  Google Scholar 

  44. S. Vijayakumar and P.R. Rajakumar, Infrared spectral analysis of waste pet samples, Int. Lett. Chem. Phys. Astron., 4(2012), p. 58.

    Article  Google Scholar 

  45. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Ed., John Wiley and Sons, Ltd., Chichester, 2001, p. 15.

    Google Scholar 

  46. Z.Y. Chen, J.N. Hay, and M.J. Jenkins, The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy, Thermochim. Acta, 552(2013), p. 123.

    Article  Google Scholar 

  47. J. Zhang, G. Zhang, and O. Ostrovski, An experimental investigation of the gasification of graphite by carbon dioxide, Can. Metall. Q., 55(2016), No. 1, p. 104.

    Article  Google Scholar 

  48. E. Ahmadi, S.A.R.B.S.A. Hamid, H.B. Hussin, S.R.N.B. Baharun, K.S.B. Ariffin, and M.N. Ahmad Fauzi, The preparation of iron-free TiCl4 from reduced and nitrided ilmenite by polyethylene terephthalate, INROADS Int. J. Jaipur Natl. Univ., 5(2016), No. 1, p. 11.

    Article  Google Scholar 

  49. F.A. Halden and W.D. Kingery, Surface tension at elevated temperatures: II. Effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3, J. Phys. Chem., 59(1955), No. 6, p. 557.

    Article  Google Scholar 

  50. C.J. Xuan, H. Shibata, Z. Zhao, P.G. Jönsson, and K. Nakajima, Wettability of TiN by liquid iron and steel, ISIJ Int., 55(2015), No. 8, p. 1642.

    Article  Google Scholar 

  51. W.D. Kingery and M. Humenik Jr., Surface tension at elevated temperatures: I. Furnace and method for use of the sessile drop method; surface tension of silicon, iron and nickel, J. Phys. Chem., 57(1953), No. 3, p. 359.

    Article  Google Scholar 

  52. Surface Energy and Thermodynamics [2016-02-10], http://www.virginia.edu/ep/SurfaceScience/Thermodynamicshtml.

  53. R.J.D. Tilley, Understanding Solids: The Science of Materials, 2nd Ed., John Wiley & Sons Ltd., West Sussex, 2013.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Universiti Sains Malaysia (USM) Fellowship (APEX 1002/JHEA/ATSG4001). This work was also financially supported by USM and Ministry of Higher Education (MOHE) of Malaysia through Fundamental Research Grant Scheme (FRGS) (Nos. 203/PBAHAN/6071230 and 203/PBAHAN/607126) and Research University Grant for Individual (RUI) from USM (No. 1001/PBAHAN/814273). The authors are also thankful to Dr. Hazman Haji Seli from the Faculty of Chemical Engineering, Universiti Teknologi MARA Sarawak at Kota Samarahan for providing Mukah–Balingian coal. Special thanks are given to USM technicians Mr. Shahrul and Mr. Syafiq for supporting the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Abdul Rezan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Fauzi, A., Hussin, H. et al. Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET). Int J Miner Metall Mater 24, 444–454 (2017). https://doi.org/10.1007/s12613-017-1425-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1425-2

Keywords

Navigation